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Abstract

In the paper it will be shown that generatingdtions of hyper Bessel functions due to Humbed: Relerue can be extended
to a new class of generating relations for germzdliMittag-Leffler's functions. A number of new akdown double and
multiple generating functions involving the prodoétlassical polynomials and functions are congideas special cases.
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1. Introduction and Definition

Recently, Shukla and Prajapati (2007) introdutiesl function E;’:Z(Z) and discussed their properties and their explicit

representations. These functions are generaliztbMittag-Leffler's functions (Mittag-Leffler's1905) and Prabhakar functions
(Prabhakar, 1971) and are connected with Wrighttfans (Srivastava and Manocha, 1984) and hypesédgnctions (Delerue,
1953). Motivated and inspired by the above mentiowerk on the generalization of the Mittag- Lefflefunctions, we derive
some partly unilateral and partly bilateral genegafunctions Shukla and Prajapati functions angdemBessel functions.

In the usual notation Iq,th denote a generalization hypergeometric functiooref variable, Fq with p and g (positive
integer or zero), defined by (Srivastava and Maap984; p. 42(1)).

a,.,a,,...a,;

PFq YA =Z::O%%T=plzq(aly...,ap;ﬂl,....,ﬂq;z), (11)
B, Bay By 1n-\Pp)n TF

(B, 20,-1-2,..., j=1 2,...,9)

where (a) is the Pochhammer symbol, defined by

_JL n=0
@ _{a(a+1)---(a+n—1), if n=123,... @2

() converges for aII|Z| <owif p<q

(i) converges f0||Z| <lif p=q+l



221 Kamarujjama et al. / International Journal of Engineering, Science and Technology, Vol. 3, No. 6, 2011, pp. 220-225

(iii) absolutely convergen*Z' =1if p=qg+1and

Re(ZT:l 'BJ B zr;:l aj) >0

The function

Zk

E, (9= ————a>0 13
D= TGk w3
was introduced by Mittag-Leffler (1905).

The function

E,;(2) = zkor( 2+ ) a, >0 (L4)
has properties very similar to those of Mittag-lesff function (z) (See Agarwal, 1953).
In 1971, Prabhakar (Prabhakar, 1971) éhtoed the functiorE) ;(2) in the form

k

W z
E) (2= z"°F(ak+,8) & By>0 (L5)

In continuation of his work, Shukla and jBpati (2007) investigated the functicE,’,’:Z(Z) which is defined for
a,f,y0C; Re(@)>0,Re(5)>0,Re(y)>0 andd [ (0,1) O N as

ok
EV (=30 ~————a, B, y, >0 16
v5(2) Zk-or(muﬁ) B,y (1.6)
+
Where (V) 5 = % denote the generalized Pochammer symbol whichuiticpilar reduces to

+
o Hil(y ar_ jk if OLON.The functlorEy #(2) converges absolutely for all zid < Re @ +1 and for|Z| <1if

J = Re a + L.Itis an entire function of order(Rea) ™. The function Eyﬁ(z) is most natural generalization of the
exponential function exp(z), Mittag-Leffler functicE,, (z) and Wiman's functiorE,, ,(2).
y'i;(z) =E, 5(2), Etj;lﬁ(z) = Eo} (D =E, ;(2),E, (2 =E,(2),
Ei(2=E,,(2)=E, (2)=¢€*,E, (%)= coshz @a.7)
An interesting generating function due to Humi§ge36), is recalled here in the following form:

m ., m m+n
z Ay|oyw xMyM(z2/3) . (23
eX{S(X+y+Xy)j|_Zm'n:—oo Fm+1)r(n+1) OFZ[,m+l,n+1,_ 3) B (1.8)

where the hyper-Bessel functialy, ,(Z) and modified hyper-Bessel functidn, ,(2) of order 2 are defined by

m+n
Imn(2)= r(n(:i))r(nﬂ) o[- m+1,n +1;-(:—23)3] (1.9)
And
m+n
'mn(2)= I‘(r$12-|-/f))r(n+1) of2lsm*4n +1;(§)3] (1.10)

respectively.
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Further generalization of equation (1s8)iven by Pathan (Pathan, 2007; p. 41.eq.(2.2))
n )
m mn( )Zi=0mI

X1
, n+1
eXp[(m)(Xl ot Xt X1 X )= Z my...My = my!..mg!

oFn [ my+1,...mp +1; +( )(”+1)] (111

where the hyper-Bessel functiod,,, . (2) and mod|f|ed hyper-Bessel functidn, . (2) of order n are defined by

(i)zir;omi
Iy (2) = ”jél o [ M+ Ly +1 = ()] (112)
and
(2 )Fi=om
g (A= o [+ Lmy #1; () ™) 113

respectively.
2. Generating functions involving generalized Mithg-Leffler's functions

Result- 1.

If E/2(2) is defined by (1.6), then

m, m m+n
EV151 EVz 10z (_j V3 J3 (i Z/3j - ® 0 - Xy (2/3)
" ’*1[ j ol “m oy Loz min!T(B) T (B)T(B,)

D% (1) Fymerky (v2) Forn-ky (v3) I3 (z/3)%

- 21
Z k=0 (m+1) ( ) ( )al(m+k) ('BZ)GZ(n—k) (,83)0,3k k! (23
Where
o - J (2= (2/3)m+n Z (_1)k(y1) 5](m+k) (yz) 52(n—k) (y3) 53k (2/3)3k 22
m,n mn! k=0 (m+1), (n+2), (’Bl)a'l(m+k) (ﬂz)az(n_k) ('83)a3k KI .
{i=123}
And
il + I2(n- ) 3K
Hima@=00 (2) i U2 2o ) 33— (argf

ZkO(

{i=123}
provided that both sides of (2.1) exist.
Proof of Result- 1.

If the function
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V = EV151(ZXJ EVz 10, (ﬂj Esta—s t 2/3
a1, 3 az.5, 3 as.pBs Xy

is expanded by the definition (1.6), we have o _
vey i, W @' (ig (s (k)ie ()" )™
=0 i=0

Mak+B:) ki Mai+p) it == rlaj+p) 0
Replace i-k and j-k by m and n respectively, thétar rearrangement justified by the absolute eogence of the above series it
follows that

V=Z?%=_°°ZOO=m*

xMyM(z/3)M* "N n_ @D (1) Amey (12) Bk (3) B (2/3)%
mintF(B) (BT (B3) ~*=0 (m+1), (n+1), (ﬁ_L)al(m+k) (ﬁz)az(n_k) (Ba)yy, K
Thus the result (2.1) is proved.

Special Cases:

(1) On settingy; = &; = 1, for each i, equation (2.1) reduces to the follaysialation:

3K
zx +7 2 /3y (1)K (m+K)(n-K)[ 2
Eclxil za( )Ec]é.ﬁz (Zg) Ec]é,ﬁg(‘ Xy/3)=( ’i)n! > k=0 (m+1)k(”+1l)k(ﬂl)al(m+k) ( ﬂZgjjn_k) A (2.4)

For O(i:Bi:L for each |, equation (2.4) is equivalent to a kmesult (Kamarujjama and Khursheed, 2002).

(2) For 0, =0, =01, =10, =0, =0, = 2, equation (2.1) reduces to the following relation:

E}’l'[ jEVz (ij —(+2/3]Zw men(ylem(yl jm(\gj (yz ;j
| 3 e m

1 | 3 Xy - min!T (3,)r (B,)r (Bs)(%jm(%jm[%jn[%jn

3
Vi, 1, Y 1., .1 [162j
2irmy, +=+mZ+ny, +=+n=2 ), +— | —
K ey 2 V275 275 3
6" 5

(2.5)
m+1,n+14 +mp, +n, 5;;

(3) Fora,=0,=10,=20,=0,=2,0,=10,=B; =Y, =Y; =1 equation (2.1) reduces to the following relation:

N ontl
mynZZm(ylj (yl-l_lj 2 +m, 2 +m;

zx %Y g = +2/3 2 2
Ell F 31(2.6
A5 e 3o ey Ay (2] %7
m+lin+1 B +m |
4) Fora,=0,=B,=B;=V, =Y, =Y, =0, =10, =0, =0, = 2, equations (2.1) reduces to the following relation:
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1 1
N R T Y- S L
e S22 Dy )2 mnr (a)a)le), ) #2F |
m+1 G, +n;
3. Further Generalization
Z
+
V101 2% Ynon | Zn | =yd| N+l | _g oo m ma| 2 n
cri () e (P [ ™™ (g Zam
+1)%(n) 5, o 2 \K(m)
s (x1) (y1)51(m1+k) (y”)5n(mn+k)(yn+1)5n+1k(n-pl) e
k=0 r(C"l(ml + k)+,31)_,,_r(a'n (mn + k)"',Bn )F (an+1k+,3n+l) .
where
_1\K . k(n+1)
V|5|J ( z XiLm 0 ( 1) (y1)5l(rm+k) ..... (yn)5n(mn+k)(y”+1)5n+1k(nq-l) -
@i fi "M (Z)‘(n_ﬂJ O (anlm +K)+ )T (@n(m + )% A @k + )
and
. (y) , k(n+1)
V|5|| ( z Zizm 0 151(”&+k) ..... (y”)5n(mn+k)(y”+1)5n+1k(n+1) a3
53 meem @(51) T ERor(am e ) o e e A b )

Fory; = & = 1. equation (3.1) is equivalent to a known resultkaimarujjama and Khursheed, 2002) and further it
reduces to equation (1.11) fay = g, = 1.

4. Conclusions

For further investigation based on this artigke may use some other special functions in pladeypér Bessel function used in
this paper. From several of examples discussethitngaper it will appear that our results (2.4)(207) are extension of the
generating functions involving the product of claak orthogonal polynomials. The resulting formula.1) allows the
considerable unification of the results involviig toroduct of various special functions which appe#he literature.
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