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Abstract 
 
   In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) 
dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to 
model the PEMFC dynamic systems and residuals are generated based on the differences between the PEMFC systems and RBF 
networks model. Later, based on this information the RBF model performed the FD including identification and classification. 
Five types of faults have been introduced to the PEMFC dynamic systems which occurred in the actuator, component and three 
sensors part. By considering the faults in the PEMFC systems is 10% changes in each component, the efficiency of the proposed 
model is studied. The developed model is tested on MATLAB/Simulink simulation. The results show that all the simulated 
faults can clearly be detected and classified by this intelligent model-based FD. By using this intelligent FD method, the PEMFC 
dynamic systems is intelligent to detect the faults quickly, classify them and then appropriate action can be taken immediately. 
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1. Introduction 
 
   Process faults, if undetected, have a serious impact on process economy, product quality, safety, productivity and pollution level. 
In order to detect, diagnose and correct these abnormal process behaviors, efficient and advanced automated diagnostic systems 
are of great importance to modern industries (Albert et al, 2007). Once a fault has been detected and its evolution is monitored, the 
severity of that fault can be evaluated and a decision can be made on the course of action to be taken. Monitoring creates the 
opportunity to strategically plan and schedule outrages and to manage equipment utilization and availability (Jean-Pierre and 
Joseph, 1995). A variety of fault detection and diagnosis techniques have been developed and published in the area of diagnostic 
problem in the PEMFC dynamic systems. These techniques include model-based approaches, knowledge based approaches, 
qualitative simulation based approaches, neural network based approaches and classical multivariate statistical techniques. For 
fault detection and diagnosis problem, the most effective way will be model-based approach based on a decision-making where a 
limit or threshold of a residual is generated. Here, the difference between the actual and the estimated output is used as a residual 
vector. In the aspect of hydrogen safety and efficiency for PEMFC, Ari et al. (2005) has developed a computer simulation tool 
which can be used to detect and monitor faults in the hydrogen stations. While Salim and Lecoeuche (2009) proposed a model-
based observer deals with water management issue which can affect the cell performance. (Teresa et al., 2009) used this method 
based on the relative residual fault sensitivity by checking the consistency of observed behaviour while fault isolation tries to 
isolate the component that is in fault in different sensitivities. In order to tackle the nonlinear systems behavior, the used of neural 
network has been used widely in the FD for fuel cell systems. Considering with the flooding issue, (Luis et al, 2006) have used the 
Bayesian network for fault diagnosis with the probabilistic approaches such as K2 and MCMC algorithm. While (Yousfi et al, 
2010) used elman neural network (ENN) for fault diagnosis in the PEMFC systems to overcome the same problem. Later, (Roy et 
al, 2008) also used the Bayesian network as a supervisor system which was able to diagnose degradation and catastrophic faults in 
the equipment.  
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   From the observation, even though some of the mentioned methods dealing with FD but there is still a lack of information on FD 
especially for classification. Most of the existing method for FD shows the response of fault individually instead of multiple faults 
all at once. Besides that, some of the work is focused more on mathematical modeling approach to do FD. Therefore, based on the 
previous researcher’s work and also concerning about the cost, safety, efficiency and the reliability of the PEMFC performance, 
the best way to implement the FD technique is through the development of model-based diagnosis based on residual fault 
sensitivity generation. Model-based approach gives the insight analysis of the subsystem interactions and also provides guidelines 
during the systems operation. The system behavior can be analyzed for depth understanding and this information can be used for 
future design and development of the systems. The used of neural network will overcome the nonlinear systems behavior of 
PEMFC dynamic systems. Therefore, the contribution of this research is to develop an intelligent FD scheme for PEMFC dynamic 
systems using a model-based RBF networks. This develop model is not only can detect the five faults in the PEMFC systems but it 
is also can classify the type of faults efficiently.  
 
2.  PEMFC Systems 
    
   Nowadays, there is a great demand and interest in the renewable energy technology which has provided motivation for 
researchers to perform research especially in fuel cell. Fuel cell research had received a great deal of attention because of its 
strategic importance in global energy conversion and also its positive impact towards the environment. Due to high electrical 
efficiency, flexibility with respect to power and capacity, long lifetime and no pollutions, the fuel cells are rapidly becoming 
significant source of power in the future. Among fuel cell technologies, the proton exchange membrane has received a lot of 
attention. PEMFC is based on hydrogen technology and operates at low temperatures between the ranges of 60°-100°. Besides 
that, the PEMFC also has a 50% electrical efficiency. Therefore, these characteristic allow the use of PEMFC in many applications 
such as for transportation, telecommunication, portable utilities, stationary and distributed power generation.  
   A fuel cell stack (FCS) cells need to be integrated with several auxiliary components to form a complete fuel cell systems. In this 
research, the PEMFC simulator model developed by Jay et al. (2004a) is used as a case study for FD. The diagram in Figure 1 
shows an example of fuel cell systems which is augmented by four auxiliary system; hydrogen supply systems, air supply system, 
cooling system and humidification system. The air is supplied by an air compressor, which is used to increase the power density of 
the overall system. The air supply consists of an air compressor, an electric motor and manifolds between the components. The 
compressor not only achieves desired air flow but also increases air pressure which significantly improves the reaction rate at 
membrane, thus the overall efficiency and power density (Jay et al, 2004b).  

 

Figure 1: The diagram of FC system proposed by (Jay et al, 2004a) 
 
3. Radial Basis Function Networks 
 
   A neural network provides a general way to model a nonlinear system with memory and it has been used by many researchers to 
describe the relationship between the input and output of monitored systems. Radial basis function (RBF) neural networks is a 
forward network consist of three layers which are the input layer, hidden layer and output layer. This RBF neural networks is 
chosen because of its characteristic which has the ability to approximation of a nonlinear input system to a linear output. Besides 
that the training process is faster and better compared with another neural network. The RBF networks is capable of approximating 
any continuous function with certain precision level and therefore, can be used in dynamic system modeling and control (Mingyu 
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et al., 2009). RBF networks used a k-means clustering algorithm which the incoming weights from the input layer become centre 
of clusters of input vectors. The k-means clustering algorithm determines the closest centre of the RBF networks. Every RBF 
output is multiplied by the corresponding linear weight and all are summed up as the RBF networks output. The most popular RBF 
is a Gaussian type that is characterized by a centers ci and a weights wi. The centers ci and weights wi are complex values whereas 
the output from the hidden layer is real valued. The input-output mapping for the RBF network (Mingyu et al, 2009) can be 
described as: 
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where the approximating function y(x)  is represented as a sum of K radial basis functions, each associated with a different center 
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where ci is the radial basis centre, ρ is the variance of the Gaussian function, and x is the input vector.  
 
   In this work, for training and testing purposes, the constructed structure of RBF networks used consist of two input layers (x=2), 
twenty-two hidden layers (nh=22) and three output layers (y=3).  The structure of RBF networks implemented in this work is 
presented in Figure 2. 

 

 
Figure 2: The structure of RBF networks with two inputs and three outputs 

      The training session of the RBF network uses the error in the output values to update the weights connecting the layers, until a 
minimize error is achieved. Training the network is a matter of determine the weights and minimize the generated mean absolute 
error (MAE) (Zhai et al, 2007) defined by the following equation: 
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where e(k) is the true value and ê(k) is the estimated value. 
 
4. Fault Detection 
 
     Early detection of faults inside the PEMFC systems can extend the life of the FCS. The most effective method of detecting a 
fault in PEMFC systems is by observing the volume of the air flow in the compressor, the pressure in the cathode and sensors 
installed inside the systems. Normally the overall efficiency and power density of FCS is indicated by oxygen excess ratio λO2. 
Low values of  λO2  indicates low oxygen concentration in the cathode or oxygen starvation and high oxygen excess ratio, and thus 
high oxygen partial pressure, improves the power of the stack. The oxygen excess ratio must be regulated to λO2 ≥ 1 to prevent the 
starvation phenomenon (Carlos et al, 2010). In (Jay et al, 2004b), the authors propose λO2=2 because this value prevents oxygen 
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starvation effect and ensure a high efficiency in its experimental system. Therefore, FD in the auxiliary systems need to make fine 
and fast adjustments to satisfy performance, safety and reliability standards that are independent of age and operating conditions of 
FCS (Jay et al., 2004c) .  
   In this work, the PEMFC dynamic systems simulator developed in (Jay et al, 2004a) has been modified in order to introduce five 
types of faults that might occurs in the PEMFC dynamic systems. To design FD scheme, dynamic neural network of RBF has been 
developed in this paper using the MATLAB/Simulink environment. To monitor and implement the FD technique, a model-based 
FD model is employed to describe the nominal behavior of the PEMFC systems.  The technological process can be treated as a 
system which consists of some major types of subsystems such as actuator, process and sensors. In order to ensure that the RBF 
model used for FD in this research is correct, the online PEMFC simulator developed by Jay et al. (2004a) has been used. Here, the 
online simulation of PEMFC systems without any faults occur in the system has been conducted to see the corresponding outputs 
measurements. Later, this developed model has been modified in order to introduce five possible faults which might occur during 
the operations of PEMFC. Figure 3 shows the five types of faults used in this work. 

 
Figure 3: Five faults introduced to the PEMFC system proposed by (Jay et al, 2004a) 

 
   Failure strategies used in this work are being introduced in the actuator, component and sensors in the PEMFC systems. The 
faults occur in the system is introduced as a 10% drop of the air flow in the actuator, a leak of the pressure in the manifold and also 
faults in the sensor devices. The integrated model coded in MATLAB-Simulink shown in Figure 4 is used for FD. The stack 
current SC and the compressor motor voltage CV are the inputs. Leak is the measured disturbances while net power NP, oxygen 
excess ratio λO2 and stack voltage SV are the output variables.  Again, the RBF networks is trained and tested but this time, the 
inputs to the RBF networks is a faulty data occurs during the operation of PEMFC systems. 

 
Figure 4: The MATLAB/Simulink with leak  

 
   The aim of detection system is to detect the faults in each subsystem and provide the information about their size and sources. 
One of the most known FD methods is technique based on residual generation (Roozbeh et al., 2009). FD can be performed of a 
three step algorithm. Firstly, one or several signals reflecting faults in the process behavior are generated. These signals are called 
residuals. In the second steps, the residuals are evaluated. A decision is made using these residuals, in order to determine the time 
and the location of possible faults. Finally, the nature and likely cause of the faults are analyzed by the relations between the 
symptoms and their physical causes. The block diagram of FD used in this work is shown in Figure 5.  
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Figure 5: The block diagram of fault detection algorithm used in the PEMFC systems 
   At initial stage, a set of random amplitude signals (RAS) excitation signals has been injected as inputs for the stack current SC 
and compressor motor voltage CV of the PEMFC systems. These signals ranging from 100 to 300 amperes for the stack current 
and from 100 to 235 volts for the compressor motor voltage. The matrix form of the inputs and outputs can be shown as follows: 
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where u and y is the input and output of the PEMFC systems respectively.  
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Figure 6: The excitation signals for compressor voltage and stack current 
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   Figure 6 shows the example of RAS excitation signals used in this work. The signals are generated randomly by the proposed 
model to cover all range of frequencies. Once the RAS have been generated, these signals are used as inputs data for training and 
testing purposes in the RBF algorithm. In order to ensure the convergence of the RBF networks, the input and the output signals 
need to be normalized in the range of zero to one. These signals are fed into the RBF using the scaled value where: 
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   The new scaled value of inputs and outputs signals had been divided into two categories. The first 5000 data samples are used as 
training sets and another 1000 data samples are used for testing purposes. At this stage, the RBF networks is trained with a set of 
free faults data and serves as the reference basis to the diagnosis procedure. After several training, the optimum value from the 
training process is used in the testing process.  
   Next step, to generate the residual evaluation that indicate differences between the RBF networks model’s output and the 
PEMFC measured process output. The free fault and faulty training data sequences are fed to the input layer randomly after all the 
weights and the thresholds are initialized with random numbers. A threshold needs to be set to evaluate whether or not the 
residuals are under faulty conditions. By doing this, from the simulation, it determine whether the outputs of PEMFC system 
consists a faulty data measurements or not. The threshold test used in this work is set at one. However, from the observation and 
after the trials and errors, the values of threshold are found between the ranges of 0.6x10-3-10x10-3. Residuals are zero under an 
ideal condition, therefore the residual signal r(t) is set with a threshold function T(t) according to equation (12) to indicates the 
fault signals f(t) of PEMFC systems. 
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The residual signal r(t) is calculated as 

                                                                                          
yyr )−=

                                                                                  (9)
 

where y is the PEMFC plant measurements and ŷ is the RBF networks model prediction.  
    
   The residual signals produce after the simulation is still influence by distortions and noises. Therefore, to improve the accuracy 
of the model, and to reduce the noises, the residual signals need to be filtered digitally. For data analysis, a Bessel filter is used to 
reduce the noises in the signals. The Bessel filter had the benefit of having a linear phase shift. Later, the residual error sensitivity 
is calculated to perform the FD. The residual errors sensitivity is given by:   

                                                                            25.6

22
2

2 ⎟
⎠
⎞⎜

⎝
⎛ ++

=
SVeOeNPe

re
λ

                                                      (10)
 

   Where eNP is the error vector of net power, eλO2 is the error vector of the oxygen excess ratio and eSV is the error vector of stack 
voltage. Once the RBF networks detected the faults, it discovers the type of faults occurred based on hardware malfunction in the 
PEMFC plant. With respect to the whole training and test set, a threshold value for residual errors sensitivity has been defined. It 
can be said that the range of threshold for residual errors sensitivity is between 0.5x10-3-1x10-3. 
5. Simulation results 
 
   In order to validate the RBF networks model, the net power, the oxygen excess ratio and stack voltage obtained from the 
simulation are compared with measured results of the PEMFC systems. In this PEMFC plant, five types of faults are considered. In 
this simulation, 6000 samples have been used for FD using two types of samples named as Samples1 and Samples2. For both 
samples, the faults being introduced are considered as 10% change in the PEMFC systems.  Here, the sampling time, ts used is set 
at 20ms with hidden layer at 22 nodes. Data samples used for both simulation is 6000 data samples. Table 1 summarized the types 
of fault introduced to the PEMFC systems with the range of the faults occurred. 
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Table 1: The faults data used in the PEMFC systems  

Item Types of fault No. of data Data range 

Samples1 

Sensor1 200 1000-1200 
Sensor2 200 2000-2200 
Sensor3 200 3000-3200 

Component 200 4000-4200 
Actuator 200 5000-5200 

Samples2 

Component 200 1000-1200 
Actuator 200 2000-2200 
Sensor1 200 3000-3200 
Sensor2 200 4000-4200 
Sensor3 200 5000-5200 
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Figure 7: The actual and estimated output of NP, λO2 and SV during testing process for Samples1 data set  



Kamal and Yu / International Journal of Engineering, Science and Technology, Vol. 3, No. 9, 2011, pp. 1-15 

 

8 

 

   Figure 7 shows the output simulation of NP, λO2 and SV when the faults occur in the systems for testing data set. Here, there are 
not many differences between the measured outputs and the estimated outputs. However, there is a gap and differences between 
these two signals especially at the introduction of faults based on Table 1. 
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   In Figure 8, it shows the error signals of the output NP, λO2 and SV with the existing of faults in the signals. These output 
signals need to be filtered before the FD can be applied due to the influence of noise inside the signals. Based on the result 
obtained, there is a clear phase shift at samples number 3000 and 5000 at the output of SV error signals. However, the fault signals 
in the output of NP and λO2

 cannot be seen clearly. 
 

Figure 8: The error signals of NP, λO2 and SV between the PEMFC Systems and RBFNN for Samples1  
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      Figure 9 shows the output simulation of NP, λO2 and SV when the faults occur in the systems for testing data set. Again, there 
are not many differences between the measured outputs and the estimated outputs. However, there still a gap and differences 
between these two signals especially at the introduction of faults based on Table 1. 
 

 

Figure 9: The actual and estimated output of NP, λO2 and SV during testing process for Samples2 data set 
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   In Figure 10, it shows the error signals of the output NP, λO2 and SV with the existing of faults in the signals. Based on the 
result obtained, there is a clear phase shift at samples number 5000 at the output of SV error. Again, there are no differences in the 
output of λO2 and SV. Therefore, these output signals need to be filtered before the FD can be applied due to the influence of noise 
inside the signals.  

 

 

Figure 10: The error of NP, λO2 and SV between the PEMFC Systems and RBFNN for Samples2 
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   Figure 11 shows the filtered signals of faults at the outputs plant of Samples1 before the FD can be applied. Here, the faults 
occurrence can be clearly identified and detected with their respective threshold. From the results obtained, there are two possible 
faults in NP output signal due to sensor1 fault and component fault. Faults also have occurred in the λO2 output signal due to 
sensor2, component and actuator faults. There are also three types of faults in SV output signal due to sensor3, component and 
actuator faults.  
 

 

 

Figure 11: The filtered signals of NP, λO2 and SV and respective threshold for Samples1  
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   Figure 12 shows the filtered signals of faults at the outputs plant of Samples2. From the results it shows that there are faults in 
NP output signal due to actuator and sensor1 faults, while in λO2 there are three types of faults produced by component, actuator 
and sensor2 faults. But in SV output signal there is a clear fault due to sensor3 malfunction in the systems.  It is also an actuator 
fault in the SV output signal.  
 

Table 2: The value of MAE for Samples 1 and Samples 2 

Task 
Samples 1 Samples 2 

Net Power 
(W) λO2 

Stack 
voltage (V) 

Net Power 
(W) λO2 

Stack 
voltage (V) 

Training & Testing 
(Free fault) 0.0061 0.0048 0.0035 0.0061 0.0048 0.0035 

Before filter 
(with fault) 0.0071 0.0057 0.0040 0.0072 0.0056 0.0042 

After filter 
(with fault) 0.0001 0.0002 0.0004 0.0002 0.0002 0.0005 

Figure 12: The filtered signals of NP, λO2 and SV and respective threshold for Samples2  
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   After the signals being filtered, MAE is calculated to see the accuracy of the measured outputs and the RBF model outputs for 
both data samples. The MAE of the proposed RBF networks model can be summarized as in Table 2. This table shows the MAE 
of the signals during the training and testing of free data faults for Samples1 and Samples2. Later, the RBF networks model is 
tested again, but now with the existing of faulty data occurred in the PEMFC systems. From the MAE measurements for both data, 
it shows that the MAE is high because it contains faulty data sets. The MAE of this faulty data is measured before it is filtered. 
Once the faulty data have been identified and detected, it shows that the MAE is also reduced. From the result obtained, the MAE 
after FD for NP is 0.0001,  λO2 is 0.0002 and SV is 0.0004 for Samples1 while for Samples2, the MSE after the FD for NP is 
0.0002, λO2 is 0.0002 and SV is 0.0005. 
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Figure 13 shows that the proposed model-based FD able to detect the five faults occur in the PEMFC systems after the 
implementing of residual errors sensitivity calculation. It shows that this proposed intelligent FD able to detect and locate the 
location of faults accurately. While in Figure 14 shows that final FD results obtained from the proposed model used for Samples2 
data set. Again, it shows that this intelligent FD able to detect the five faults occurs in the system no matter where the faults are. 
The proposed intelligent FD method implement in this work have successfully detects all five faults in the PEMFC systems.  

 

 

Figure 13: The fault detection of faulty signal of Samples1 and respective threshold  
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6. Conclusions  
 
   In this paper, a new model-based FD developed for PEMFC dynamic systems have been developed. The RBF networks model is 
used to do fault diagnosis which includes fault identification and classification. Here, the RBF networks has been developed to 
simulate free faults and faulty data sets and later implement FD to detect five faults happen inside the PEMFC dynamic systems. 
This intelligent FD monitoring systems is a model-based diagnosis method with residual errors sensitivity generation. It permits 
the detection of actuator, component and sensors faults. This intelligent FD can be implemented as a condition monitoring in the 
PEMFC to avoid oxygen starvation which later can damage the membrane and this overall can effects the performance of PEMFC. 
The result presented in this work showed that faults can clearly be detected by the proposed RBF networks algorithm. The 
proposed method for intelligent FD applied to PEMFC systems using the RBF networks shows a successful finding in order to 
detect all five faults in the PEMFC systems efficiently. 
 
Nomenclature 
FD  Fault Detection    
PEMFC  Proton Exchange Membrane Fuel Cell 
RBF  Radial Basis Function  
K2  Bayesian-Score 
MCMC  Markov Chain Monte Carlo  
ENN  Elman Neural Network 
FCS  Fuel Cell Stack 
MAE  Mean Absolute Error  
RAS  Random Amplitude Signals 
 
 

Figure 14: The fault detection of faulty signal of Samples2 and respective threshold  
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