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Abstract 
 
   We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the 
dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to 
determine how the modal characteristics change as circular Bragg fiber is changed to asymmetric Bragg fiber. The key to this 
transfer matrix method (TMM) is the accurate calculation of the propagation constants of modes. And validity of this method is 
verified by FDTD method. We compare these results with obtained from finite difference time domain and find excellent 
agreement between the two approaches. 
 
Keywords: Periodic structure, Weak guidance; Dispersion curves; Unconventional waveguides, Algorithms, Perfect matching 
layer (PML).  
 
1. Introduction 
 
    In recent years much effort has been made to analyze the modal characteristic of waveguides having various unconventional 
cross-sectional shapes (Kawakami and Nishida, 1974; Lewin, 1974; Misra et al., 1995; Matsuhara et al., 1988; Gu et al., 1989; 
Singh et al., 2000, 2001). Circular waveguides are an indispensable part of optical communication and so they have been studied 
extensively by various workers all over the world (Ito et al., 1995). As described earlier, they offer large information transmission 
bandwidth. The study of circular fibers has been important not only to improve their propagation characteristics but also to 
motivate technological developments of associated optoelectronic components. It is also known that a waveguide with a non 
circular cross-section is special interest due to its possible use in integrated optics (Kawakami and Nishida, 1974; Lewin, 1974; 
Misra et al., 1995; Matsuhara et al., 1988; Gu et al., 1989; Singh et al., 2000, 2001). Analytical studies of such non-circular fibers, 
being difficult, are rather rare. More recent studies involve unusual cross-sectional shapes like the cardioidic (Akira and Dietrich, 
1983; Maurya et al., 2006) etc. Many other cross-sectional shapes can be studied, particularly by using powerful tools like the 
finite difference time domain method (Zepparelli et al., 1999). However, apart from academic interest, some of these fibers of 
unusual cross-sections may occasionally find some practical relevance and used as a mode filter. In the present article, an unusual 
cross-sectional shape is being considered, namely, asymmetric Bragg fiber. 
   In a Bragg fiber completely different confinement mechanism, Bragg reflection provides an alternative way of guiding photons. 
Because Bragg fibers and conventional optical fibers utilize different guiding mechanisms, Bragg fibers offer many possibilities 
(Miyagi et al., 1983; Croitoru et al., 1990; Fink et al., 1999) that are difficult to achieve in conventional fibers. The analysis of 
Bragg fibers, is much more complicated that that of conventional fibers. The problem associated with finding analytical solutions 
for unconventional Bragg fibers solved by using the transfer matrix method (Yeh et al., 1978). In the matrix formalism of (Singh et 
al., 2006; Prajapati et al., 2008, 2009), used four independent parameters to describe the solution of Maxwell equations in each 
layer of the Bragg fiber and the parameters in neighbor dielectric layers were related via a 4X4 matrix. In this form, the solutions 
in Bragg fiber cladding resemble those in planar Bragg stacks and eigen solutions in the fiber claddings can be similarly found. 
The solutions in the center core are still given by Bessel functions and the eigenmode equation is found by matching the cladding 
solutions with core solutions at the core-cladding interface. As mentioned previously, an air core Bragg fiber may reduce the 
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photon propagation loss below what can be achieved in conventional fibers. Basically, there are two sources that contribute to the 
propagation loss in Bragg fiber, the material absorption loss and the radiation loss. The material absorption loss depends on the 
choice of dielectric medium and is not considered in this paper. On the other hand, the radiation loss mainly depends on the index 
contrast between the cladding media and the number of cladding pairs. In principle, the radiation loss can be reduced below any 
given number simply by using a large enough number of cladding pairs. However, using too many cladding pairs is generally 
undesirable or even impractical. Aside from the aforementioned analytical approaches, the guided Bragg fiber modes can also be 
found by numerically solving Maxwell equations, using various algorithms such as finite difference time domain (FDTD) method 
(Yee, 1966; Berenger, 1994; Taflove and Hagness, 2005). 

 

Outer Region or 
(m+1) region

Cladding 
Region 

Core Region 
or 1st  region

 
Fig.1 Schematic cross section of a unconventional Bragg fiber 

 
2. Transfer Matrix Formalism 
   The geometry of the problem is shown in Fig. 1. We use a transfer matrix method (TMM) (Yeh et al., 1978) to compute the 
modal characteristics of an unconventional Bragg fiber waveguide because the transfer-matrix method (TMM) is a simple 
technique that can be used for modeling for obtaining propagation characteristics, including losses for various modes of an 
arbitrarily graded planar waveguide structure, which may have media of complex refractive indices. The method is applicable for 
obtaining leakage losses and absorption losses, as well as for calculating beat length in directional couplers. Transfer-matrix 
methods may be especially attractive when the structure is decomposable into a few more-easily solvable components, and also for 
other cases, such as frequency-dependent dielectrics. It was also implemented for analyzing modal properties of optical fibers with 
a layered cladding structure.. The basic idea is to replace the boundary condition by a matrix equation. We assume that the 
expressions for the field components of all modes are multiplied by the factor exp (−jnθ −jβz + jωt), which will be suppressed 
throughout. In other words, there are TE0m,TM0m, HEnm, and EHnm modes that can be supported by this layered system. 
Dividing the inhomogeneous circular cylinder guide into l+1 region, as shown in Fig.1 we may write the expressions for the 
tangential fields in these regions as follows: 
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         In region m (m > 1) 
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and ' '
1 1, ,......... , , , ,......... ,m m m mC D C D C D G and F are arbitrary constants. It has been assumed that within each region the permittivity 

is a constant. We matching the targeting electric and magnetic fields at the boundary surfaces, that is, 
1 2, , 2 ,.................. mr a r a b r a b r a mb= = + = + = + give a matrix of size 4x4.  
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Setting the determinant of equation (1) is to zero, one obtains the dispersion relation from which the propagation constants of 
various modes.                           
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3. FDTD Method 
 
2-D FDTD method is applied to analyze the modal dispersion of an air core unconventional asymmetric Bragg fiber. This 
algorithm (Yee, 1966; Berenger, 1994; Taflove and Hagness, 2005), is developed from the fact that in any mode propagation in 
dielectric structure uniform in the z direction. The FDTD method is used in Maxwell’s equations, which are given by  
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                                                                                                 (2) 

 

Where ( , , , ) ( , , , )E E x y z t and H H x y z t
→ → → →

= =  represent the electric and magnetic fields. 
   We now present the vector components of the curl operation in above equation in Cartesian coordinates for the lossless materials 
case. This yields the six coupled scalar equations. These six equations are the basis the FDTD algorithm for electromagnetic wave 

interactions in three dimensional spaces. The Yee (1966), algorithm centers its E
→

 and H
→

components such that every  E
→

  

component is surrounded by four H
→

components, and every H
→

 component is also surrounded by four E
→

  components (Croitoru 
et al., 1990).The main observation of the algorithm is that explicit dependence on the propagation direction disappears, substitute 
by the value β. Only the transverse directions are considered in the simulation. Consider here a boundless condition, the 
assumption that the fields go to zero at the outermost grid yields an error since the field can be reflected back to the modal. The 
Perfect matching layer (PML) technique is used in this analysis since it shows the reflection less properties at vacuum layer 
interface. 
   The main property of the technique is that each field component is split in to orthogonal components, and gets twelve field 
equations. By using finite difference analysis to find the propagation constant β from given parameter of the unconventional Bragg 
fiber. For the 2-D FDTD equations and other details about the implantation of the algorithm, the reader should consult (Zepparelli 
et al., 1999).     
 
3.  Results 
 
   In this section, we use both the matrix theory in Section 2, and a 2-D FDTD method in section 3, to analyze the modal dispersion 
of an air core Bragg fiber. The eigen value Equations has all the information that we can obtain from our modal analysis and it 
gives the central results of this investigation. We now proceed to some numerical computation in order to have the modal 
dispersion curves for the proposed unconventional Bragg waveguide. It is convenient to plot the normalized propagation constant 

      
)(

'
0

0

nnk
nkb a
′Δ+Δ

−
=

β against the V -parameter defined by  [ ]2
1

0
2
1

22
10 )(2)())(( nnnaknnakV a ′Δ+Δ=−=   

Table.1 

 
   We choose to study an air core unconventional Bragg fiber (na = 1) with n1 = 1.45, n2 = 1.50, b =0.01μm, an operating 
wavelength λ0 = 1.55μm and various values of dimensional parameter (r=a) in a regular increasing order. For each value of r we 
obtain the V –parameter and also compute the values of β. And the guided mode has an azimuthal number n=0 and most of the 
field is concentrated within the air core and the first cladding layer. In the calculations of both methods, we use Bragg fibers with 
six claddings around the air core. Cut-off frequencies (V –values less than 20) and their dependence on the thickness b of the 
cladding strip for cladding layers is proposed unconventional asymmetric Bragg fiber  for Both the matrix method result and 
FDTD result are shown in Table.1. We notice that, in fig. 2, the approaches agree well with each other. And also it is clear that all 
curves are in expected standard shape except the curves. The main source for the small discrepancy is the discretization error in the 
finite difference time domain algorithm. In fact, if we consider that only six computational cells are used, the agreement between 
the transfer matrix method (TMM) and FDTD approach is quit impressive. And also we compare from our earlier paper (Singh et 
al., 2006). We also observe that LP13 and LP14 modes are present is the case of standard Bragg fiber (Singh et al., 2006) but these 

Cut off frequencies of various modes in asymmetric Bragg fiber  
 

Mode Number  Transfer matrix method  2-D FDTD method 

LP11 7.33 7.09 
LP12 14.3 13.9 
LP13 20.7 20.1 
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modes are absent in the proposed waveguide. So proposed Bragg fiber can be used as mode filter, it can be important feature of 
this waveguide. We see that the proposed waveguide sustain only two modes for different cladding layers chosen, whereas in same 
condition standard Bragg waveguide (Singh et al., 2006) sustain more than four modes.  
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Fig. 2. Dispersion curves of normalized frequency V versus normalized propagation constant 'b  

 
 
4. Conclusions  
 
   In this paper, we proposed a Transfer matrix theory to calculate modal dispersion of any non-cylindrically symmetric dielectric 
geometries surrounded by Bragg cladding layers. This formalism is applied to analyze an air core Bragg fiber. The results are 
compared with those obtained from a 2-D FDTD algorithm, and good agreement between the two approaches is found. 
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