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Abstract 
 
   In this paper, we have proposed and analyzed a tritrophic food chain model composed of a prey, a middle predator and a top 
predator. Ratio-dependent functional response is considered to model the interactions among the species of the system. 
Mathematical analysis of model equation with regard to the nature of equilibria, boundedness and persistence of the solution are 
carried out. To verify the analytical findings numerical simulation is performed. Furthermore, global stability of the system is 
shown graphically. It has been observed from numerical simulation that prey population decreases in the absence of top 
predators. However, presence of top predators in the system causes an increase in prey population with a depression in the 
population of middle predators. 
 
Keywords: Food chain model, Ratio-Dependent, Boundedness, Stability, Persistence, Computer Simulation. 

 
1. Introduction 
 
   Predator-prey functional responses have been facing a great challenge from biological and physiological researchers. At present 
it is clear that predator abundance also has ability to influence the functional response. Arditi and Ginzburg (1989) have suggested 
in situations characterized by strong space and time heterogeneities that the functional response can be approximated by a function 
of the prey to predator ratio. Several biologists have been able to establish the fact that functional responses over typical ecological 
time scales ought to be depending on the densities of both prey and predator, especially when predators have to search for food, 
and therefore have to share or compete for food. Actually prey dependent and ratio dependent models are extremes or limiting 
cases: prey dependent models are based on the daily energy balance of predators, on the other hand ratio-dependent models 
presuppose that prey are easy to find and the predators dynamics are governed by direct density dependence with the prey densities 
determining the size of defended territories. Within the natural environment both aspects have the ability to influence predator-
prey dynamics, and the issue of which of the two extremes is closer to reality in which system is wide open.  Arditi and Ginzburg 
(1989) first proposed following Michalies-Menten type ratio-dependent predator-prey model:  
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   The dynamics of ratio-dependent predator prey model has been studied in detail by Karev and Arditi (2001), Xiao and Ruan 
(2001), Hsu et al. (2001), and others. Hsu et al. (2001) have shown that the ratio-dependent models are capable of producing far 
richer and biologically more realistic dynamics.  Ratio-dependent model requires high densities for both prey and predator while 
the most interesting dynamics is near the axes (Xiao and Ruan 2001) which allow the mutual extinction as possible outcome of a 
predator prey interaction (Kuang and Beretta, 1998; Jost et al. (1999)). Specifically, ratio dependent model do not produce the 
paradox of biological control and the paradox of enrichment. Ratio-dependent model always exhibits interesting dynamics in the 
vicinity of the origin due the fact that such models are undefined there. Hence, any type of solution initiating with positive 
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populations is valid only if it can be shown that there does not exist a sequence of times tending to infinity such that either the prey 
values or predator values tend to zero. This can be expressed in terms of “Persistence”. Biologically, persistence means the 
survival of all populations in future time. Mathematically, the persistence of a system means that strictly positive solutions do not 
have omega limit points on the boundary of the non-negative cone.  
   For the mathematical model of multiple species interaction, Hsu et al. (2001a) studied a model of two predators competing for 
single prey with ratio-dependence functional response. Dubey and Upadhaya (2004) proposed a two predator one prey system with 
ratio-dependent predator growth rate. Criteria for local stability, instability and global stability of the non-negative equilibria are 
obtained. They also discussed about the permanent co-existence of the three species. Kar and Batabyal (2010) considered two prey 
one predator system in presence of time delay due to gestation. Criteria for local stability and global stability of the non-negative 
equlibria are obtained. They also obtain the criteria for the system to be persistent. Zhang et.al (2006) studied the stability of three 
species population model consisting of an endemic prey (bird), an alien prey (rabbit) and an alien predator (cat). Another important 
mathematical model of multiple species interactions is the so-called food chain model. Many simple two species food chain model 
have been thoroughly explored, while new discoveries continue to be examining with three or four trophic level (Moghadas and 
Gumel(2003)). In the paper of Freedman and Waltman (1977), studied the persistence of three species food chain model and 
provided necessary and sufficient condition for the persistence of Lotka-Volterra food chain model. Gard and Hallam (1979), 
obtained conditions for the persistence of food chain of arbitrary length. Later, Gard (1980-81) studied persistence of food chain 
with general interactions and in 1985 Freedman and So studied global stability and persistence of simple food chains. Hsu et al. 
(2002) studied the three trophic level food chain with ratio-dependent Michalies-Menten type functional response and its 
application to biological control. The model is shown to be rich in boundary dynamics and capable of generating extinction of both 
pest and control agent.  
   In this paper, we have considered a general three trophic level food chain model with ratio-dependent functional response in 
which prey is plant, middle predator is a pest and top predator is a natural enemy of pest. Here, we have obtained conditions which 
influence the boundedness, stability and persistence of the system. By a change of variables we transform our system in such a 
way that there is one to one correspondence between the positive values of prey, predator and top predator of the original system 
and the positive values of transformed system, so that the result which are true for transformed model also hold true for original 
model. This paper is concerned with questions of stability and persistence of populations. The stability theory of ordinary 
differential equations is used to analyze the model. Our results are illustrated by example. 
   The organization of this paper is as follows. In section 2, we describe our model and give conditions which guarantee the 
existence of an interior equilibrium. In section 3 we have determined the boundary equilibrium point and their stabilities; the 
boundedness of our model is also studied in this section. Persistence of system is studied in section 4. In section 5, we consider the 
numerical example to illustrate our results. Computer simulation of the system is presented in this section. In section 6, we have 
studied the system (1) in absence of top predator and obtained corresponding stability conditions of equilibrium points. At last 
general discussions of the paper and biological implications of our model are presented in section 7.             
 
2.  Mathematical Model 
 

We consider a three trophic level food-chain model with ratio-dependence under the framework of the following set of nonlinear 
ordinary differential equations 
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where x (t) is the population density of lowest tropic level species or prey, y (t) is population density of middle tropic level species 
or middle predator and z (t) is population density of highest tropic level or (super) top predator in which z prey on y and only y, and 
y prey on x and nutrient recycling is not accounted for. Here the positive constant 1d , 2d , c  and d  respectively denote the death 
rate of the first predator, the death rate of the super predator, the conversion rate and maximal growth rate of top predator. 

 We take the following assumptions: 

(H1):   All functions have second order derivatives continuous in their augments on the interval (0, ∞). This is sufficient to     
            guarantee that solutions to positive initial value problems exist uniquely at least for some positive time. 
 
(H2):   g(x) is specific growth rate of prey and is always assumed to satisfy,  
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          0)0( >g , 0)( <′ xg   for  ,0≥x  and there exist 0>K  such that .0)( =Kg  
           For small values of the prey population, it will grow. However, there exists a carrying capacity of the environment       
           beyond which the prey population cannot increase even in the absence of predators. 
       
Before discussing our new assumptions we introduce new variables, 
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(H3): ;0)0( =p   0)( >′ up   for  .0≥u   

          u is large if y is small or x is large i.e. few predators or many prey. )(up is the functional response of the middle predators     
          which increases with u, i.e. with  the prey, and in the absence of the prey there can be no predation. 
 
(H4):  ;0)0( =q    0)( >′ vq   for  .0≥v  

          v is large if z is small or y is large i.e. few super predators or many first predators. q (v) is the functional response of the      
          super predators  which increases with v, i.e. with the first predators. 
 
Now we derive the transformed system for the variables x, u and v by (1), (2) and (3) we have 
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Then our model (1) becomes 
 
         )],()([)( uRxgxtx −=&                                                            ,0)0( 0 >= xx  

          )],()()()([)( 1 vQucpduRxgutu +−+−=&                               ,0)0( 0 >= uu  

           )],()()()[()( 12 vdqvQucpddvtv −−+−=&                                  .0)0( 0 >= vv                                                                  (4) 
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Where ,. ⎟
⎠
⎞

⎜
⎝
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dt
d  

 
3. Boundedness, Boundary Equilibria and Stability 
 
    Computations of the boundary equilibria and their stabilities for system (4) provide the information needed to determine the 
persistence of the system (4). To do so, we compute the variational matrix of system (4). The signs of the real parts of the eigen 
values of the matrix evaluated at a given equilibrium point determine its stability. This matrix is given by   
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Where, )()()( upcuRus ′+′=′  and )()()( vqdvQvh ′+′=′ . 

System (4) has at most eight non-negative equilibrium points: ),0,0,0(0E   ),0,0,( 11 xE   ),0,,0( 22 uE   ),,0,0( 33 vE   ),0,,( uxE   
),~,0,~(~ vxE   ),ˆ,ˆ,0(ˆ vuE  and ),,( **** vuxE . Existence of 0E is obvious. For 1E to exist, 01 >x  must exist such that )0()( 1 pxg ′= . 

This occurs if and only if )0()0( pg ′> . For 2E  to exist, a positive root of )()()0()0( 221 uRucpqdg +=′++  must exist, i.e.     
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= , has a positive root. For 3E  to exist, equation 1233 )()( ddvdqvQ −=+ , must have a positive root. 

Equilibrium )0,,( uxE  exists if and only if the algebraic equations 

         )()( uRxg = , 

         )()()0()( 1 ucpuRqdxg +=′++ , has a positive solution. 

Then 
c
qd

up
)0(

)( 1 ′+
=  and

uc
qd

uRxg
)0(

)()( 1 ′+
== . Hence )0,,( uxE exists if and only if  

c
qd )0(1 ′+  is in the range of )(up  

and
uc
qdg )0()0( 1 ′+

> , where
c
qdup )0()( 1 ′+

= . 

Equilibrium occurring in the vx −  plane is )~,0,~(~ vxE . Here x~ and v~ are obtained by solving  
         )0()~( pxg ′= , 
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Equilibrium occurring in vu −  plane is )ˆ,ˆ,0(ˆ vuE . Here the solution can be obtained by solving equations 
         )ˆ()ˆ()ˆ()0( 1 ucpuRvQdg +=++ , 

         )ˆ()ˆ()ˆ(12 vdqvQucpdd +=+− . 

Thus )ˆ,ˆ,0(ˆ vuE  exists if )~()ˆ()0( 2 vdquRdg +=+ , has a positive solution. 
Interior planner equilibrium occurring in the vux −− plane is ),,( **** vuxE . Here *x , *u  and *v  can be obtained by solving  

         )()( ** uRxg = , 
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        The equilibrium )0,0,0(0E  has variational matrix )( 0EM  given by 
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Which has all the three eigen values positive whenever 0)0()0( >′− pg and )0(12 qdd ′+> . This implies that 0E is completely 
unstable whenever 1E exists. 
        The equilibrium )0,0,( 11 xE  has variational matrix )( 1EM   given by   
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 For )( 1EM  two of the eigen values are positive and one is negative giving a point with nonempty unstable manifolds and stable 

manifold.  

         The equilibrium point )0,,0( 22 uE  has variational matrix )( 2EM  given by 
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For )( 2EM one of the eigen value is negative and two are positive whenever 0)()( 22 >′+′ upcuR  and 0)()0( 2 >− uRg , again has 
a nonempty stable manifold and unstable manifolds. 

          The equilibrium point ),0,0( 33 vE  has variational matrix )( 3EM  given by 
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For )( 3EM  two of the eigen values are positive and one is negative whenever 0)()( 33 >′+′ vqdvQ , again giving a point with 
nonempty unstable manifolds and stable manifold. 

        Now the variational matrix )(EM about equilibrium point  )0,,( uxE  is given by 

         
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−+−

′′+′−′
′−′

=
)0()(00

)0()]()([)(
0)()(

)(

12 qucpdd
QuupcuRuxgu

uRxxgx
EM . 

The eigen values of )(EM are )0()(12 qucpdd ′−+− and ±λ where 
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Since 0)()( >′+′ upcuR therefore the signs of the real part of +λ and −λ are negative. This implies that E is locally asymptotically 
stable in ux − plane and unstable in the v direction. 
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         The equilibrium )~,0,~(~ vxE  has variational matrix )~(EM given by 
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For )~(EM  two of the eigen values are negative and one is positive whenever 0)~()~( >′+′ vqdvQ hold. Hence E~  again has non-
empty stable and unstable manifolds. 

        The  equilibrium point )ˆ,ˆ,0(ˆ vuE  has variational matrix )ˆ(EM  given by, 
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The eigen values of )ˆ(EM  are )ˆ()0( uRg −  and ±λ̂ , 
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The signs of real part of +λ̂ and −λ̂  are negative. This implies that Ê  is locally asymptotic stable in u – v plane and unstable in x 
direction if and only if  .0)ˆ()0( >− uRg  

       Now the  equilibrium point ),,( **** vuxE has variational matrix )( *EM  given by;    
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The characteristic equation for the variational matrix )( *EM is given by, 
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Evidently, ,01 >B  02 >B and 03 >B  if 0)()( ** >′+′ vqdvQ and .0)()( ** >′+′ upcuR Therefore, by Routh-Hurwitz criterion, 

if ,0321 >− BBB then all roots of equation (5) have negative real parts and *E is locally asymptotically stable equilibrium point. 

Now we find the assumptions required to prove the persistence of the system. First and foremost we deduce the 
conditions for existence of positive interior equilibrium point, whose details are as given below: 

 Note that if 
c
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dvq < (so that *E cannot exist) for 0≥u and 0≥v , then from system (1)                   
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And  
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       ,0)]([)( 2 <+−= vdqdztz&                                for 0>z .         

So that 0)(lim =
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then either 0→y or ∞→v or both. Hence we 

assume the following hold. 
 

        (A1): 0* >u  exists such that 
c

vQdup )()(
*

1* +
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        (A2): ,0* >v  exist such that 
d
dvq 2* )( = . 

The next assumption required in order to obtain persistence of solution is 

        (A3): .0)()0( >− uRg  

Our next assumption is one that is difficult to justify biologically, but seems to be required in order to obtain boundedness and 
persistence of solutions. 

        (A4): 0)()( >′+′ upcuR  and .0)()( >′+′ vqdvQ  

Next we make the assumption for 1E exist, for if not, then the unbounded solutions can occur. 

        (A5): 1E  exists if 0)0()0( >′− pg and  .0))0(( 12 >′+− qdd  

With the above assumptions, we can prove that the solutions of system (4) and hence of (1) are bounded. 

Theorem (3.1):  Let (H1) – (H4) and (A1) – (A5) holds. Then solutions of system (4) are bounded. 

 Proof:  From the first equation of system (4), we have 

             )],()([)( uRxgxtx −=&  

             )),(()()( txgtxtx ≤&  

 By (H2), we have 0)0( >g  and ,0)( <′ xg for ,0≥x then there exist K > 0 such that .0)( =Kg  Hence if ,Kx > 0)( <xg  and so 
0)( <tx& . This proves the boundedness of ).(tx  

             Next, we prove the boundedness of )(tu . 

Consider the second equation of system (4), we have 

            )],()()()([)( 1 vQucpduRxgutu +−+−=&  

                   )],0()()()0([ 1 QucpduRgu +−+−≤  
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                    ,0)0()0()0( 1 >′++′−= qdpg                                              Using (A5). 

and   

            ,0)0()()()0()( 2122 =′+−+−= qucpduRguF  

 Using existence of )0,,0( 22 uE , )()()( upcuRuF ′−′−=′ . 

                                                               0)}()({ <′+′−= upcuR ,                Using (A4), 
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Hence if ,2uu > then 0)( <uF and so 0)( <tu&  proving the boundedness of )(tu .  

            Now we prove the boundedness of )(tv . From the third equation of system (4), we have  

           )],()()()[()( 12 vdqvQucpddvtv −−+−=&  

           )],()()[()( 12 vdqvQddvtv −−−≤&  

 Let,    ),()()( 12 vdqvQddvG −−−=          

and      ),0()0()0( 12 dqQddG −−−=  

                   ,0))0(( 12 >′+−= qdd                                         Using (A5). 

By existence of ,3E  
           ,0)()()( 33123 =−−−= vdqvQddvG  
And ,0)}()({)( <′−′−=′ vqdvQvG                                           Using (A4), 
Now if 3vv > , 0)( <vG and so 0)( <tv& . This proves the boundedness of )(tv . 
 Hence each equations of system (4) are bounded and so system (4) is bounded.  
 

4.  Persistence 

      From biological point of view, persistence means the survival of all populations of in future time. Mathematically, persistence 
of a system means that strictly positive solutions do not have omega limit points on the boundary of non-negative cone. Butler et al 
(1986), Freedman & Waltman (1984&1985) developed following definition of persistence. 
 
Definition:  A population )(tN is said to persist (sometimes called strongly persist) if 0)(0)0( >⇒> tNN and 0)(inflim >

∞→
tN

t
. 

Further, a population )(tN  is said to persist uniformly (also known as permanence) if )(tN  persists and there exist 0>δ  
independent of 0)0( >N , such that δ≥

∞→
)(inflim tN

t
. Finally, we say that a system persists (uniformly) whenever each component 

persists (uniformly).  
 
Theorem (4.1):  Let (H1) - (H4) and (A 1) – (A 5) holds, then the system (4) and hence system (1) persists (does not persist) if *E  
exist (does not exist). 
 
Proof:  To prove this theorem, we have to show that there are no omega limit points on the axes of orbits initiating in the interior 
of positive octant. 
            Let )(xθ  be the orbit through point ),,( zyxX =  and )(xΩ  be the omega limit set of the orbit through X and X is the 
point in the positive octant. Note that, )(xΩ  is bounded. 
            We claim that 0E does not belong to )(xΩ . If  1E  exists, then 0E  is completely unstable and so )(0 xE Ω∉ . Now let 1E  

does not exist and )(0 xE Ω∈ , then by Butler-McGehee lemma, there exist a point P in )()( 0EWx s∩Ω , where )( 0EW s denotes the 

stable manifold of 0E , since )(Pθ lies in )(xΩ  and )( 0EW s is the x-axis, we conclude that )(Pθ  is unbounded. However by 
theorem (3.1) all orbits are bounded in the positive time and so )(xΩ  is bounded. This contradiction shows that )(0 xE Ω∉ , in all 
cases. 
            Next if 1E  does not belong to )(xΩ , for otherwise, since 1E  is a saddle point which follows from the condition 

,0)0(12 >′+> qdd  by Butler-McGehee lemma there exist a point P in )()( 1EWx s∩Ω . Now  )( 1EW s  is the x-axis implies that 
an unbounded orbit lies in )(xΩ , which is contrary to the boundedness of the system. 
            Now we show that )(2 xE Ω∉ . If )(2 xE Ω∈  then the condition 0)()0( 2 >− uRg and ,0)()( 22 >′+′ upcuR  implies that 2E  

is a saddle point, )( 2EW s is the u-axis implies that an unbounded orbit lies in ),(xΩ again a contradiction. 
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            Next if )(3 xE Ω∉ , since 3E is a saddle point, which follows from the condition ,0)()( 33 >′+′ vqdvQ  here )( 3EW s  is the v-
axis implies that an unbounded orbit lies in )(xΩ , a contradiction. 

            Next ).(xE Ω∉ If ),(xE Ω∈ since E  is a saddle point, then by Butler-McGehee lemma, there exist a point P in 

)()( EWx s∩Ω , )(EW s  is x- u plane implies that an unbounded orbit lies in )(xΩ , a contradiction . Similarly, we can show 

that ).(~ xE Ω∉ .        

            Also if *E  exist then Ê  is a saddle point and so )(ˆ xE Ω∉  as before. 

Thus the non persistence when *E  does not exist follows readily, since then Ê  is locally asymptotically stable. This completes the 

proof of the theorem. 

 

5. Numerical Example 

    We conclude this section with an example to illustrate our results. Consider the system 
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If  
y
xu =  and 

z
yv = , then transformed system becomes, 

          ,)()(
1

1
⎥
⎦

⎤
⎢
⎣

⎡
+

−−=
ub

abxaxtx&                                            ,0)0( 0 >= xx  

          ,)()(
2

2

1

1
1

1

1
⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

−+
+

−−=
vb

a
ub
ucad

ub
abxautu&              ,0)0(

0

0 >=
y
xu  

            ,)(
2

2

2

2

1

1
12 ⎥

⎦

⎤
⎢
⎣

⎡
+

−
+

−
+

+−=
vb
vda

vb
a

ub
ucaddvtv&                    .0)0(

0

0 >=
z
yv                                                                                 (7) 

Here ),()( bxaxg −=  ,)(
1

1

ub
uaup
+

=   ,)(
1

1

ub
auR
+

=   ,)(
2

2

vb
vavq
+

=   and  .)(
2

2

vb
avQ
+

=  

For assumption (A1) to hold, we will require  0* >u  to exist. This is turn requires 2
*

21
*

21 )()( avbdvbca ++>+ , where 
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})({)(

)(

2
*

21
*

21

12
*

211*

avbdvbca
bavbbd

u
++−+

++
= , 

For (A2) to hold, we will require 0* >v  exist. i.e. 22 dda >  must hold, where  

           ,
22

22*

dda
bdv
−

=  

For (A3) to be valid, the inequality ,)( 1
*

1 auba >+ must hold. Where   

           .
)(

)(
*

1

1
*

1*

ubb
aubax

+
−+

=  

For (A 4) to hold, we also require 11 >cb and .12 >db  
For (A 5) to be valid, the inequalities 11 aab >  and ,21222 bdabd >−  must hold.   

Numerical simulation and Discussion: 

Now, we observe that all the above inequalities hold when,  
,2=a   ,1=b   ,11 =a   ,21 =b   ,12 =a   ,22 =b   ,4=c   ,5=d   5.01 =d   and   22 =d .                                                              (8)                 

We find that all the equilibrium points for the system (7) exist and given by, ),0,0,0(0E ),0,0,1(1E  

),0,5,0(2E ),3333.0,0,0(3E ),0,6.0,375.1(E ),3333.0,0,1(~E )4,1,0(Ê and )3333.1,5.0,6.1(*E . For *E the characteristic equation (5) 

becomes 02288.14336.34.3 23 =+++ λλλ . Roots of this equation are 3-1.4851731 and 0.23984152  ±-0.8774134 , this implies 
that *E  is locally asymptotically stable equilibrium point. Now, ,6.1* =x  ,5.0* =u  3333.1* =v  and hence ,6.1* =x   

2.3* =y and .4006.2* =z The results of numerical simulation are displayed graphically. In figure (1) the prey, first predator and 
super predator population are plotted against time, from this figure it is noted that for given initial values both the populations tend 
to their corresponding value of equilibrium point *E  and hence coexist in the form of stable steady state, assuring the local 
stability of *E . 
 

 
                                             Fig(1), Graph of x, u and v with time. 
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In figure 2(A), (B) and (C) we have plotted x, u and v against time for different values of conversion rate (c). From these figures it 
is found that x and u are decreasing functions of c, but v increases with increase in the value of c. Here we also note 

that ,⎟
⎠
⎞

⎜
⎝
⎛=

u
xy increases with c and  ,⎟

⎠
⎞

⎜
⎝
⎛=

v
yz  decreases with c. 

 
 

 
Fig. 2(A): Graph of x verses time t for different values of c and other values 

                                                             of parameters are same as (8). 

 
 

Fig. 2(B): Graph of u verses time t for different values of c and other values 
                                                          of parameters are same as (8). 
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Fig. 2(C): Graph of v verses time t for different values of c and other values of 
                                                        parameters are same as(8). 
 
     Figures 3 – 5 are the plots of x versus u, u versus v and v versus x, respectively for different initial starts 1, 2, 3 and 4. From the 
graphs, we obtained that solutions converge to equilibrium point *E  for different initial starts indicating the global stability of *E . 
 
 

 

                                              Fig. 3:  Graph of x verses u for different initial starts and other parameters are 
                                                          same as (8). 
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            Fig. 4:  Graph of u verses v for different initial starts and other parameters are 
                                                              same as (8). 
 
 
 

 
   
                                          Fig. 5:  Graph of x verses v for different initial starts and other parameters are same as (8). 
 
  
6. Vanishing Top predator 
 
When the top predator vanishes, then in model (6) only first predator and prey occurs. Consider the system 
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Which is obtained by deleting z from system (6), if we take ,
y
xu = then system (9) is transformed and becomes 
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           Considering the non-negativeness of the parameter and unknowns, we get four equilibrium points ),0,0(0E ),0,( 11 xE   
),,0( 22 uE and ),( uxE . The point )0,0(0E  is always a positive equilibrium point. The second equilibrium point )0,( 11 xE , where 

1

11
1 bb
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x

−
=  is non-negative if 11 aab > . Equilibrium point ),,0( 22 uE  with 

)(
)(

11

111
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= , is positive if  11 )( cada <+  

and 111 )( adab >+  or 11 )( cada >+ and .)( 111 adab <+  At last  the  equilibrium point ),( uxE , where 
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,
11

11

dca
db

u
−

= is non negative if  11 dca >  and .)( 11 auba >+  

 
Stability of equilibrium point: 
 
The dynamical behaviour of equilibrium points is studied by computation of eigen values of variational matrix )(EV  at each 
equilibrium points, 
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The equilibrium point )0,0(0E  has variational matrix )( 0EV , given by  
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Clearly, 
1

11

b
aab −

=λ   and  
1

111 )(
b

adab −+
=λ  are positive eigenvalues if 11 aab >  and 111 )( adab >+ . Therefore equilibrium 

0E  is unstable node whenever 1E exists. 

 The equilibrium point )0,( 11 xE  has variational matrix )( 1EV  given by 
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Clearly 1bx−=λ  is negative and 1d=λ  is a positive eigenvalue. Hence, equilibrium 1E  is a saddle point. 
For the equilibrium point ),,0( 22 uE  corresponding variational matrix )( 2EV  becomes 
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Hence, equilibrium 2E is a saddle point. 
Now the equilibrium point ),( uxE has variational matrix )(EV given by 
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The characteristic equation of equilibrium E  is,   
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Here L is positive if 11 >cb . Therefore eigenvalues ±λ  always has negative real part. Therefore equilibrium E is asymptotically 
stable. 
 
Numerical simulations and discussion: 

By using MATLAB software, result of numerical simulation are displayed if we set a parameter as,  
,2=a  ,1=b   ,11 =a   ,21 =b   4=c  and .5.01 =d                                                                                                                        (11)             

Then the coordinates of ),( uxE  becomes (1.5625, 0.2857), therefore ),( yxE will be (1.5625, 5.4690). Such that eigen values are 
obtained as 4849.1−=+λ and .460342.0−=−λ Which shows that  ),( uxE  is asymptotically stable. For initial point, the solution 
shows stability as seen in fig 6. Now if we increase the value of carrying capacity c then prey population decreases shown in fig 
7(A). In figure 7(B) we observe that the predator population with time also decreases with increase of c. Which shows that as 
conversion rate increases the population of prey and predator with time decreases. 
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                                        Fig 6:  Graph of x and u with time in the absence of top predator. 
 

 
 

        Fig.7(A): Graph of x verses time t for different values of c and other values of 
                                                         parameters are same as (11) 
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Fig.7(B): Graph of u verses time t for different values of c and other values 

                                                          of parameters are same as (11). 
 
7. Conclusion 
 

The main focus of this paper is to analyze the dynamical behavior of a tri-trophic ratio-dependent food chain model. We 
describe the above situation by means of a system of three non-linear ordinary differential equations. For solving the system, we 
transformed our model by means of change of variables. The analysis, after transformation, consisted of equilibrial stability and 
persistence criteria. It is shown (in theorem (3.1)) that system (1) is bounded, which in turn implies that the system is biologically 
well behaved, criteria for long time survival (persistence of the populations) of system is interpreted biologically and obtained that 
system persists if interior equilibrium point exist otherwise the system does not  persists. We have obtained the stability of the 
most important equilibrium point *E  by using Routh - Hurwitz criteria, which gives the conditions for stable co-existence of the 
prey, the predator and the super predator. In the case of absence of top predator, the existence of equilibrium point and the stability 
of the solutions are studied and it is observed that when the top predator is absent, predator(y) and prey(x) coexist in the form of 
stable equilibrium. Our mathematical model (1) is biologically implemented in the case of plant – pest (e.g. caterpillar) – beneficial 
predator (natural enemy of the pest). We observe that the size of plant(x) in the absence and presence of beneficial predator (z) are 
x  and *x respectively, so that .0* >− xx Also ,0* <− yy where y  and *y are the size of pest population in absence and 
presence of beneficial predator (z). This implies that due to attack of predators on pests, fitness of plants is enhanced and cause 
depression for the pests. This gives a strong theoretical support to the approach of ‘Bio control of pest’ to reduce the hazards of 
chemical pesticides. All mathematical findings are checked numerically by using MATLAB programming.     
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