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Abstract 
 
   Estimation of original instrument sound signals from complex music signals without any prior information is one of the most 
challenging problems under the framework of Blind Source Separation (BSS). Due to their effectiveness in other applications of 
BSS, Nonnegative Matrix Factorization (NMF) based methods have particularly gained attention in the context of musical sound 
source separation. These techniques are based on decomposing the magnitude or power spectrum of an input signal into a sum of 
components with time varying gains. This is achieved by using a suitable cost function to determine the optimal factorization. 
Most work in this field has focused on the use of Euclidean and Kullback-Liebler (KL) divergence. This study looks into the use 
of α-divergence based non negative factorization in the context of single channel musical sound separation. Simulation 
experiments were carried on single channel mixtures of randomly mixed pitched musical instrument samples to determine 
optimal α values for this problem. The paper also looks into the performance of the algorithm as important system parameters 
are varied.  
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1. Introduction 
 
   Blind Source Separation represents a larger framework of the class of unsupervised learning algorithms used in estimation of 
source signals from a mixture signal with no or very little information. Lately, the technique of representation of an observation 
signal into non negative factors or Nonnegative Matrix Factorization (NMF) is emerging as a popular technique in blind source 
separation. Besides BSS, NMF has been increasingly used in other related areas such as data mining, pattern recognition, object 
detection and dimensionality reduction. Paatero and Trapper (1997) first introduced it and since then many variants have been 
proposed by researchers. Its wide spectrum of applications includes face recognition (Li et al., 2001), medical imaging (Lee et al., 
2006), polyphonic music transcription (Smaragdis and Brown, 2003), portfolio diversification (Drakakis et al., 2008), document 
clustering (Xu et al., 2003), and Scotch whiskies clustering (Young et al., 2006).  

NMF factorizes a given non negative data matrix TF×≥ℜ∈= ,0
T21 ]X.,...,...X,[XX as a product of two non negative 

matrices KF×≥ℜ∈ ,0W and TK×≥ℜ∈ ,0H  such as: 

WHX ≈                                                                                         (1) 

where W contains the  basis vectors in its columns and H is the associated variable gain matrix. 
In literature, the factorization (1) is usually sought through a minimization problem  

)|(min 0, WHXDHW ≥                                    (2) 

where )|( WHXD  is a cost function or simply put, an error measure.  
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Figure 1. Columns of W and rows of H obtained by applying KL-NMF on a mixture signal consisting of notes: C5 of Saxophone, A5 of Alto 
Flute and F4 of Trumpet played in pairs one at a time. 

 
   Various error measures for the minimization problem (2) have been proposed such as Euclidean distance measure, Kullback 
Liebler (KL) divergence, Csiszár’s divergences (Cichocki et al., 2006), β divergence (Dhillon and Sra, 2005), with several other 
cost functions considered in Cichocki et al. (2006). Popular choices for the cost functions are Euclidean distance measure that we 
here define as: 

2||||)|( WHXWHXD euc −=                                                               (3) 
                         

and the generalized KL divergence which is defined as 
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It was Lee and Seung (1999) who proposed the multiplicative update rules for these two measures, under which the cost 
function has been shown to be non-increasing in subsequent iterations. The simplicity of these update rules has greatly contributed 
to the popularity of these measures. Multiplicative update rules for these two NMF algorithms are as follows: 

1) Euclidean Update: A local minimum of the cost function (3) is reached by an update algorithm that is of form: 
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2) KL-divergence Update: A local minimum of the error measure (4) is found by the following update algorithm:               
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   They have been found to work reliably for sound source separation and majority of the work has focused on these cost functions.  
The choice of the cost function is dictated by the type of the data to analyze. However, little literature is available exploring 
performance improvement by using other cost functions on a certain data. In this paper, we use a more general parameterisable 
divergence, known as α-divergence and study its performance in the context of musical sound source separation. The divergence 
was proposed in Havrda and Charvat (1967) and contains various well known divergence measures for various values of α. The 
outline of the paper is as follows: Section 2 describes the Amari’s Alpha divergence, its related properties and update algorithms. 
The application of NMF in musical sound source separation is explained in Section 3, and simulation experiments and results are 
discussed in Section 4. 
 
2.  Amari’s Alpha Divergence 
 

The α-divergence is a parametric family of divergence functional. It includes several well known divergences as its special cases. 
The objective function of α-NMF which is based on the divergence between X and WH can be defined as  
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where ),( ∞−∞∈α . As in KL-divergence and Euclidean distance, α-divergence is zero if X=WH. It is a convex function. Alpha 
divergence can also be expressed as 
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which is arrived at by setting α = (1 - β)/2 and 1 - α = (1 + β)/2  in (7). From (8), one can notice one of the important properties of 
duality of the α-divergence i.e.  

)|()|( XWHDWHXD ββ =−                                                                         (9) 

    KL-divergence, Hellinger’s divergence, chi-squared divergence corresponding to α=1, 0.5, 2 respectively are some of the special 
cases of the α-divergence. The α-divergence belongs to a family of convex divergence measure which is known as Csiszár’s f-
divergence (Cichocki et al., 2006, 2008). 

The multiplicative update rules for α-divergence as derived in Cichocki et al. (2008) and are as follows: 
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The update rule for KL-divergence as discussed in (6) can be arrived at by putting α=1 in (10), which verifies KL-divergence as 
being a special case of α-divergence for α=1. 
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3.  Application of NMF in Musical Source Separation 
 

Sound source separation from music signals without any prior information about the original sources is one of the most 
challenging problems in the field of blind source estimation. The basic nature of most of the music styles results in significant 
overlap in both time and frequency domains, thus making separation harder.  Moreover, absence of spatial information in monaural 
sounds further increases the complexity of the problem. Nonnegative Factorization (NMF) techniques are  

 
Figure 2.  Pictorial Scheme of NMF based source separation 

 
increasingly being applied in musical sound source separation due to their success in other applications of blind source separation. 
Smaragdis and Brown (2003) introduced the use of  NMF for musical separation tasks. Figure 2 shows the basic pictorial scheme of 
the process of musical sound source separation, where r’m(n) is defined as the reconstructed source signals. In this paper, since we 
are only studying the performance of the NMF algorithm in musical sound factorization, we have not dealt with the clustering and 
synthesis part in this paper. We will now discuss the application of NMF for source separation in detail in the remaining part of the 
section. 

 
A) Nonnegative Matrix Factorization: The NMF algorithm is applied in musical source separation based on a signal model where 
the magnitude or power spectrum Xn of an input mixture signal in frame n containing F frequency points, is modeled as a linear 
combination of time independent basis functions Wk which can be written as 

 

Table 1. Generation of Test Signals 
Parameter Interval 

Number of pitched musical 
instruments [5,9] 

Length of each note (sec.) [0.7, 1.4] 
Onset time for each note (sec.) [0,3] 
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where K is the number of basis functions, and Hk,n is a scalar value representing time varying gain of the kth basis function at time 
frame  n. The basis function Wk along with its time varying gain Hk,n  represents a single component k of the input signal.  Each 
source can be modelled as a sum of one or more components. A component can be interpreted as a meaningful entity or parts of a 
musical sound source signal. This parts based representation is facilitated by a rather static spectral structure of individual musical 
notes over time, as compared to speech signals, thus accounting for fixed basis function Wk over time with time varying gains Hk,n.  

The model in (11) can be represented in matrix format as 

WHX =                                                                                             (12) 

where TF×≥ℜ∈= ,0
T21 ]X.,...,...X,[XX  is the input signal magnitude or power spectrogram in T time frames,  

KF×≥ℜ∈= ,0
K21 ]W.,...,...W,[WW  is the matrix containing the spectral structure of K bases and TK×≥ℜ∈ ,0H is the time 

varying gain matrix for K bases at T  time frames. In this paper, we have used magnitude spectrogram as it performs better than the 
power spectrogram as noted in Virtanen (2007). This may be due to the fact that power spectrogram suppresses the lower intensity 
spectra as compared to the higher intensity ones. 

The decomposition X=WH can be carried on by using the minimization problem (2) on various error measures such as 
Euclidean distance measure (3), KL-divergence (4), α-divergence (7) and others. The estimation of W and H is done as shown in 
the following steps: 

 

1) Initialize the entries in W and H to random non-negative values. 
2) Update W using α-divergence update (10), KL-update (6) or Euclidean update (5). 
3) Update H using α-divergence update (10), KL-update (6) or Euclidean update (5). 
4) Iterate until the value of cost function converges. 
 

One of the key issues with NMF is the estimation of the number of components or K. Selecting K can be a complex procedure 
which requires estimating the dimensionality of the input matrix. Typically, K is chosen such that it is larger than the estimated 
number of sources, and follows the constraint (F+T)K< < FT. 

Hence, we have now built upon a framework for using NMF on audio signals. An important thing to note here is that NMF does 
not allow for the usage of phase spectra in the estimation phase. During the synthesis of the extracted components, as explained 
later, phases are extracted from the original mixture signal. The perceptual quality of reconstructed signals is not greatly affected in 
this case as the human ear is less sensitive to phase distortions (Goldstein, 1967). 

Figure 1 presents an example of implementation of NMF on mixture signals. The mixture signal is composed of note A5 
(880Hz) of Alto Flute, note F4 (350Hz) of Trumpet and note C5 (524Hz) of Saxophone played in pairs at different time intervals. 
NMF using KL-divergence was applied on the mixture signal and number of components was set to be 3. We noticed that the 
frequency of the lowest partial of the extracted components matches with the fundamental frequency of the constituent notes. Also, 
the gain information in the rows of H corresponds to the placement of particular notes in the mixture signal. Thus, we can see that 
the source signals have been successfully separated from the mixture X by decomposing it in the form of a product of matrices W 
and H. 

In this paper, we have used NMF for blind estimation of source signals. In this method, NMF learns from the mixture without 
any prior knowledge of the source signals and tries to capture the repeating spectral patterns like note spectra from the available 
mixture. However, the simple model in (11) and (12) has also been used in supervised learning framework, in which basis are 
learned prior to estimation (Paulus  and Virtanen, 2005; Wilson et al., 2008). Also, many other extensions to the model in (11) and 
(12) have been proposed (Blumensath and Davies, 2006; Virtanen et al., 2008) to improve the performance. We will be using the 
simple unsupervised NMF model in this paper as the aim is to evaluate the performance of α-divergence. 

 
Table 2. Performance of Euclidean Distance and KL-Divergence as window length is varied 

  
Window 
Length 

Euclidean Distance KL-Divergence 
Detection 
Fraction SDR Multi-SDR Detection 

Fraction SDR Multi-SDR 

128 0.5782 2.7562 4.9021 0.6375 3.2076 5.4646 
256 0.6189 3.6782 6.5741 0.7233 4.4549 7.3018 
512 0.655 4.8155 8.3911 0.7674 6.0052 9.385 

1024 0.6669 5.5863 9.5076 0.7973 7.0252 10.6164 
2048 0.6776 5.8595 9.6733 0.799 7.0497 10.6655 
4096 0.6533 5.3716 9.1803 0.7578 6.0557 9.4212 
8192 0.6364 4.5866 8.173 0.7171 4.9809 8.1638 
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B) Separation and Quality Measures: The NMF separates the mixture spectrogram X into K components. The kth column of W 
can be multiplied with the kth row of H to obtain the component Sk. However, clustering of the components into sources is a 
difficult issue in unsupervised domain. Hence, we have to use source signals before mixing as reference to cluster the components. 

Signal to Distortion Ratio (SDR) between each component and source is used as a measure to cluster the components. The SDR 
between the magnitude spectrograms of mth reference signal Rm and kth component Sk can be defined as: 
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Each component k is assigned to a reference source m corresponding to which it produces the highest SDR. Multiple 
components might be mapped to a reference source under this scheme. However, it might lead to non salient components like noise 
and transients mapped to a single source. To overcome this, we will only select the component with the highest SDR among all the 
components mapped to a source for that particular reference source.  

The quality evaluation of the separated components is a tricky issue. Ultimately, human perception of the separated sounds is 
the best measure of the quality of separated sounds. However, listening tests for each mixture signal is very time consuming and 
subjective.  This is where arises the need for an object quality measure for studying the performance of the algorithm. In this paper, 
we have used the SDR between the magnitude spectrum of the separated components and corresponding reference sources as 
described in (13) for quality evaluation. The average SDR (in decibels) is finally reported as a performance measure. Often, source 
signals of weaker intensity can be overshadowed by signals of stronger intensity and could not be extracted.  Such source signals 
that could not be associated with any component are listed as undetected. Increasing the number of extracted components can be 
helpful to extract the undetected source signal in such cases. The detection fraction defined as the ratio of the total number of 
detected sources and the total number of sources was also used as a performance measure. Also, SDR using multiple components 
mapped to a single reference source, known as multi-SDR, was also calculated to find an upper limit on the performance of such 
algorithms. These performance evaluation measures were used and described in Virtanen (2007). The components with maximum 
SDR less than 0 dB were rejected as non-salient components. 

Example- Given a mixture signal made of three reference signals (R1, R2 and R3). NMF is applied on the mixture signal resulting in 
4 components (S1, S2, S3 and S4).  The SDR values of components w.r.t reference signals is as given in Table 3. 

As we can see in Table 3, components S1, S2 and S3 produce largest SDR with reference source R1, and S4 with R2. The 
components are accordingly mapped to the respective sources. However, since no component can be matched to R3, it remains 
undetected. Among the three components mapped to R1, S1 has the largest SDR value, and so it is used in SDR evaluation of system. 
However, all the three components of R1 will be used in the calculation of multi SDR.  Hence, average SDR of system = 
0.5*(6.78+7.22) = 7, and detection fraction =2/3. 

Table 3. Sample SDR Values Between Extracted Components and Reference Sources 

SDR R1 R2 R3

S1 6.78 1.21 2.15

S2 4.11 0.38 3.18

S3 1.54 0.63 0.28

S4 0.26 7.22 0.85

 

C) Clustering and Synthesis: Since we are only concerned with quality evaluation in this study, reconstruction of the signals is not 
important from our point of view. However, in practical applications and in case of listening tests, reconstruction by clustering and 
synthesis is a very important aspect. For reconstruction, first the extracted components need to be mapped or clustered to individual 
sound sources. Various clustering methods, both unsupervised and supervised are available in literature (Dubnov, 2002; Vembu 
and Baumann, 2005). However, the performance of clustering methods is still limited and need to be improved upon. Once 
clustered, the components are then synthesized to obtain signals in time domain.  For this, first the magnitude/power spectra of all 
the components corresponding to a particular reference source are added. To get the complex spectra, the phases of the original 
mixture signal are used. This simple method stems from the sparseness of the audio spectra. Then, by taking an inverse Fourier 
transform of the complex spectra, one can obtain the synthesized separated signal in the time domain. To account for the 
discontinuities at frame boundaries, one can use overlap add method where each synthesized time frame is windowed before 
combining adjacent frames in the time domain. This synthesis method was found to produce good results in our informal listening 
tests.  
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4.  Experiments and Results 
 

We carried experiments on a large number of signals for reliable performance evaluation. Ideally, the experiments should be 
performed on real life musical samples for a realistic evaluation. However, for evaluating the quality of the extracted components, 
as explained earlier, reference signals before mixing are needed. Since, this scenario was not possible with commercially available 
music samples; we had to generate test signals for our experiments. These test signals were generated on the lines of Virtanen 
(2007) from a comprehensive database of real instrument recordings, which is available for research purposes at TUIMISD (2011). 
The instrument sounds in the database were recorded at a sampling frequency of 44.1 kHz and 16 bit/sample. A single note is 
played at a time, and notes from the complete range of an instrument were available. We took about 25 notes per instrument and a 
total of 18 pitched musical instruments were used for evaluation. Random number of pitched musical instruments was chosen from 
within the limits given in Table 1. A random instrument and a random note were then selected from the available samples.  Each 
instrument sample was only used once in the mixture and was truncated to random length within the limits given in Table 1. Each 
note started randomly at a time interval between 0 and 3 s. The length of each mixture signal was set to 4 s. Majority of frames in 
the mixture signals produced were overlapping, thus making them ideal for evaluation purposes of the algorithm.  

The window length for spectrogram representation of signals greatly affects the performance of the algorithm. The window 
length chosen determines whether there is a good frequency resolution or good time resolution. A wider window leads to better 
frequency quantization, which aids the separation of frequency components closely spaced together, but provides poorer time 
resolution leading to poorer magnitude/power gain change in time. The opposite is true for a narrower window which provides 
better time resolution but poorer frequency resolution. Table 2 illustrates the effect of window length on the performance of 
Euclidean Divergence and KL-Divergence functions when applied on randomly generated mixture signals as explained above. 
Increasing the window length improves the performance, and the best performance is attained for window length of 2048, after 
which it deteriorates. We can see that the window length of 2048 provides a frequency resolution of about 21.5 Hz and a time 
window of about 46 ms at a sampling frequency of 44.1 kHz is the most suitable for NMF factorization on this data. Thus, in our 
experiments ahead, a window length of 2048 samples was used with an overlap of 0.5. 

As already presented in Mehta et al. (2011), the performance of α-NMF was evaluated for various values of α. The value of α 
was varied from -1 to 2 with a resolution of 0.2. The purpose was to study the performance of α-divergence across the whole range 
of α. The range of α was such chosen because it covered all the popular divergence measures.  The experiment was carried on about 
450 generated mixture samples. Also, performance was evaluated for Euclidean distance to provide a performance comparison. The 
number of sources was taken to be 12, a number always larger than the number of sources and an intuitive estimate based on 
factorization experiments in F´evotte et al. (2008), in which a comparative experimental study of Euclidean-NMF and KL-NMF 
applied to a short duration piano sequence has been reported. 

Figure 3 shows the average SDR obtained for magnitude spectrogram for various values of α. It can be seen that the optimal 
values for α occur in the region from α= -0.4 to 0.2 with maximum SDR occurring at α = -0.2. SDR continually decreases the 
further we move away from this region. However, at the limit point α=1, rapid increase in the SDR is observed. This corresponds to 
KL-divergence. The SDR reported at α=1 is just below the maximum at α= -0.2, thus justifying its use as the commonly used cost 
function. It can also be observed that the α-divergence performs better than the Euclidean distance measure for which SDR value is 
6.02, at all values of α. Similar patterns are observed for other performance measures. Thus, α-divergence is definitely more 
effective at sound source separation than the Euclidean distance measure.  

  

 
      Figure 3. SDR v/s alpha  

 
             Figure 4. Detection Fraction v/s alpha 
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In Figure 4, we can see that Detection fraction is the maximum at α=1, i.e. KL-divergence. The general tendency is to decrease 
as we move away from α=1. The detection fraction for Euclidean Distance measure is 0.655, which is well below detection fraction 
values for all α. More or less, same pattern can be observed in the case of multi-SDR. In the case of multi-SDR, α=1 easily 
outperforms other α values as can be seen in Figure 5. The region α= -0.4 to α= 0.8 has almost comparable multi-SDR values, 
beyond which a rapid decrease in multi-SDR is observed barring the limit point maximum at α=1. In fact, it even decreases below 
the Euclidean distance multi-SDR value=10.1, for α beyond -0.5.  The most suitable conclusion that one can make from these 
observations is that values of α in the region beyond α= -0.4 and α= 1 carry less significance in terms of musical sound source 
separation. The number of iterations measure in Figure 6 also seems to suggest the same. The number of iterations involved 
increase rapidly in this region thus suggesting that the convergence takes more time as magnitude of α increases. Another important 
observation is that KL-divergence i.e. α=1 is the only value that performs well with respect to all performance measures. 

For the purpose of analysis, we can also dissect the region of interest from α= -0.4 to 0.9 into two regions, one with higher SDR 
and lower Detection Fraction (α= -0.4,-0.2,..), and the other with lower SDR and higher. In the former region, one can interpret that 
the undetected components mainly contain residual noise and transients, thus lowering the Detection Fraction. This is why despite 
of high SDR, multi-SDR obtained are not much higher because of insignificant components in terms of noise and transients. 
Likewise, in the latter region, one can interpret that the detected components corresponding to a note might contain portions of 
notes from other sources, resulting in artifacts in separations thus accounting for low SDR values and also multi-SDR values 
observed are not much higher.  

Intuitively, it can be suggested that the detection factor can be improved by increasing the number of components. However, it 
might also affect the quality of components separated i.e. SDR. Thus, to gain a better understanding of component factorization, we 
tried to look into the performance of alpha divergence as we vary the number of components. For this, we conducted a different set  

 

 
Figure 5. Multi-SDR v/s alpha 

 
 Figure 6. Iterations v/s alpha 
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of experiments by carrying out the performance evaluation on certain values of α, as the number of components is varied. The 
number of components was varied from 6 to 28 in steps of 2. We used α= -0.4, 0, 0.2 and 1 for this evaluation, the idea being 
choosing the better performing values of α. 

Figure 7 a) and Figure7 b), illustrate the performance of the above mentioned α values in terms of SDR and detection fraction as 
function of the number of components. The SDR decreases, whereas the detection error rate increases as the number of components 
increases. Interestingly, for K=6 and K=8, where the number of components was lesser than the number of sources, SDR values 
were higher and expectedly detection factor was low. This implies that NMF favours the factorization of dominant sources in the 
mixture signal. In our experiments, we also observed that multi-SDR values dropped a bit initially and did not vary much thereafter 
as the number of components increased. The decrease in SDR values can thus be primarily attributed to breaking of a single note 
into multiple components as the components increase.  The increase in detection fraction is expected as the result of separation of 
more number of sources with the increase in number of components. 
 
5.  Conclusion 
 

The use of α-divergence in the context of NMF based musical sound source separation was explored. The performance 
evaluation was done in an unsupervised framework where little prior information is available about the music signals. The 
performance was evaluated in terms of SDR and detection fraction. Also, multi-SDR values were measured to observe the upper 
limit on the performance of such algorithms. It was observed that factorization based on α-divergence works reasonably well in 
case of sound source separation. It outperformed the commonly used Euclidean distance measure for almost all values of α. 
However, it was observed that KL-divergence corresponding to α=1 performs best in terms of sound source separation, thus 
justifying its use as a popular measure for the same. The results suggest that there is no significant advantage of using other alpha 
values over using KL-divergence in a broader framework of musical sound factorization. Further, experiments were also carried on 
to observe the change in performance as system parameters such as window length and the number of components were varied. 

However, the performance of the algorithm was found to be limited. The performance of the algorithm can be improved by 
incorporating various constraints such as temporal continuity, sparseness, harmonicity and others, typically associated with audio 
signals.  The results also indicate research possibilities for further research on the use of alpha divergence, and their usability in 
some specific types of musical sounds can be studied in future research.  Also, a proper mathematical study of α-divergence needs 
to be done. Noise modelling of the divergence can provide useful insights in terms of understanding the results and performance 
improvement. 
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