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Abstract 
 
   The analysis of functionally graded material (FGM) plates with material variation parameter (n), boundary conditions, aspect 
ratios and side to thickness ratios are investigated using higher order displacement model. The derivation of equations of motion 
for higher order displacement model is obtained using principle of virtual work. The nonlinear simultaneous equations are 
obtained by Navier’s method considering certain parameters, loads and boundary conditions. The nonlinear algebraic equations 
are solved using Newton Raphson iterative method. The numerical results are obtained for various boundary conditions, material 
variation parameter, aspect ratio, side to thickness ratio and compared with the available solutions. The effect of shear 
deformation and nonlinearity response of functionally graded material plate is studied.  
 
Keywords: Nonlinear analysis, FGM plates, higher order theories, Navier’s method, Newton Raphson method. 
 
1. Introduction 
 
   A functionally graded material (FGM) is a material in which the composition and structure gradually change resulting in a 
corresponding change in the properties of the material. This FGM concept can be applied to various materials for structural and 
functional uses (Miyamoto et.al, 1996; Tahani and Mirzababaee, 2009). The behavioral analysis of functionally graded composite 
materials is an important field of research owing to the interest for a wide range of applications. Because of their superior 
advantages such as high resistance to temperature gradients, capability to withstand to high loads and high temperature fields and 
high durable properties, reduction in residual and thermal stresses, high wear resistance, and an increase in strength to weight ratio  
when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading 
may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their 
optimum design. Reddy (2000) proposed the theoretical formulation using Navier’s solutions of rectangular plates and finite 
element models based on shear deformation theory and presented the analysis of through thickness functionally graded plates. 
Shen (2002) presented nonlinear bending analysis for a simply supported functionally graded rectangular plate subjected to 
transverse uniform or sinusoidal load. Galerkin technique is employed to determine load deflection and load bending deflection 
and load bending moments. Ashraf and Zenkour (2006) presented the static response for simply supported functionally graded 
rectangular plates subjected to a transverse uniform load. The equilibrium equations of a functionally graded plates are given are 
based on a generalized shear deformation plate theory. The influences based on shear deformation, plate aspect ratio, side to 
thickness ratio and volume fraction distributions are investigated. Praveen and Reddy (1998) investigated the static response of 
functionally graded material plates by varying the volume fraction of the ceramic and metallic constituents using a power law 
distribution and the numerical results for the deflections and stresses are presented. Lee et al. (1989) proposed higher order theory 
for studying the bending response of functionally graded plates. The Von Karman theory is used for obtaining the approximate 
solutions for nonlinear bending. Sasaki and Watanabe (1989) developed some techniques for fabricating the FGMs. Fukui and 
Yamanaka (1992), investigated the effect of the gradation of the composition on the strength and deformation of the thick walled 
FGM tubes. Birman and Byrd (2007) presented the principal developments in FGMs with an emphasis on the recent work 



Suresh Kumar et al./ International Journal of Engineering, Science and Technology, Vol. 3, No. 1, 2011, pp. 279-288 

 

280

 

published since 2000. Aboudi et al., (2000) provided a detailed review and description of the full generalization of a new 
Cartesian-coordinate-based higher order theory for functionally graded materials.  Aboudi et al., (1999) presented one- and two-
directional versions of the higher order theory. Hirai (1996) studied micro-structural details that are varied by non uniform 
distribution of the reinforcement phase. Tanigawa (1995) compiled a comprehensive list of papers on the analytical models of 
thermo elastic behavior of functionally graded materials. Yang et al., (2005) investigated the stochastic bending response of 
moderately thick FGM plates. The parametric effects of the material gradient property n, boundary conditions, thickness-to-radius 
ratio and shear deformation on the nonlinear bending of functionally graded plates are investigated  for both first order shear 
deformation theory and third order shear deformation theory (Golmakani and Kadkhodayan, 2010). 
   The present work is concerned with the determination of nonlinear bending analysis of functionally graded material plates with 
different geometric parameters, loads and boundary conditions by means of higher order shear deformation model. 
 
2.  Higher- Order Theory for Displacement Model 
 
   Consider a functionally graded rectangular plate made of mixture of metal and ceramics of thickness h, side length a in the x-
direction, and b in the y-direction and the location of the rectangular Cartesian coordinate axes used to describe deformations of 
the plate are given in Figure 1. It is assumed that a state of plane strain exists. Hence, in formulating the higher-order shear 
deformation theory, a rectangular plate of  

0 ≤ x ≤ a; 0 ≤ y ≤ b and 
2
h

−  ≤ z ≤ 
2
h  is considered.  

In order to approximate 3D-elasticity plate problem to a 2D one, the displacement components u (x, y, z, t), v(x, y, z, t) and w (x, 
y, z, t) at any point in the plate are expanded in terms of the thickness coordinate. The displacement field which assumes w (x, y, z) 
constant through the plate thickness is expressed as (Kant, 1988, 1989, 1990, 2001; Pandya, 1988; Marur, 1997; Suresh Kumar et 
al., 2011): 
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Where u0, v0 are the in plane displacements of a point (x, y) on the mid point. 
w0 is the transverse displacement of a point (x, y) on the mid plane.  
θx, θy , θz are rotations of the normal to the mid plane about y and x–axes.  

             u0
*, v0

*, w0
*, θx

*, θy
*, and θz

* are the corresponding higher order deformation terms  
 All the generalized displacements (u0, v0, w0, θx, θy, θZ) are functions of x, y and Z. In the present work, analytical formulation and 
solutions are obtained without enforcing zero transverse shear stress conditions on the top and bottom surfaces of the plate. 
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Figure.1. FGM Geometry with reference axes, displacement components. 
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From strain-displacement relations appropriate for infinitesimal deformations, the following relations are obtained as:                                        
2.1. Constitutive Relations 
 The variation of material properties of a FGM plate can be expressed as: 

                                       ( ) ( ) bPVbPtPZP +−=                                                                                                                              (2)  
 Where P denotes material property like modulus, Pt and Pb denotes the corresponding properties of the top and bottom faces of 
the plate, respectively, and n is a parameter that dictates the material variation profile through the thickness. Also V in Eq. (2) 
denotes the volume fraction of the top face constituent and follows a simple power-law as: 

n
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h
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⎛ +=                                                                    (3) 

Where h is the total thickness of the plate, z is the thickness coordinate and n is a parameter that dictates the material variation 
profile through the thickness. Here it is assumed that moduli E and G vary according to Eq. (2) and the Poisson’s ratio ν is 
assumed to be a constant. The linear constitutive relations are: 
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Where       σ  = (σX, σY, σZ τXY, τYZ, τXZ)T are the stresses 
         ε = (ε x, ε y, ε z γxy, γyz, γxz)t are the strains 

Qij’S are the plane stress reduced elastic constants in the plate axes. The superscript t denotes the transpose of a matrix.  
 
2. 2. Equations of Motion  
 The governing equations of displacement model in Eq. (1) are derived using the dynamic version of the principle of virtual 
displacements, i.e.  

  0
T

0
δk)dtδvδu =∫ −+                                                                                                 (5) 

    where  δu = virtual strain energy  
 δv = virtual work done by applied forces  
 δk = virtual kinetic energy   
 δu + δv = total potential energy.  
the virtual strain energy, work done and kinetic energy are given by: 
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where q = distributed load over the surface of the functionally graded plate.  ρ0 = density of plate material  
 0u& = ∂u0 / ∂t, 0v& = ∂v0 / ∂t etc. indicates the time derivatives  

Substituting δu, δv and δk from Eq. (6-8) into the virtual work statement in Eq. (5) and integrating through the thickness of the 
functionally graded plate, the in-plane, transverse force and moment resultant relations are obtained. Substituting Eq. (4) into force 
and moment resultants and upon integration the expressions obtained and written in a matrix form which defines the stress / strain 
relations of the FGM plate is given by:  
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The principle of virtual work is used to derive the equilibrium equations and are  expressed in terms of   uo, vo, wo,   θx , θy, θz, uo
*
, vo

*
, 

w0
*, θx

*
,θy

*
, θz

*by substituting for the force and moment resultant from eq.(9). 
 
3. Analysis of functionally graded material plate using displacement model 
 
   The simply supported (SS) boundary conditions are considered for displacement model. The Navier solution procedure, 
displacement components that satisfy the equations of boundary conditions are considered for the analysis. The Solutions are 
obtained using Newton Raphson method.  
3.1 Newton Raphson Method for nonlinear analysis: The Newton Raphson iterative method is based on Taylor’s series expansion. 
In the present work, the equation [S (∆ s+1)] {∆} s+ 1 = {F} is solved for generalized displacement vector {∆} s+1 by Newton 
Raphson iterative method. 
 The iterative procedure is as follows: 
         {R} {{∆} s+1} = [S (∆ s+1)] {∆} s+1-{F} 
R is called Residual and [S (∆ s+1)] is the stiffness matrix, which is a function of the unknown deflections {∆} s+1.  
Expanding {R} in Taylor series about {∆}r s+1  

            {0} = {R}s+1 +[KT({∆}r s+1)] {δ∆}+O({δ∆ }2) 
Where O (.) denotes the higher-order terms in {δ∆}, and [KT] is known as the tangent stiffness matrix (geometric stiffness matrix) 

{R}r
s+1  =  [K(∆r

s+1)] {∆}r s+1-.{F} 
The assembled equations are then solved for incremental displacement vector after imposing the boundary and conditions of the 
problem  

{δ∆}  = - [KT ({∆} r s+1)] -1{R}r
s+1 

{∆} r+1 s+1 = {∆} r s+1+ {δ∆} 
Total displacement vector is obtained from the tangent stiffness matrix, using the latest known solution and the process will 
continue until the termination criteria with a pre-selected error tolerance is obtained.     
 
4. Results and discussions  
 
   The Navier solutions are developed for rectangular plates with two sets of simply supported (SS) boundary conditions. The two 
types of boundary conditions are given below. 
The SS boundary conditions are:  
At edges x = 0 and x = a 

v0 = 0,  wo = 0, θy = 0, θz = 0, Mx = 0, v0
* = 0, w0

* = 0, 
θy

* = 0, θz
* = 0, Mx

* = 0, Nx = 0, Nx
* = 0.                                                                                                                                 (10) 

At edges y = 0 and y = b 
u0

 = 0, wo = 0, θx = 0, θz = 0, My = 0, u0
* = 0, w0

* = 0, 
θx

* = 0, θz
* = 0, My

* = 0, Ny = 0, Ny
* = 0.                                                                                                                                 (11) 

In order to verify the accuracy and efficiency of the developed theories results and to study the effects of transverse shear 
deformation, the following typical material properties are used for obtaining the numerical results. 
Material 1:(Aluminium) 

C0/623X10α204W/mK,κ,32,707Kg/mρ0.3,υ70GPa;E −=====                 
Material 2:(Zirconia) 

C0/610X10α209W/mK,κ,33,000Kg/mρ0.3,υ151GPa;E −=====            . 
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The center deflection is presented here in non-dimensional form using the following.  

h
0w

w =  

   The solution procedures outlined in the previous section are applied to functionally graded simply supported square plate 
subjected to transverse load. The material properties adopted here and non-dimensionalzed parameters used are presented. The 
nonlinear results obtained using higher order theory are compared with the available literature (Matsunaga, 2009; Zenkour, 2005 
and 2006; Ferria, 2005; Mechab, 2010; Qian, 2004; Reddy, 2000) and shown in Figure 2-9. 
   Figure 2 and Figure 3 represents the central deflections of the square simply supported FGM plate with different side to 
thickness ratio’s against the power law index. From the Figure 2 and Figure 3 it is seen that, the present results are very close 
agreement with the Zenkour, 2006; Ferria, 2005; Qian, 2004 ; Matsunaga, 2009; Reddy, 2000, Mechab, 2010 results. It can also be 
seen that, as the power law index increases, the nondimensonal center deflection difference increases. It can also be observed that, 
the central deflection difference increases with the increase of side to thickness ratio’s and decrease of aspect ratios. From Figure 4 
and Figure 5 is clear that, as the power law index increases, the normal stress (σx) and (σy) decreases as the power law index 
increases (Reddy, 2000; Zenkour, 2006). 
   Fig 6-9 shows the variation of normal stresses and transverse shear stresses with different aspect ratios and side to thickness 
ratios. From the Fig 6-9, it is concluded that, the shear stress and normal stress (σy) increases as the power law index, side to 
thickness ratio and aspect ratio increases and decreases the normal stress (σy) with the increase of power law index and aspect 
ratio. 
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 Figure.2: Non-dimensionalized center deflection (w) Vs Power law index (n) with different side to thickness ratio’s for a 

simply supported FGM plate  
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Figure 3: Non-dimensionalized center displacement Vs power law index (n) with different aspect ratios (a/b) for a simply 

supported FGM plate  

 
Figure 4:  Non-dimensionalized normal stress (σx) Vs Side to thickness ratio (a/h) for a simply supported FGM plate 

 
Figure. 5: Non-dimensionalized normal stress (σy) Vs power law index (n) with different side to thickness ratio’s for a simply 
supported FGM plate  
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  Figure 6: Non-dimensionalized shear stress (τxy) Vs power law index with different  Side to thickness ratio (a/h) for a simply 

supported   FGM plate  

 
Figure 7: Non-dimensionalized normal stress (σx) Vs Aspect ratio (a/b) for a simply supported FGM plate for displacement 

model  

 
Figure 8: Non-dimensionalized normal stress (σy) Vs Aspect ratio (a/b) for a simply supported FGM plate for displacement model 
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Figure 9: Non-dimensionalized shear stress (τxy) Vs Power law index (n) with different aspect ratio (a/b) for a simply supported 

FGM plate  

 4. Conclusions 
 
The following conclusions are drawn from the results for functionally gradient material plates: 

 
1) The effect of nonlinearity in functionally graded composite plates is to decrease the central deflections with increase of side to 

thickness ratio. This effect is found to be more predominant in decreasing the deflections in thin plates for side to thickness 
ratio of 10.  

2) The effects of geometric nonlinearity is to decrease the transverse shear stresses, transverse normal stresses with increase in 
side to thickness ratio, when compared to linear analysis, due to the consideration of Von-Karman strains in strain-
displacement relations, but the shear stresses increases with increase in side to thickness ratio. The central deflections, normal 
stresses σx, shear stresses τxy decrease with increase of aspect ratio whereas normal stress σy increases with the increase of 
aspect ratio.  

   The developed theories in this paper can be extended to include thermal procedures in determining the thermal effects on the 
functionally graded materials and also for problems of shells. The soft computing techniques namely, genetic algorithms, neural 
networks, particle swarm optimization etc. can be employed for the analysis and better utilization of functionally graded material 
plates. The study of  thermal bending effects along with bending thermal  effects on FGMs will be more purposeful as these 
materials are used in the applications where materials with combined properties like resistant to temperatures and ability to with 
stand loads are needed. 
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