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Abstract 
 
   Hall effects on steady hydromagnetic Couette flow of class-II of a viscous, incompressible and electrically conducting fluid 
with non-conducting walls in a rotating system in the presence of an inclined magnetic field is investigated. Exact solution of the 
governing equations is obtained in closed form. Expressions for the shear stress at the moving plate due to primary and 
secondary flows and mass flow rates in the primary and secondary flow directions are also derived. Asymptotic behavior of the 
solution for velocity and induced magnetic field is analyzed, for small and large values of rotation parameter 2K and magnetic 
parameter 2M  to gain some physical insight into the flow pattern. Heat transfer characteristics of the fluid are considered taking 
viscous and Joule dissipations into account when walls of the channel are asymmetrically heated or cooled. Numerical solution 
of energy equation and numerical values of rate of heat transfer at the stationary and moving plates are computed with the help 
of MATLAB software. The numerical values of velocity, induced magnetic field and fluid temperature are displayed graphically 
versus channel width variable η  for various values of Hall current parameter m and angle of inclination of magnetic field θ  
whereas numerical values of shear stress at the moving plate due to primary and secondary flows, mass flow rates in the primary 
and secondary flow directions and rate of heat transfer at the stationary and moving plates are presented in tabular form for 
various values of and .m θ   
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1. Introduction 
 

Theoretical /experimental investigation of fluid flow in a rotating environment is of much significance due to occurrence of 
various natural phenomena and its application in various technological situations which are directly governed by the action of 
Coriolis force. The broad subject of oceanography, meteorology, atmospheric science and limnology contain some important and 
essential features of rotating fluids. Large scale circulation in the atmosphere and oceans, construction of turbines and other 
centrifugal machines are some of the areas of application of rotating fluids. Rotating fluids have an intrinsic stability in the sense 
that if a fluid particle is displaced from its equilibrium position of the rigid body rotation, the Coriolis force acts as a restoring 
force. The current interest in the study of magnetohydrodynamics of rotating fluids is motivated by several important problems, 
namely, maintenance and secular variations of the earth’s magnetic field, the internal rotation rate of the sun, the structure of 
rotating magnetic stars, the planetary and solar dynamo problems and centrifugal machines (rotating hydromagnetic generator, 
rotating-drum separators for liquid-metal MHD applications etc).  

The problem of MHD Couette flow of an electrically conducting fluid in a rotating system in the presence of a magnetic field is 
investigated by many scientists and engineers due to its varied and wide applications in the areas of geophysics, astrophysics and 
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fluid engineering viz. in the design of nuclear power reactors, heat exchangers utilizing liquid metal coolant, MHD power 
generators, MHD pumps, MHD accelerators, underground water energy storage system etc. It is well known that the theory of 
Couette flow is used for the measurement of viscosity and estimating drag force in many wall driven devices. There exist two 
types of problems in science and engineering when a vast expanse of fluid is bounded by a solid body e.g. plate (Batchelor, 1988) 
which are mentioned below. 
Fluid flow of Type-I: Fluid flow induced by movement of a plate when the fluid at infinity i.e. fluid outside the boundary layer 
region, is stationary. Schematic diagram of fluid flow of Type-I is mentioned in Figure 1a. 
Fluid flow of Type-II: Fluid flows past a stationary plate which is induced due to movement of fluid at infinity i.e. fluid outside 
the boundary layer region. The fluid outside the boundary layer region is called free stream and velocity related to it is called free 
stream velocity. Schematic diagram of fluid flow of Type-II is mentioned in Figure 1b. 
 Taking into account the nature of the above mentioned fluid flows we are of opinion that there are two types of MHD Couette 
flow (Seth and Singh, 2011, Seth et al., 2011) viz. (i) MHD Couette flow of class-I and (ii) MHD Couette flow of class-II. The 
fluid flow induced due to movement of a plate when the fluid is bounded by a stationary plate, placed at a finite distance from the 
moving plate, is recognized as MHD Couette flow of class-I. This fluid flow is similar to above mentioned fluid flow of Type-I. 
The fluid flow past a stationary plate which is induced due to movement of a plate, placed at a finite distance from the stationary 
plate, is named as MHD Couette flow of class-II. This fluid flow is similar to above mentioned fluid flow of Type-II. It is noticed 
that MHD Couette flow of class-I and MHD Couette flow of class-II reduce to fluid flow of Type-I and Type-II respectively when 
the distance L between two plates becomes very large i.e. .L →∞  
 

               
Figure 1a Schematic diagram of fluid flow of Type-I             Figure 1b Schematic diagram of fluid flow of Type-II  

 
   Mazumder (1991) initiated the study of unsteady hydrodynamic Couette flow of class-II in a rotating system. Subsequently this 
problem is investigated by Ganapathy (1994) and Das et al (2008) by considering different aspects of the problem. Chandran et al. 
(1993), Singh et al. (1994), Guchhait et al. (2011) and Jha and Apere (2011) studied MHD Couette flow of class-I in a rotating 
system whereas Singh(2000), Hayat et al. (2004a, 2004b), Seth and Singh (2012) and Prasad and Kumar (2012) investigated MHD 
Couette flow of class-II in a rotating system in the presence of a transverse magnetic field by considering different aspects of the 
problem. In all these investigations on MHD Couette flow, induced magnetic field produced by fluid motion is negligible in 
comparison to the applied magnetic field. This assumption is valid because magnetic Reynolds number is very small for metallic 
liquids and partially ionized fluids (Cramer and Pai, 1973). Although for the problems of geophysical and astrophysical interest 
and in so many MHD devices viz. MHD power generators, MHD pumps, plasma flow in accelerators etc magnetic Reynolds 
number is not very small so induced magnetic field cannot be neglected. It plays an important role in determining the flow features 
of such fluid flow problems. Keeping in view of this fact Jana et al. (1977) studied MHD Couette flow of class-I of a viscous, 
incompressible and electrically conducting fluid in a rotating system in the presence of a uniform transverse magnetic field taking 
induced magnetic field into account when the stationary plate of the channel is perfectly conducting and the moving plate of the 
channel is electrically non-conducting. Seth and Maiti (1982) considered this problem when both plates of the channel are 
electrically non-conducting.  
   Seth and Singh (2011) investigated MHD Couette flow of class-II of a viscous, incompressible and electrically conducting fluid 
in a rotating system in the presence of a uniform transverse magnetic field taking induced magnetic field into account when plates 
of the channel are electrically non-conducting and are heated / cooled asymmetrically whereas Seth et al (2011) studied this 
problem when the stationary plate of the channel is perfectly conducting and the moving plate of the channel is electrically non-
conducting.  In all these investigations, magnetic field is applied parallel to the axis of rotation. However, magnetic field may be 
inclined in certain problems of geophysical and astrophysical interest and fluid engineering e.g. in MHD power generator and 
magnetic material processing flow control magnetic field may act obliquely to the flow. Keeping in view of this fact, Guria et al. 
(2009), Bég et al. (2010), Seth et al. (2012) and Chauhan and Agrawal (2012), studied MHD Couette flow of class-I of a viscous, 
incompressible and electrically conducting fluid in a rotating system in the presence of an inclined magnetic field. It is worthy to 
note that, in an ionized fluid, where density is low and/or magnetic field is strong the effects of Hall current become significant as 
mentioned by Sutton and Sherman (1965). Both Hall current and rotation induce secondary flow in the fluid. Therefore, it seems to 
be important to compare and contrast the effects of these two agencies and also to study their combined effects. Hall current and 
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rotation are likely to be important in many engineering applications viz. MHD power generators, MHD pumps and plasma flow in 
accelerators, geophysical and astrophysical problems of interest as well as in flows of plasmas in laboratory. Sherman and Sutton 
(1962) considered the effects of Hall current on the efficiency of MHD power generator. Taking into consideration the importance 
of such study Chauhan and Agrawal (2012), studied the effects of Hall current on steady MHD Couette flow of class-I in a rotating 
system in the presence of a uniform inclined magnetic field taking induced magnetic field into account.   

Aim of the present investigation is to study the effects of Hall current on the problem studied by Seth and Singh (2011) in the 
presence of an inclined magnetic field. The significance of such fluid problems lies in the behavior of an inclined magnetic field 
subject to interplay of magnetic and Coriolis forces taking into account the effects of Hall current. Such an investigation has to the 
authors’ knowledge thus far not received attention, despite its important applications in some MHD devices e.g. in rotating hybrid 
MHD energy generators (Bég et al., 2010).  

 
2.  Formulation of the Problem and its Solution 

 Consider steady Couette flow of a viscous, incompressible and electrically conducting fluid between electrically non-conducting 
parallel plates 0=z  and Lz = in the presence of an inclined magnetic field 0B which makes an angle θ  with the positive direction 
of z-axis in xz- plane. Both the fluid and channel rotate in unison with uniform angular velocity Ω  about z-axis. Flow within the 
channel is induced due to movement of upper plate Lz = with uniform velocity 0U  in x-direction whereas lower plate 0=z  is 
kept fixed. The plates of the channel are heated /cooled asymmetrically. The schematic diagram of the physical problem is 
presented in Figure 1c. Since plates of the channel are of infinite extent in x and y directions and fluid flow is steady so all physical 
quantities, except pressure, depend on z only. Therefore, the fluid velocity q

r  and magnetic induction vector B
r

are assumed in the 
following form 

0 0( , , 0) and ( ' sin , ', cos ),x y x yq u u B B B B Bθ θ= = +
rr         (1) 

The assumptions of  q
r  and B

r
are compatible with the fundamental equations of magnetohydrodynamics in a rotating frame of 

reference.  
 

 
 Figure 1c Schematic diagram of the physical problem 

 
Taking into account the assumptions made above the governing equations for steady fluid flow of a viscous, incompressible and 

electrically conducting fluid in a rotating frame of reference are 
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where eem τω= , σμυρ ,,, e  and p are, respectively, Hall current parameter, fluid density, kinematic coefficient of viscosity, 
magnetic permeability, electrical conductivity of the fluid and modified pressure including centrifugal force. eω and eτ are 
cyclotron frequency and electron collision time respectively. 
The boundary conditions for fluid velocity are 

,0at0,0 === zuu yx            (7a) 

0,0 == yx uUu  at Lz = .           (7b) 
Since walls of the channel are considered electrically non-conducting so the boundary conditions for induced magnetic field are   

0'' == yx BB at 0=z ,            (8a) 

0'' == yx BB at Lz = .            (8b) 

Equation (4) shows that modified pressure p is independent of ,z  so the values of pressure gradient terms 1 p
xρ
∂

−
∂

and 

1 ,p
yρ
∂

−
∂

which are present in the equations (2) and (3), are either evaluated by using boundary conditions for the fluid velocity and 

induced magnetic field at the stationary plate i.e. boundary conditions (7a) and (8a) or the boundary conditions for the fluid 
velocity and induced magnetic field at the moving plate i.e. boundary conditions (7b) and (8b).  
Using boundary conditions (7a) and (8a) in equations (2) and (3), we obtain  

 1 10, 0.p p
x yρ ρ
∂ ∂

− = − =
∂ ∂

                              (9a) 

Using boundary conditions (7b) and (8b) in equations (2) and (3), we obtain 

 0
1 10, 2 .p p U

x yρ ρ
∂ ∂

− = − = Ω
∂ ∂

                                  (9b) 

Seth and Maiti (1982) investigated steady MHD Couette flow in a rotating system with electrically conducting walls in the 
presence of a uniform transverse magnetic field taking into account the values of pressure gradient terms mentioned in equation 
(9a). Such type of fluid flow problem may be regarded as MHD Couette flow of class-I. Seth and Singh (2011) considered steady 
MHD Couette flow in a rotating system with electrically non-conducting walls in the presence of a uniform transverse magnetic 
field taking into consideration the values of pressure gradient terms mentioned in equation (9b). Such type of fluid flow problem 
may be named as MHD Couette flow of class-II.  Chauhan and Agrawal (2012) studied effects of Hall current on steady MHD 
Couette flow of class-I in a rotating system in the presence of an inclined magnetic field. For MHD Couette flow of class-I, 
equations (2) to (6) with the use of equation (9a) is presented by Chauhan and Agrawal (2012) for clear fluid region. In the absence 
of Hall current (i.e. 0)m = and angle of inclination of magnetic field (i.e. 0)θ = equations (2) to (6) reduce to those equations which 
are obtained by Seth and Singh (2011).   
Our problem belongs to MHD Couette of class II. Therefore, equations (2) and (3) with the use of equation (9b) reduce to 
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( ) ,cos12
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where υ/22 LK Ω=  is rotation parameter, which is reciprocal of Ekmann number, ρυσ /22
0

2 LBM =  is magnetic parameter 
which is square of Hartmann number and  LUR em 0σμ=  is magnetic Reynolds number.  
The boundary conditions (7a) to (8b), in dimensionless form become 

0,0 == vu  at 0=η ;  0,1 == vu at 1=η ,         (17) 
0== yx BB  at 0=η ; 0== yx BB  at 1=η .         (18) 

Combining equations (13) and (15) with (14) and (16) respectively, we obtain 
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where 
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The boundary conditions (17) and (18) in compact form become 
,1at1;0at0 ==== ηη FF            (21) 
.1at0;0at0 ==== ηη QQ            (22) 

Solution of equations (19) and (20) subject to the boundary conditions (21) and (22) is given by 
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Particular Solutions 

We shall now derive few particular solutions from general solution (23) to (25) 
1. Steady MHD Couette flow of class-II in a rotating system in the presence of an inclined magnetic field. Solution for this 
problem is obtained by setting 0=m  in (23) to (25) which is given by  
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2. Steady MHD Couette flow of class-II in a rotating system in the presence of a uniform transverse magnetic field with Hall 
effects. Solution for this problem is obtained by setting 0=θ in (23) to (25) which is given by 
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3. Steady MHD Couette flow of class-II in a rotating system in the presence of a uniform transverse magnetic field. Solution for 
this problem is obtained by setting 0=m  and 0=θ  in (23) to (25) which is given by 
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This solution is in agreement with the solution obtained by Seth and Singh (2011). 
 
Shear stress at the plates 

Dimensionless shear stress xτ  and yτ  at the moving plate due to primary and secondary flow respectively are given by 
( ) λλττ

η
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1
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=
.          (35) 

Mass flow rates 
Dimensionless mass flow rates xQ  and yQ  in the primary and secondary flow directions respectively are given by 

( ) ( )[ ]λλλ
λ

−+−=+ sinh1cosh1
2 BAiQQ yx .         (36) 



Seth and Hussain / International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011, pp. 234-247 

 

240

 

3.  Asymptotic Solutions 

In order to gain some physical insight into the flow pattern, we shall now discuss asymptotic behavior of solution given by 
equations (23) to (25) for small and large values of 2M and 2 .K  
Case I: When 2 1M << and 12 <<K  

Since 2M and 2K are very small, we neglect squares and higher powers of 2M  and 2K  and their product in equations (23) to 
(25) and we obtain components of velocity and induced magnetic field as 
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2 121 cos 24(1 cos )x
M m K mb

m m
θ η η θ θη η η η η η η

θ θ

⎡ ⎤− −⎛ ⎞= − − − − + − +⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎣ ⎦
 

          
2 3 2

2 2 2 3
2 2 2 2

cos cos cos( ) (1 ) (1 ) (47 96 50 ) ...., (40)
2 121 cos 12(1 cos )y

m M m Kb
m m

θ θ θη η η η η η η η η
θ θ

⎡ ⎤⎛ ⎞= − − − + − + − +⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎣ ⎦
 

          
It is evident from the expressions (37) to (40) that in a slowly rotating system when the conductivity of the fluid is low primary 
velocity ( )u η is independent of rotation and secondary velocity ( )v η , primary induced magnetic field ( )xb η and secondary induced 
magnetic field ( )yb η are affected by Hall current, magnetic field and rotation whereas fluid velocities and induced magnetic fields 
in both the directions are affected by angle of inclination of magnetic field θ . In the absence of Hall current, secondary velocity 

( )v η  and secondary induced magnetic field ( )yb η are unaffected by magnetic field whereas primary induced magnetic field ( )xb η  
is unaffected by rotation.  
Case II: When 2 21 ~ (1)K and M O>>  

When 2K  is large and 2M is of small order of magnitude fluid flow becomes boundary layer type. For the boundary layer flow 
adjacent to the stationary plate 0η = , we obtain velocities and induced magnetic fields from equations (23) to (25) as 

4
4( ) 1 cos( ),u e α ηη β η−= −            (41) 

4
4( ) sin ( ),v e α ηη β η−=             (42) 

( ) ( ) ( )4 4
4 42 2

cos( ) 1 cos sin 1 cos cos 1 ,
2 (1 cos )xb m e m e

K m
α η α ηθη θ β η θ β η η

θ
− − ⎤⎡= − − + − +⎣ ⎦+

    (43) 

( )( ) ( )4 4
4 42 2

cos( ) 1 cos cos 1 1 cos sin ,
2 (1 cos )yb m e m e

K m
α η α ηθη θ β η η θ β η

θ
− −⎡ ⎤= − − + + + ⎦⎣+

    (44) 

where  
2 2

4 2 2 2
cos ( cos 1)1 ,

4 (1 cos )
M mK

K m
θ θα

θ

⎡ ⎤+
= +⎢ ⎥

+⎢ ⎥⎣ ⎦
           (45a) 

2 2

4 2 2 2
cos ( cos 1)1 .

4 (1 cos )
M mK

K m
θ θβ

θ

⎡ ⎤−
= +⎢ ⎥

+⎢ ⎥⎣ ⎦
                       (45b) 

It is evident from the equations (41) to (45) that there arises a thin boundary layer of thickness ( )1
4O α −  near the stationary plate 

of the channel. This boundary layer may be identified as modified Ekman boundary layer and may be viewed as classical Ekman 
boundary layer modified by Hall current, magnetic field and angle of inclination of magnetic field. It is revealed from (45a) that 

4α increases on increasing either 2M or 2K . This implies that thickness of the boundary layer decreases on increasing either 
2M or 2K . Similar type of boundary layer arises near the moving plate of the channel. The exponential terms in the expressions 

(41) to (44) damped out quickly as η  increases. When 41/η α≥  i.e. outside the boundary layer region, equations (41) to (44) 
reduce to 



Seth and Hussain / International Journal of Engineering, Science and Technology, Vol. 3, No. 8, 2011, pp. 234-247 

 

241

 

( ) 1, ( ) 0,u vη η≈ ≈             (46a) 
( ) ( )2 2 2 2

cos 1 coscos (1 cos )( ) ( 1), ( ) 1 .
2 (1 cos ) 2 (1 cos )x y

mmb b
K m K m

θ θθ θη η η η
θ θ

−− +
≈ − ≈ −

+ +
                   (46b) 

Expressions in (46a) and (46b) demonstrate that, in the central core region, fluid flows in the primary flow direction only whereas 
induced magnetic fields persist in both the primary and secondary flow directions and vary linearly withη . 

Case III: When 2 21and ~ (1)M K O>>  
In this case also boundary layer type flow is expected. For the boundary layer flow near the stationary plate 0η = , we obtain the 

components of velocity and induced magnetic field from the equations (23) to (25) as 
2 2

2 15 5
5 5

1( ) 1 (1 cos ) sin ,
2 cos cos

K c K cu e e
M M

α η α ηη β η β η
θ θ

− −⎡ ⎤⎛ ⎞
= + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

       (47) 

2 2
2 15 5

5 5
1( ) 1 sin (1 cos ) ,
2 cos cos

K c K cv e e
M M

α η α ηη β η β η
θ θ

− −⎡ ⎤⎛ ⎞
= + + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

        (48) 

( ) ( )
21 25 5

5 52 2 2 2 2
1 2 1 2

cos cos1( ) (1 cos ) 3 sin ,
2 cosx

c M c M
b e K e

M c c c c
α η α ηθ θ

η β η β η
θ

− −
⎡ ⎤⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= − + −⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

     (49) 

( ) ( )
2 22 15 5

5 52 2 2 2 2
1 2 1 2

cos cos1( ) 3 (1 cos ) sin 2 ,
2 cosy

c M c M
b K e e K

M c c c c
α η α ηθ θ

η β η β η η
θ

− −
⎡ ⎤⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= − − + +⎨ ⎬ ⎨ ⎬⎢ ⎥+ +⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

   (50) 

where 

( )
22

2
5 1 2 2 22 2

cos 1 ,
cos cos1 cos

c KM mKc
M Mm

θα
θ θθ

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠+ ⎣ ⎦

         (51a) 

( )
22

1
5 2 2 2 22 2

cos 1 ,
cos cos1 cos

c KM mKc
M Mm

θβ
θ θθ

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠+ ⎣ ⎦

                       (51b) 

( )
1

1 2
2 2 2

1
1 1 1 cos ,
2

c m θ
⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

             (51c) 

( )
1

1 2
2 2 2

2
1 1 1 cos .
2

c m θ
⎡ ⎤

= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

                         (51d) 

It is revealed from the expressions (47) to (51) that there appears a thin boundary layer of thickness ( )1
5O α − near the stationary 

plate of the channel. This boundary layer may be recognized as modified Hartmann boundary layer and may be viewed as classical 
Hartmann boundary layer modified by Hall current, rotation and angle of inclination of magnetic field. The thickness of this 
boundary layer decreases on increasing 2M . In the absence of Hall current there arises a thin boundary layer of thickness 

(1/ cos )O M θ near the stationary plate. Similar type of boundary layer arises near moving plate of the channel. When 51/η α≥  
i.e. outside the boundary layer region, solution (47) to (50) assumes the form 

2 2
2 11( ) 1 , ( ) ,

2 cos cos
K c K c

u v
M M

η η
θ θ

⎛ ⎞
≈ + ≈⎜ ⎟⎜ ⎟

⎝ ⎠
            (52a) 

( )
21

2 2 2
1 2

cos1( ) 3 ,
2 cosx

c M
b K

M c c
θ

η
θ

⎡ ⎤
⎢ ⎥≈ +
⎢ ⎥+⎣ ⎦

                          (52b) 

( )
2 22

2 2 2
1 2

cos1( ) 3 2 .
2 cosy

c M
b K K

M c c
θ

η η
θ

⎡ ⎤
⎢ ⎥≈ − +
⎢ ⎥+⎣ ⎦

           (52c) 
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Expressions in (52a) to (52c) show that, in the central core region, fluid velocities and induced magnetic fields persist in both the 
directions and are affected by Hall current, magnetic field, rotation and angle of inclination of magnetic field.  
 It was noticed that in the absence of Hall current and angle of inclination of magnetic field, the results obtained in cases I to III 
are in agreement with the results obtained by Seth and Singh (2011).  
 
 
 
4. Heat Transfer Characteristics  

We shall now discuss heat transfer characteristics of this fluid flow problem when the stationary and moving plates of the 
channel are maintained at uniform temperatures 0T  and 1T  respectively, where 10 ' TTT << , 'T  being the fluid temperature. 
Energy equation taking viscous and Joule dissipations into account is given by 

,0
''1'*

2222

2

2
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
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⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+

dz
dB

dz
dB

Cdz
du

dz
du

Cdz
Td yx

p

yx

p σρ
υα        (53) 

where *α  and pC are thermal diffusivity and specific heat at constant pressure respectively. 
Boundary conditions for the temperature field are 

.at'and0at' 10 LzTTzTT ====           (54) 
Equation (53), in dimensionless form, become 
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where ( )01

2
0

01

0 and
*

,
'

TTC
U

EP
TT
TT

T
p

rr −
==

−
−

=
α
υ  are dimensionless fluid temperature, Prandtl number and Eckert number 

respectively. 
Boundary conditions (54), dimensionless form, assume the form  

.1)1(and0)0( == TT              (56) 
Making use of solution (23) to (25) in equation (55), the resulting differential equation subject to boundary conditions (56) is 
solved numerically with the help of MATLAB software. The numerical values of rate of heat transfer at the stationary and moving 
plates are also computed with the help of MATLAB software. 
 
5. Results and discussion 

Effects of magnetic field and rotation on hydromagnetic Couette flow of class-II of a viscous, incompressible and electrically 
conducting fluid in a rotating system with electrically non-conducting walls in the presence of  a uniform transverse magnetic field 
is investigated by Seth and Singh (2011). To study the effects of Hall current and angle of inclination of magnetic field on flow-
field, the numerical values of primary and secondary fluid velocities and primary and secondary induced magnetic fields, 
computed from analytical solution (23) to (25) by MATLAB software, are displayed graphically versus channel width variable 
η in figures 2 to 5 for various values of Hall current parameter m  and angle of inclination of magnetic field θ  taking magnetic 

parameter 2 220 and rotation parameter 3.M K= = It is evident from figure 2 that the primary velocity u increases in the upper half 
of the channel and decreases in the lower half of the channel whereas secondary velocity v  decreases in the upper half of the 
channel and increases in the lower half of the channel on increasing m  which implies that Hall current tends to accelerate fluid 
flow in the primary flow direction in the upper half of the channel and it tends to retard fluid flow in the primary flow direction in 
the lower half of the channel whereas it has reverse effect on the fluid flow in secondary flow direction. It may be noted that, in 
general, in MHD Couette flow of class-I, Hall current tends to induce cross flow i.e. secondary flow by suppressing primary flow. 
However, above trend which is observed in figure 2 is different than the trend observed in MHD Couette flow of class-I. This is 
due to reason that the effect of non- zero pressure gradient term, which is given by equation (9b), is considered in this fluid flow 
problem.  It was noticed from figure 3 that primary velocity u increases in the upper half of the channel and decreases in the lower 
half of the channel whereas secondary velocity v increases throughout the channel on increasing θ  which implies that the angle of 
inclination of magnetic field tends to accelerate fluid flow in the primary flow direction in the upper half of the channel and it has 
reverse effect on the fluid flow in the primary flow direction in the lower half of the channel. Angle of inclination of magnetic field 
tends to accelerate fluid flow in the secondary flow direction throughout the channel. It is seen from figure 4 that primary induced 
magnetic field xb  decreases whereas secondary induced magnetic field yb increases on increasing m which implies that Hall 
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current tends to reduce primary induced magnetic field whereas it has reverse effect on secondary induced magnetic field. It is 
evident from figure 5 that both the primary and secondary induced magnetic fields decrease on increasing θ  which implies that 
angle of inclination of magnetic field tends to reduce both the primary and secondary induced magnetic fields. 
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Figure 5 Induced Magnetic field profiles when 0.5.m =  
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Figure 6 Temperature profiles when / 4.θ π=                           Figure 7 Temperature profiles when 0.5.m =  

 

To study the effects of Hall current and angle of inclination of magnetic field on fluid temperature, the numerical solution of 
energy equation, computed with the help of MATLAB software, is depicted graphically versus channel width variable η  in figures 

6 and 7 for various values of andm θ  taking 2 220, 3, 0.71 and 2.r rM K P E= = = =  It is seen from figures 6 and 7 that fluid 
temperature T decreases in the regions near the stationary and moving plates of the channel on increasing either orm θ  which 
implies that Hall current and angle of inclination of magnetic field have tendency to reduce fluid temperature in the regions near 
the stationary and moving plates of the channel.  

The numerical values of primary and secondary shear stress at the moving plate and that of primary and secondary mass flow 
rates, computed from the analytical expressions (35) and (36) by MATLAB software, are presented in tabular form in tables 1and 
2 for various values of andm θ  taking 2 220 and 3.M K= = It is evident from table 1 that primary shear stress at the moving 

plate i.e. ( ) 1x ητ
=

decreases on increasing either orm θ . Secondary shear stress at the moving plate i.e. ( ) 1y η
τ

=
 decreases, attains a 

minimum and then increases in magnitude on increasing .θ  With an increase in ( ) 1
, ym

η
τ

=
increases when ,6

πθ = it decreases in 

magnitude, attains a minimum and then increases when 4
πθ =  and it decreases in magnitude when .3

πθ = This implies that 

angle of inclination of magnetic field and Hall current have tendency to reduce primary shear stress at the moving plate. There 
exists flow separation at the moving plate in the secondary flow direction on increasing θ  for every value of m  or on increasing 
m when 4

πθ = . It is obsorved from table 2 that primary mass flow rate i.e. xQ and secondary mass flow rate i.e. yQ  increase on 

increasing .θ xQ  increases, attains a maximum and then decreases on increasing . With theincreasein , ym m Q increases, attains a 

maximum and then decreases when ,6
πθ = it decreases when 4

πθ = and it decreases, attains a minimum and then increases 

when .3
πθ = This implies that angle of inclination of magnetic field tends to enhance both the primary and secondary mass flow 

rates.  

Table 1 Primary and secondary shear stress at moving plate. 
→θ  
 

m ↓  

( ) 1x ητ
=

 ( ) 1y η
τ

=
 

6
π  4

π  3
π  6

π  4
π  3

π  

0.50 2.1300 1.7277 1.2396 0.1616 - 0.0065 - 0.1770 

1.00 1.9076 1.6128 1.2167 0.3258 0.1396 - 0.0797 

1.50 1.6765 1.4657 1.1653 0.3789 0.2059 - 0.0180 
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Table 2 Primary and secondary mass flow rates. 
→θ  

    
  ↓m  

xQ  yQ  

6
π  4

π  3
π  6

π  4
π  3

π  

0.50 0.5871 0.5931 0.6013 0.1315 0.1420 0.1552 

1.00 0.6009 0.6030 0.6062 0.1339 0.1417 0.1528 

1.50 0.5947 0.5984 0.6038 0.1314 0.1407 0.1533 
 

The numerical values of rate of heat transfer at the stationary and moving plates of the channel are computed with the help of 
MATLAB software and are presented in table 3 for various values of 2 2and taking 20, 3, 0.71and 2.r rm M K P Eθ = = = =  It is 

found from table 3 that rate of heat transfer at the stationary plate i.e. 
0

dT
d ηη =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and rate of heat transfer at the moving plate 

i.e.
1

dT
d ηη =

⎛ ⎞
⎜ ⎟
⎝ ⎠

decrease on increasing θ . 
0

dT
d ηη =

⎛ ⎞
⎜ ⎟
⎝ ⎠

decreases on increasing m when 6
πθ = and 4

π  whereas 
1

dT
d ηη =

⎛ ⎞
⎜ ⎟
⎝ ⎠

decreases on 

increasing m . This implies that angle of inclination of magnetic field tends to reduce rate of heat transfer at both the stationary and 
moving plates of the channel. Hall current tends to reduce rate of heat transfer at the moving plate of the channel and it tends to 
reduce rate of heat transfer at the stationary plate of the channel when .4

πθ ≤  

Table 3 Rate of heat transfer at the stationary and moving plates. 
   

→θ  
      
m ↓  

0

dT
d ηη =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 
1

dT
d ηη =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 

6
π  4

π  3
π  6

π  4
π  3

π  

0.50 20.2005 12.7084 8.3112 23.4908 11.5133 5.0256 

1.00 18.4450 12.5301 8.5132 19.0866 10.3628 4.8986 

1.50 16.1880 11.8257 8.5019 14.8089 8.8091 4.6074 
 

The effects of Hall current and angle of inclination of magnetic field, which are observed in figures 2 to 7, are due to presence of 
non-zero pressure gradient term in the governig equations for fluid flow problem. It is noticed from equations (5), (6), (10) and 
(11) that there is no interaction between fluid flow and applied magnetic field when / 2θ π= . This fluid flow problem reduces to 
MHD Couette flow of class-II in a rotating system in the presence of a uniform transverse magnetic field when θ = 0. We have 
already provided the solution of  this problem as a particular solution  (29) to (31). In the present problem angle of inclination of 
magnetic field θ lies between 0and / 2π . The numerical values of fluid velocity, induced magnetic field, fluid temperature, shear 
stress at the moving plate, mass flow rate  and rate of heat transfer at both the plates indicate that there is an effective interaction 
between fluid flow and magnetic field when θ is very small. However, in the problems of geophysical and astrophysical interest 
value of angle θ  depends on the position of magnetic field. Due to this reason we have computed numerical results for fluid 
velocity, induced magnetic field , fluid temperature, shear stress at the moving plate, mass flow rate and rate of heat transfer at 
both the plates when / 6, / 4and ./ 3θ π π π= To the authors’ knowledge such type of fluid flow is not considered in literature.  

6. Conclusion 

The present investigation deals with the theoretical study of Hall effects on hydromagnetic Couette flow of class-II in a rotating 
system in the presence of an inclined magnetic field with asymmetric heating /cooling of the walls. The significant results are 
summerized below 

(i) Hall current tends to accelerate fluid flow in the primary flow direction in the upper half of the channel and it 
tends to retard fluid flow in the primary flow direction in the lower half of the channel whereas it has reverse 
effect on the fluid flow in secondary flow direction. 

(ii) Angle of inclination of magnetic field tends to accelerate fluid flow in the primary flow direction in the upper 
half of the channel and it has reverse effect on the fluid flow in the primary flow direction in the lower half of the 
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channel. Angle of inclination of magnetic field tends to accelerate fluid flow in the secondary flow direction 
throughout the channel. 

(iii) Hall current tends to reduce primary induced magnetic field whereas it has reverse effect on secondary induced 
magnetic field. 

(iv) Angle of inclination of magnetic field tends to reduce both the primary and secondary induced magnetic fields. 
(v) Hall current and angle of inclination of magnetic field have tendency to reduce fluid temperature in the regions 

near the stationary and moving plates of the channel.  
(vi) Angle of inclination of magnetic field and Hall current have tendency to reduce primary shear stress at the 

moving plate. There exists flow separation at the moving plate in the secondary flow direction on increasing θ  
for every value of m  or on increasing m when 4

πθ = . 

(vii) Angle of inclination of magnetic field tends to enhance both the primary and secondary mass flow rates.  
(viii) Angle of inclination of magnetic field tends to reduce rate of heat transfer at both the stationary and moving 

plates. Hall current tends to reduce rate of heat transfer at the moving plate of the channel and it tends to reduce 
rate of heat transfer at the stationary plate of the channel when .4

πθ ≤  

Present investigation will help to find the angle(s) at which the system gives the best performance with respect to the maximum 
and minimum values of  major quantities viz. magnetic field, Hall current and rotation by using an optimization technique, namely, 
Genatic Algorithm Technique. This will be a topic of research in the future. 
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