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Abstract 
    
   This paper considers the optimum compromise allocation in multivariate stratified sampling with non-linear objective function 
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1. Introduction 
 
   One of the areas of statistics that is most commonly used in all fields of scientific investigation is that of probabilistic sampling. 
An effective sampling technique is one which provides meaningful knowledge of the important aspects of the population. 
Stratified sampling is one among the designs of sampling surveys for obtaining such information. This method considers the 
computation of the stratum sample size, which can be computed by various procedures, but optimum allocation has been found to 
be a useful approach. In multivariate stratified sampling where more than one characteristic are to be estimated, an allocation 
which is optimum for one characteristic may not be optimum for other characteristics also. In such situations a compromise 
criterion is needed to work out a usable allocation which is optimum for all characteristics in some sense. Such an allocation may 
be called a “Compromise Allocation” because it is based on some compromise criterion. In surveys where several characteristics 
defined on the population units are highly correlated, the individual optimum allocations for different characteristics may differ 
relatively little. For such situations Cochran (1977) suggested the use of the character wise average of the individual optimum 
allocations as a usable compromise allocation. He assumed all the characteristics equally important. 
   Several others have studied various criteria for obtaining a usable compromise allocation. Among them are Neyman (1934), 
Dalenius (1953) and (1957), Ghosh (1958), Yates (1960), Aoyama (1963), Gren (1964) and (1966), Folks and Antle (1965), 
Hartley (1965), Kokan and Khan (1967), Chatterjee (1972), Ahsan and Khan (1977) and (1982), Chromy (1987), Wywial (1988), 
Bethel (1989), Kreienbrock (1993), Jahan et al. (1994), Khan et al. (1997), Khan et al. (2003), Ahsan et al. (2005), Kozak (2006), 
Diaz Garcia and Cortez (2006) and (2008), Ansari et al. (2009) etc. The problem of optimal allocation in stratified sampling is 
generally stated in two ways. Either one minimizes the cost of survey for a desired precision or the variance of the sample estimate 
is minimized for a given budget of the survey. Kokan and Khan (1967) formulated the minimization of the cost of the survey for 
desired precisions on various characters as the following convex programming problem; 
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where L is the number of strata, p  is the number of characters to be estimated in the survey and jhh a,c , jk  and hN  are all 

positive constants. If the budget of the survey is fixed in advance, say, C , then the multivariate allocation problem is stated to 
minimize the variances for various characters for a desired precision as the following p  convex programming problems. 
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   Further, in a survey the costs for enumerating a character in various strata are not known exactly, rather these are being estimated 
from sample costs. As such the formulated allocation problem should be considered as stochastic programming problem. 
Stochastic programming problem was first formulated by Dantzig (1955), who suggested a two stage programming technique for 
its solutions. Later, Charnes and Cooper (1959) developed the chance constrained programming technique in which the chance 
constraints are converted into equivalent deterministic non-linear constraints.  
   When the constants hc and jha , ( )pjLh ,...,1,,...,1 ==  are fixed, the problem (1) was solved by Kokan and Khan by using an 
analytical procedure. Prekopa (1995) developed a method from stochastic point of view. The case when sampling variances are 
random in the constraints (i.e. jha

 
random in (1)) has been dealt with Diaz-Garcia et al. (2007).  Javaid and Bakhshi (2009) 

considered the case of random costs in (1) and used modified E- model for solving this problem. Bakhshi et al. (2010) find the 
optimal Sample Numbers in Multivariate Stratified Sampling with a Probabilistic Cost Constraint.  
Here we consider the case of a non-linear cost function with random coefficients. The equivalent deterministic model for the 
problem in (1) is obtained by applying the chance constrained programming technique. The model in (2) with non-linear cost 
function in constraints is handled by using the modified-E model of Diaz-Garcia et al. (2007).  
   In the present paper the problem of finding the optimum compromise allocation is formulated as Stochastic Nonlinear 
Programming Problem (SNLPP) and a method is developed to work out the compromise allocation in a multivariate stratified 
surveys using the compromise criteria “Minimizing the sum of sampling variances of the estimators of the population parameters 
of various characteristics”. A numerical example is also worked out to illustrate the computational details of the method. 
 
2. Problem formulation 
 
   We consider a multivariate population consisting of N  units which is divided into L  disjoint strata of sizes LNNN ,...,, 21  

such that ∑
=

=
L

h
hNN

1

. Suppose that p  characteristics ( )pj ,...,1=  are measured on each unit of the population. We assume 

that the strata boundaries are fixed in advance. Let hn  units be drawn without replacement from the thh   stratum .,...,1 Lh =  
For thj  character, an unbiased estimate of the population mean jY  ( ),,...,1 pj =  denoted by ,jsty has its sampling variance 

  ,11)( 22

1
jhh

L

h hh
jst SW

Nn
yV ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= pj ,...,1= ,                (3) 



Ghufran et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 135-145 137

where 
N
N

W h
h =  is the stratum weight and ( )∑

=

−
−

=
iN

i
jhjhi

h
jh Yy

N
S

1

22

1
1

 is the variance for the thj  character in the thh   

stratum. Let C be the upper limit on the total cost of the survey. The problem of optimal sample allocation involves determining 
the sample sizes Lnnn .,..,, 21  that minimize the variances of various characters under the given sampling budget C. Within any 
stratum the linear cost function is appropriate when the major item of cost is that of taking the measurements on each unit. If travel 
costs between units in a given stratum are substantial, empirical and mathematical studies indicate that the costs are better 

represented by the expression∑
=

L

h
hh nt

1
, where ht  is the travel cost incurred in enumerating a sample unit in the thh   stratum. 

Assuming this non-linear cost function one should have  
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where Lhch ,...,2,1; =  denote the per unit cost of measurement in the h-th stratum and 0c  is the  overhead cost.

 
 

The restrictions LhNn hh ,...,2,1;2 =≤≤  are introduced to obtain the estimates of the stratum variances and to avoid the 
problem of oversampling. 
 
Thus the problem (2) with non-linear cost function can be written as 
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Ignoring the term independent of hn , the allocation problem (5) is reduced to the following p  convex programming problems: 
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In many practical situations the measurement cost hc  and the travel cost ht  in the various strata are not fixed and may be 

considered as random. Let us assume that hc  and ht , Lh ,...,1=  are independently normally distributed random variables. 
Thus the above problem (6) can be written in the following chance constrained programming form as: 
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where 0p , 10 0 ≤≤ p  is a specified probability 
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3. Solution using Chance Constrained Programming 
 
   The costs hc  and ht , Lh ,...,1=  have been assumed to be independently normally distributed random variables. 
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where )(zφ  represents the cumulative density function of the standard normal variable evaluated at z. If αK  represents the value 

of the standard normal variate at which 0)( pK =αφ , then the constraint (10) can be written as  
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Substituting from (8) and (9) in (12), we get 

          CnnKcnn
L

h
thh

L

h
chh

L

h

L

h
thhchh ≤++⎟

⎠

⎞
⎜
⎝

⎛
++ ∑∑∑ ∑

=== = 1

2

1

22

1 1
0 σσμμ α                                         (13) 

The constants chthch σμμ ,, and thσ
 

in (13) are unknown (by hypothesis). So we will use the estimators of mean 

⎟
⎠

⎞
⎜
⎝

⎛
++∑∑

==

L

h
hh

L

h
hh cntncE

1
0

1

 and variance ⎟
⎠

⎞
⎜
⎝

⎛
++∑∑

==

L

h
hh

L

h
hh cntncV

1
0

1
 given by 

⎟
⎠

⎞
⎜
⎝

⎛
++∑∑

==

L

h
hh

L

h
hh cntncE

1
0

1

ˆ ∑∑
==

+=
L

h
hh

L

h
hh tncn

11

, say                                                               (14) 

and  

⎟
⎠

⎞
⎜
⎝

⎛
++∑∑

==

L

h
hh

L

h
hh cntncV

1
0

1

ˆ ∑∑
==

+=
L

h
thh

L

h
chh nn

1

2

1

22 σσ , say.                                                              (15) 

where hc , 2, chht σ and 2
thσ  are the estimated means and variances from the sample. 

Thus an equivalent deterministic constraint to the stochastic constraint is given by 
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 Now the problem of allocation in multivariate stratified sample surveys with p -independent characteristics is formulated as a 
Multiobjective Non Linear Programming Problem (MNLPP). The ‘ p ’ objectives are to minimize the individual variances of the 
estimates of the population means of p -characteristics simultaneously, subject to the non-linear probabilistic cost constraint. 
The formulated MNLPP is given as 
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To solve the problem (17) using stochastic programming, we first solve the following p Non Linear Programming Problems 
(NLPPs) for all the ‘p’ characteristics separately. The equivalent deterministic non-linear programming problem to the stochastic 
programming problem is given by 
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Let ( )∗∗∗∗ = jLjjjh nnnn .,..,, 21  denote the solution to the j-th NLPP in (18) with ∗
jV  as the value of the objective function given by 
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4. Numerical Illustration 
 
   In the table below the stratum sizes, stratum weights, stratum standard deviations, measurement costs, and the travel costs  within 
stratum are given for four different characteristics under study in a population stratified in five strata. The data are mainly from 
Chatterjee (1968). The values of strata sizes are added assuming the population size as 6000. The total budget of the survey is 
assumed to be 1500 units with an overhead cost 3000 =c  units.  

Table 1 
Values of jhhhhh SandtcWN ,,,  for five strata and four characteristics 
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h  

 

hN  
 

hW  
jhS  

hS1  hS2  hS3  hS4  
1 1500 0.25 28 206 38 120 
2 1920 0.32 24 133 26 184 
3 1260 0.21 32 48 44 173 
4 480 0.08 54 37 78 92 
5 840 0.14 67 9 76 117 

 

In this problem 5432154321 ,,,,,,,, tandttttccccc  are independently normally distributed random variables with known 
means and standard deviations 
( ) ( ) ( ) ( ) ( ) 25.1,5.1,1,1 54321 ===== cEandcEcEcEcE  

( ) ( ) ( ) ( ) ( ) 5.11,1,5.0,5.0 54321 ===== tEandtEtEtEtE  

( ) ( ) ( ) ( ) ( ) .45.035.0,35.0,25.0,25.0 54321 ===== cVandcVcVcVcV  

( ) ( ) ( ) ( ) ( ) .225.0175.0,175.0,125.0,125.0 54321 ===== tVandtVtVtVtV  

Using the values given in Table 1 the NLPP (18) and their optimal solutions 4,3,2,1; =∗ jn j  with the corresponding values of 
∗
jV  are listed below. These values are obtained by software LINGO.  
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The optimum allocation ( )∗∗∗∗∗∗ = 15141312111 ,,,, nnnnnn  is 

.6964.127,3840.72,7228.107,2324.143,999.132 1514131211 ===== ∗∗∗∗∗ nnnnn  

The corresponding value of the variance ignoring finite population correction (fpc) is 148212.21 =∗V . 
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For j = 2 
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The optimum allocation ( )∗∗∗∗∗∗ = 25242322212 ,,,, nnnnnn  is 

.6782.6,3975.18,5848.60,2840.259.,1810.303 2524232221 ===== ∗∗∗∗∗ nnnnn  

The corresponding value of the variance ignoring fpc is 12507.182 =∗V . 
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The optimum allocation ( )∗∗∗∗∗∗ = 35343332313 ,,,, nnnnnn  is 

3308.117,6231.82,2123.117,7286.126,0023.142 3534333231 ===== ∗∗∗∗∗ nnnnn  

The corresponding value of the variance ignoring fpc is 346324.33 =∗V . 
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For j = 4 

             

( )
( )
( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭
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⎪
⎪
⎪
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≤≤
≤≤
≤≤
≤≤

≤
++++

+++++
+

++++++++++

++++

8402
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12602
19202
15002

1500
225.0175.0175.0125.0125.0

45.035.035.025.025.0
33.2

3005.1115.05.025.15.111

3044.2681696.548689.13198544.3466900

5

4

3

2

1

54321

2
5

2
4

2
3

2
2

2
1

5432154321

54321

n
n
n
n
nand

nnnnn
nnnnn

nnnnnnnnnntoSubject

nnnnn
Minimize

       (24) 

The optimum allocation ( )∗∗∗∗∗∗ = 45444342414 ,,,, nnnnnn  is 

.5315.59,8239.31,3793.139,2649.246,7336.139 4544434241 ===== ∗∗∗∗∗ nnnnn  

The corresponding value of the variance ignoring fpc is 19729.364 =∗V .  

Using the computed values of 4,3,2,1; =∗ jV j  and the compromise criterion conjectured in section 3, the Stochastic 
Programming Problem given in (20) may be expressed as: 
 

( )
( )
( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

≤≤
≤≤
≤≤
≤≤
≤≤

≤
++++

+++++
+

++++++++++

++++

8402
4802
12602
19202
15002

1500
225.0175.0175.0125.0125.0

45.035.035.025.025.0
33.2

3005.1115.05.025.15.111

2973.567884.359373.7405358.24495081.1377
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1
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2
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2
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2
2

2
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5432154321

54321

n
n
n
n
nand

nnnnn
nnnnn

nnnnnnnnnntoSubject

nnnnn
Minimize

            (25)                  

The optimum compromise allocation which is the solution to the SNLPP (25) given by the software LINGO is: 
.7153.57,5660.34,5010.113,4192.228,9769.194 54321 ===== ∗∗∗∗∗

ccccc nnnnn  
With the corresponding value of the objective function as 67.92505. 
 
5. Discussion 
 
   In multivariate stratified surveys when the use of individual optimum allocations is not possible, we need to work out an 
allocation that is optimum for all characteristics in some sense that is, using a compromise criterion to work out an allocation. This 
paper is a profound study of an optimum compromise allocation with cost constraint function as random parameters with certain 
probabilities. After rounding off to the nearest integer value we get the optimum compromise allocation obtained by optimization 
software LINGO as 

.58,35,114,228,195 54321 ===== ∗∗∗∗∗
ccccc nnnnn  
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6. Conclusion 
 
   In this paper, we focused on multiobjective nonlinear programming problem involving random variables.The solution to the 
formulated problem is worked out using the compromise criterion “Minimizing the sum of sampling variances of the estimators of 
the population parameters of various characteristics. The proposed approach can be extended to solve multiobjective chance 
constrained bilevel programming problems with continuous random variables in chance constraints and/or in objective function. 
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