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Abstract 
    

Robust control for nonlinear uncertain systems has been solved for matched uncertainty but has not been completely solved 
yet for unmatched uncertainty. This paper developed a new method in which an adaptive radial basis function neural network is 
used to compensate for the effects of unmatched uncertainty in the framework of integral sliding mode control. The stability of 
the whole system is guaranteed by the Lyapunov method. The adaptation algorithm of the network is also derived by the 
Lyapunov function so that its convergence is also guaranteed. A numerical example is used to show the effectiveness of the 
proposed method. Improvement against existing methods is also demonstrated. 
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1. Introduction 
 
    Integral sliding mode control (ISMC) has attracted wide interests in nonlinear control community (Utkin & Shi, 1996; Poznyak, 
Fridman & Bejarano, 2004). It introduces an integral term into the sliding surface, which makes the system initial states start from 
the sliding mode and eliminates the reaching phase. Thus, ISMC enhances the robustness against matched uncertainty of the 
conventional SMC (Utkin, 1977; Matthews & DeCarlo, 1988; Young, Utkin & Ozguner, 1999; Fridman, Poznyak & Bejarano, 
2005; Niu, Ho & Lam, 2005.). However, it is still sensitive to unmatched uncertainties that exist in many practical systems. An 
ISMC controlled system was developed that completely nullifies matched uncertainties, but with the unmatched uncertainty the 
system stability depends on the controlled nominal system and the features of the equivalent unmatched uncertainties (Cao & Xu, 
2004). Castanos & Fridman (2006) discussed mainly how to select the optimal design matrix to ensure that the unmatched 
uncertainty is not amplified by the discontinuous control, but it is only suitable for a certain type of nonlinear systems with 
constant input matrices. The research on ISMC has been focused on how to reduce the influence of unmatched uncertainty, which 
is the motivation of this paper. According to the literature (Funahashi, 1989; Sanner and Slotine, 1992; Wang and Hill, 2006.), 
radial basis function (RBF) neural networks have showed strong universal approximation ability for unknown system 
nonlinearities. Therefore, a RBF network is capable of approximating and counteracting wholly or partially the term of the 
unmatched uncertainty in the ISMC system dynamics. Based on this basic idea, the main contribution of this paper is proposing a 
new integral sliding surface that includes an additional design matrix with an adaptive RBF neural network. In addition to the 
advantages of no reaching phase and nullifying matched uncertainties, more importantly, it compensates partially the effects of 
unmatched uncertainties in the system closed-loop dynamics and thus enhances the robustness compared with previous research 
(Cao and Xu, 2004; Castanos and Fridman, 2006). The adaptation law of the RBF network is derived using a defined Lyapunov 
function. Also based on Lyapunov theory, the switching gain condition is obtained to ensure the system states remaining on the 
designed sliding surface. In addition, many other methods for sliding mode control for systems with uncertainties have been 
investigated, such as Seok et al. (2009), Yinxing et al. (2008) and Wang and Yu (2008). 
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This paper presents the developed method only with a numerical example. The real data experiments using the method are not 
included as the research is not come to that stage and further investigation will be reported when results are available. Also, the 
unknown disturbance is not dealt with in this study. This may be tackled by neural network modeling in on-line mode but the 
disturbance structure should be known for easy implementation. 

2. Problem Statement 
 

Consider the following nonlinear uncertain system 
[ ]{ } )()()()()( xfxfuxBIxBxfx umm Δ+Δ+Δ++=&                                         (1) 

where nRtx ⊂Ω∈)(  is the measurable state vector and Ω  is an arbitrary large compact set, mRtu ∈)(  is the control vector, 
nRxf ∈)(  and mnRxB ×∈)(  are known nonlinear functions and mxBrank =)}({ . )(xf mΔ  and )(xBmΔ  are the matched 

uncertainties. The unknown continuous function )(xfuΔ  is the unmatched uncertainty. As )(xfuΔ  represents mainly the 
deviation of )(xf  while )(xfmΔ  represents the deviation of )(xBmΔ , they are functions of x(t) instead of time t. It is assumed 

that all system uncertainties are bounded, i.e. there exist )()( xxf mm ρ≤Δ , bm xB ε−≤Δ 1)(  and )()( xxf uu ρ≤Δ  where 

)(xmρ  and )(xuρ  are known nonnegative nonlinear functions and bε  is a positive constant and 1<bε . 
 
Assumption 1. The known nominal nonlinear plant of the system (1) is  

)()()( xuxBxfx n+=&                                                                                             (2) 
which is globally asymptotically stabilizable via a nominal control )(xun , i.e., there is a Lyapunov function )(xV , such that its 
first-order partial derivative satisfies 

( ) ( )xxVx 21 )( γγ ≤≤                                                                                          (3) 

[ ] ( )xxuxBxf
x
VxV n

T

γ−≤+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= )()()()(&                                                                    (4) 

Here, ++ → RR:, 21 γγ  are class ∞K functions, ++ → RR:γ  is defined as ( ) xx βγ = , where 0>β .  

3. New Integral Sliding Surface 
 

In this paper, a new integral-type sliding surface is proposed as  

[ ] 0)(ˆ)()()()()(
0

0 =−+−−= ∫
t

t
NNn dxfxDBxuxDBxDfDxDxxS τ    (5)                  

where 0x  is the state vector at time 0t , nmRD ×∈  satisfies that )(xDB  is uniformly invertible. m
NN xf ℜ∈)(ˆ  is a RBF network 

in the following form (a RBF network is used here rather than a MLP or other types because the simplicity of RBF in the structure 
and in training is considered): 

    ∑
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                                                                                     (6) 

where hn  is the number of network centers, m
i tw ℜ∈)(ˆ  is the network weight, [ ] nT

niiii Rcccc ∈= ,,, 21 L  are the network 
center vector and iσ  is the network width. The last term of the integral part in the sliding surface (5) can be treated as a design 

vector mRxg ∈)( , i.e. 
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 (7) 

 
Take the first derivative of the sliding surface )(xS  in (5)  
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    [ ]{ } )()()()()()()( xgxfDxuxfuxBIxDBxS unmm −Δ+−Δ+Δ+=&      (8) 

In the sliding mode, 0)()( == xSxS &  and )()( txtx d= . Here subscript d denotes the state vector in the sliding mode. The 
equivalent control law is  

    [ ] [ ] [ ]{ })()()()()()()( 11
dndmuddmdeq xuxfxgxfDxDBxBIxu +Δ−−Δ−Δ+= −−      (9) 

Substituting the above equation into (1), one obtains the closed-loop dynamics of the sliding surface 
    [ ]{ } [ ] )()()()()()()()()( 11

ddddudddnddd xgxDBxBxfDxDBxBIxuxBxfx −− +Δ−++=&                       (10) 

Then, define a vector n
u Rx ∈)(φ  as follows, 

    [ ]{ } )()()()(
)(
)(

)( 11

2
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x
x

x u
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u
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= −−

φ
φ

φ   (11) 

with m
u x ℜ∈)(1φ  and mn

u x −ℜ∈)(2φ , where nnxQ ×ℜ∈)(  is an orthogonal matrix from the QR decomposition of )(xB , 

    )(
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)( xB
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⎢
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⎡
                                                                                                    (12)  

By dividing )(xQ  into two sub-matrices mnxQ ×ℜ∈)(1  and )(
2 )( mnnxQ −×ℜ∈ , it is obtained that 
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Considering (7) and (13), the closed-loop dynamics become 
    )(ˆ)()()()()()()()( 2211 xfxBxxQxxQxuxBxfx NNddudduddnddd −+++= φφ&     (14) 

Then, the problem becomes: how to design the RBF network )(ˆ xf NN  to reduce the influence of the unmatched uncertainty 
)(xfuΔ  on the closed-loop dynamics. 

 
Theorem 1. The closed-loop dynamics of the nonlinear system (1) on the integral sliding surface (5)  

    )()()()()( 22 duddnddd xxQxuxBxfx φ++=&  (15) 
is globally asymptotically stable for 

    0,)()(2 ≠∈∀+> d
n

dddu xwhenRxxBx εφβ  (16) 
if the RBF network weights are adapted as follows 
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Where the adaptation parameter η  in (17) is a positive constant chosen by users and ε  in (16) is a positive constant. 
 

Proof. Considering the unmatched uncertainty )(xfuΔ  is a bounded continuous function, thus the unknown function 

)()( 1
1 xxR uφ
− mR→Ω:  containing one part of unmatched uncertainty is continuous over a compact set nℜ⊂Ω . According to 

the universal approximation property of RBF networks (Funahashi 1989; Sanner and Slotine 1992; Wang and Hill 2006), the 
function can be approximated by a RBF network )(xf NN  to arbitrary any accuracy using sufficient center number hn , i.e. 
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where mmxR ×ℜ∈)(  is an upper triangular matrix from the QR decomposition of )(xB , iw  is the ideal constant weight, the 

approximation error )(xe  satisfies ε<)(xe .  
 

The RBF network )(ˆ xf NN  is used as an estimator of )(xf NN  by adapting its weight )(ˆ twi  to converge to the ideal constant 
value iw  with the weight estimation error )(~ twi , i.e. )(~)(ˆ twtww iii += . Thus, equation (18) becomes 
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Define a Lyapunov function as follows 
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Its first partial derivative is 
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According to (13), (19) and (12), the term )()( dud xxQ φ  is represented as follows, 
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Then, it follows that  
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Choosing  
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the first partial derivative of the defined Lyapunov function becomes 
    [ ] )()()()()()()()( 221 dd

T
ddud

T
ddndd

T
dd xexBxxxQxxuxBxfxxV +++= φ&      (25) 

Considering Assumption 1 and the norm of a matrix with orthonormal columns being 1, it is obtained from (25) that  
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Noticing [ ] [ ] )()()()()()()()( 11
2 dudddudddudu xDxDBxBIxfDxDBxBIxx ρφφ −− −≤Δ⋅−=≤  and considering that 

)( dxB  is bounded and D  is constant matrix, [ ] )()()( 1
dxdd xDxDBxBI ρ≤− −  is also bounded. Besides, ε  is a positive 

constant so that εε )(' dxB=  is also a positive constant. Therefore, a β  satisfying ')()( ερρβ +> dudx xx  exists, i.e., 

condition (16) is satisfied. Thus, 0)(1 <dxV&  is achieved and the approximation error converges to zero. The closed-loop 
dynamics are of the form (15) and are globally asymptotically stable. Integrating (24) leads to the adaptation law in (15) for the 
weights of the RBF network, which ends the proof. 
 
Remark 1. The obtained closed-loop sliding mode dynamics do not contain any matched uncertainty and reduce the influence of 
unmatched uncertainty. Thus, the proposed integral sliding surface with RBF networks improves the control performance of the 
ISMC against system uncertainty especially unmatched uncertainty. In (Cao and Xu 2004), the following closed-loop dynamics 
were obtained by using a basic integral sliding surface, 

    [ ]{ } )()()()()()( 1
dudddnddd xfDxDBxBIxuxBxfx Δ−++= −&         (27) 

The Euclidean norm of the uncertainty term is  
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Note that the last term in (28) is the norm of the uncertainty term in (16) of the developed method. Therefore, the developed 
method has a more robust dynamics to the unmatched uncertainty than the method in (Cao and Xu 2004). 
 
Remark 2. Additionally, Castanos and Fridman (2006) pointed out that [ ] DDBBI 1−− =1 when the input matrix B is constant 

and the design matrix is selected as += BD  ( +B  is the left inverse of B , i.e. [ ] TT BBBB
1−+ = ). Then the closed-loop dynamics 

of the sliding surface in Castanos and Fridman (2006) are 
    )()()( dudndd xfxBuxfx Δ++=&        (29) 

For the closed-loop dynamics obtained using the proposed integral sliding surface in this paper, with the same B and D, the 
norm of the unmatched uncertainty is 

    )()()()()()()()()( 222211 dudduddudduddu xxQxxQxxQxxQxf φφφφ ≥+==Δ   (30) 
Therefore, the norm of the unmatched uncertainty in the closed-loop dynamics is further reduced by the developed method 

compared with the method in Castanos and Fridman (2006). 
 

4. Sliding Mode Control Law 
 

In the integral-type sliding mode control, a control law is usually designed in the following form 

[ ]
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Here, )(xun  is the nominal control of the nominal nonlinear plant (2). When S(x) does not equal to zero, the nominal control 
will be modified by the second term in the above equation, which is a normalized product of sliding vector with DB and D can be 
designed as += BD  in Remark 2. 
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Theorem 2. The closed-loop state is guaranteed to be maintained on the proposed sliding mode (5) by the control law in (31) for 
the switching gain satisfies the following condition 

    [ ] [ ]{ })()()()()()()1(1)( 11 xgxDBxDxDBxxux umnb
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ρ      (32) 

with the vector )(xg  described in (7). 
 
Proof. Define a Lyapunov function as below, 
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1)(2 xSxSxV T=                                            (33) 

Substituting the control law in (31) under the condition 0)( ≠xS  and considering the uncertainty bounds, its first derivative 
with respect to time t is expressed as 
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Since )(xDB  is full column rank and 0)( ≠xS , the switching gain )(xρ satisfying (32) ensures the above inequality in (34), 
Thus, condition in (32) guarantees that the closed-loop state is maintained on the proposed sliding mode by the control law in (31). 

 
Remark 3: The control law (31) ensures the system state to be maintained on the sliding surface even the unmatched uncertainty 
is not completely compensated for by the adaptive network. As long as the switching gain is high enough to satisfy the condition 
(32), the system stability is guaranteed. 

 

5. Numerical Example 
 

Consider the parameters of a nonlinear uncertain system (1) as follows. 
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The matched and unmatched uncertainties are of the following form. 
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The bounds of the matched uncertainty are 2.01.02.02.0)( 4
3

3
2

2
1 +++= xxxxmρ  and 9.0=bε . The bound of the 

unmatched uncertainty is xxu 5.0)( =ρ . The eigenvalues are placed at [ ]Ts 321 −−−= . Choose the design 
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D . It is then obtained that  
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Considering )( dxB  is bounded and ε  is a positive constant, ε)( dxB  is also a positive constant. Choose dx=β , then 

( ) d
T
dd xxx =γ . So that the condition (17) is satisfied as follows, 

dddddu xxBxxBx <+<+ εεφ )(8.0)()(2  when 0≠dx  
 

As for the RBF structure, the network inputs are selected as [ ]Ttxtxtxtx )()()()( 321= and are scaled to the range of (0, 1) 
before they are fed into the networks. The network centers and widths are chosen to be constant using the K-means clustering 
method and P-nearest center rule. Different orders and numbers of hidden nodes have been tried in the experiments and a first-
order structure with 12 hidden nodes is selected. The adaptation parameter is selected as 1=η . The weights are initialized with 
small random values.  
 

The simulation is run from an initial value of the state [ ]Ttx 120)( 0 −=  with a fixed step of 1 ms. Figure.1 shows three 
system responses: the dotted line denotes the idea system without any uncertainties; the solid line denotes the system under the 
proposed control; dash-dotted line is by the system under conventional ISMC. It is evident that the proposed method has a 
response much closer to the idea response than the ISMC in (Cao and Xu 2004). To show the network convergence, the three 
estimation errors ( 321 ,, eee ) are displayed in Figure.2. It is seen in Figure.2 that all the three errors converge to zero, which 
implies that the networks are adapted to represent the transforms of partial unmatched uncertainties. 
 

 
Figure1. The response of the state )(tx : dotted line --- ideal system (without any uncertainty) response, solid line --- response 

under the proposed control, dash-dotted line --- response using the existing ISMC in (Cao and Xu 2004) 
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Figure 2. The approximation errors: solid line--- 1e , dash-dotted line--- 2e , dotted line--- 3e  

 

6. Conclusions 
 
A new integral sliding mode control scheme with an adaptive RBF network is proposed, which eliminates completely the 

matched uncertainties and partially the unmatched uncertainty in the resultant system closed-loop dynamics. Enhanced robustness 
to the unmatched uncertainties is proved by reduced norm of these uncertainties appeared in the closed-loop dynamics compared 
with the existing methods. The method is realized using the approximation feature of RBF neural networks and Lyapunov theory. 
The new selection condition for the switching gain is derived to ensure the system states being maintained on the proposed sliding 
surface. Numerical simulations showed the network approximation and superior the proposed method to the existing methods.  
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