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Abstract 
 
   The aim of this paper is to study the momentum and the heat transfer characteristics in incompressible electrically conducting 
boundary layer flow over an exponentially stretching sheet under the effect of magnetic field with thermal radiation through 
porous medium. The governing boundary layer equations are converted into self-similar nonlinear ordinary differential 
equations, using similarity transformations in exponential form and then solved numerically using shooting method. The 
velocity profile, skin friction-co-efficient and rate of heat transfer are computed numerically and then graphically studied with 
respect to similarity variable (η) for different cases of  velocity ratio parameter (β) 
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1. Introduction 
 
   Flow of incompressible viscous fluid and heat transfer phenomena over stretching sheets have received great attention due to the 
abundance of practical application in the chemical and manufacturing process like Aerodynamics, Extrusion of plastic sheets, 
Continuous Casting of metals, glass fibers and paper production. The study of Magneto hydrodynamics flow and Heat transfer of 
an electrically conducting fluid has attracted the interest of many researchers due to extensive industrial application. The study of 
hydrodynamic flow of an electrically conducting fluid caused by the deformation of the wall of a vessel containing a fluid is of 
considerable interest in a modern metallurgical and metal-working process.  
   Crane (1970) was the first to consider the boundary layer flow caused by a stretching sheet which moves with a velocity varying 
linearly with the distance from a fixed point. The heat transfer aspect of this problem was investigated by Carragher and Crane 
(1982), under the conditions when the temperature difference between the surface and the ambient fluid is proportional to a power 
of the distance from a fixed point. Numerous studies such as Pavlov (1977), Gupta et al. (1977), Chen et al. (1988), Pop et 
al.(1996), Vajrvelu (2001), Cortell (2007), Zhang et al.(2011) and Bhatacharyya (2011) have been conducted later to extend the 
pioneering work of Crane (1970).  Last few decades in almost all investigations on the flow over a stretching sheet, the flow occurs 
because of linear variation of stretching velocity of the flat sheet. So the boundary layer flow induced by an exponentially 
stretching sheet is not studied much through it is very important and realistic flow frequently appeared in many engineering 
process. Magyari and Keller (1999) first considered the boundary layer flow due to an exponential stretching sheet and they also 
studied the heat transfer in the flow taking exponentially varied wall temperature. Elbashbeshy (2001) numerically examined the 
flow and heat transfer over an exponentially stretching surface considering wall mass suction. Khan and Sanjayanand (2005) 
studied the flow of viscoelastic fluid sheet with viscous dissipation effect. Partha et al. (2005) obtained a similarity solution for 
mixed convection flow past an exponentially stretching surface by taking into account the influence of viscous dissipation on the 
convective transport. Sanjayanand and Khan (2006) discussed the effects of heat and mass transfer on the boundary layer flow of 
viscoelastic fluid. Al-Odat et al. (2006) explained the effect magnetic field on thermal boundary layer on an exponentially 
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stretching continuous surface with an exponential temperature distribution. Recently, Sajid and Hayat (2008) showed the influence 
of thermal radiation on the boundary layer flow past an exponentially stretching sheet and they reported a series solution for 
velocity and temperature using HAM.  
   Hiemenz (1911) first studied the steady flow in the neighbourhood of a stagnation-point. Chiam. (1994)considered a problem 
which is a combination of the works of Hiemenz (1911) and Crane (1970), i.e. the stagnation-point flow towards a stretching sheet 
taking identical stretching rate of the sheet and strain rate of the stagnation-point flow and he found no boundary layer structure 
near the sheet. Mahapatra and Gupta(2001) reinvestigated  stagnation-point flow towards a stretching surface. They reported in 
their research work that a boundary layer is formed when stretching velocity is less than the free stream velocity. As the stretching 
velocity exceeds the free stream velocity than an inverted boundary layer is formed. Mahapatra et al. (2002) studied heat transfer 
in stagnation-point flow on stretching sheet with viscous dissipation effect. Viscous incompressible fluid striking on a permeable 
stretching surface with heat generation or absorption has been studied by Attia (2000).the same stagnation-point flow towards a 
stretching sheet with different stretching and straining rates and found two kinds of boundary layer near the sheet depending on the 
ratio of the stretching and straining rates. 
   Many researchers have analyzed magnetic field parameter on two-dimensional stagnation point flow of a viscous incompressible 
stagnation point flow of a viscous incompressible fluid. Attia (2007) investigated effect of increasing magnetic field on velocity 
boundary. Effects of Ohmic heating and viscous dissipation on steady flow with variable free stream has been investigated by 
Singh et al.(2009).  Many other phenomenon for effects of heat transfer flows have been discussed in detail by Bejan et al. (2006), 
and White (2006). Free convection heat transfer with radiation effect near the isothermal stretching sheet and over a flat sheet near 
the stagnation point have been investigated, respectively, by Ghaly et al. (2002) and Pop et al. (2004). They found that a boundary 
layer thickness increases with radiation. The radiative effect on the heat transfer from an arbitrarily stretching surface with non-
uniform surface temperature in a porous medium has been studied by Rashad(2007) . 
   Motivated by the above investigations and possible applications, it is of interest in the present work to study the problem of   the 
effect of thermal radiation and heat transfer over an unsteady two dimensional viscous, incompressible  flow of an electrically 
conducting fluid over an exponentially stretching surface embedded in a porous medium . The approach uses boundary layer 
theory along with the similarity procedure to find and compare feasible solution. The motion of the fluid is generated due to 
exponentially stretching of the sheet with the application of two equal & opposite forces which are applied along the x-axis so that 
the wall is stretched keeping the origin fixed. Fluid is considered in the influence of transverse magnetic field and thermal 
radiation. The linear stretching of the sheet is assumed because of its simplicity in the modeling of the flow and heat transfer over 
stretching surface which also permits the similarity solution and are useful in understanding the interaction of flow field with 
temperature field. 
 
2.  Formulation of the Problem 
 

                                                          
Fig. 1 Geometry of the problem 

 
   A steady two-dimensional flow of an incompressible viscous electrically conducting fluid   over a continuous exponentially 
stretching sheet with velocity ( )wU x  in an exponential free stream with velocity ( )U x , assuming  that the plate has a surface 
temperature 0T  and is placed in a  fluid of uniform ambient temperature  T∞  , has been considered as shown in Figure 1 .The sheet 
coincides with the plane 0y =  and the flow confined to 0y > . The motion of the fluid is generated due to exponentially stretching 
of the sheet with the application of two equal & opposite forces which are applied along the x-axis so that the wall is stretched 
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keeping the origin fixed. Here, in the present analysis there is no lateral velocity or pressure gradient far from the stretching 
surface. we have taken x-axis along the wall in the direction of motion of the flow, the y-axis being normal to it and u and v are 
tangential and normal velocity components respectively. A uniform magnetic field of strength 0B  is applied normally to the 
stretching surface which produces magnetic effect. It is also assumed that the fluid is weakly electrically conducting so that the 
induced magnetic field is negligible, which is justified for MHD flow at small magnetic Reynolds number. Under the usual 
boundary layer approximations, the flow and heat transfer with the radiation effects (Bansal, 1977; Schlichting et al.,1999.) are 
governed by the following equations: 
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   Here, eq. (3) implies that pressure is independent of y , means pressure can be taken from the potential of flow i.e. in the free 
stream because pressure is independent of thickness of the boundary layer  i.e. pressure is same at any point of the line 
perpendicular to the stretching sheet inside the boundary layer.                                                                                                                               
   The stretching velocity ( )wU x  and free stream velocity ( )U x  are respectively given by (Bhattacharyya and Moukhopadhyay. 2011) 
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For the present problem, where the stretching of the boundary surface is assumed to be such that the flow directional velocity is of 
exponential order of the flow directional, we employ the following boundary conditions  

                                  exp ,w
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            T T∞=                                at  y = ∞                                                           (8)                  

 
   Here, eq. (7) implies that stretching sheet velocity and temperature varies exponentially with a distance from a fixed point with 
no slip condition and eq. (8) implies that outside of the boundary layer the stretching sheet velocity attained the full stream velocity 
U and temperature attained the uniform ambient temperature  T∞  .   
where ρ  is the fluid density,  υ  is the kinematic viscosity, μ is the dynamic viscosity, T  is the temperature,  k  is the thermal 
conductivity, pc   is the specific heat and   rq  is the radiative heat flux. 0T  and T∞  are respectively the temperatures at and far 
away from the plate and  l is a constant. 

( ) exp xu U x b
l
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 Employing the Rosseland approximation for radiation [Chen. et al (2008)] expressed as, 
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where ܽ is mean absorption co-efficient and ߪ is the Stefen Boltzman constant. It is assumed that the temperature difference 
within the flow sufficiently small such that   ܶସ  can be expressed as a linear function of temperature which after expanding  using 
Taylor’s series about  ∞ܶ and neglecting the higher order term, reduces to  
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Hence the change in radiative flux with respect to y  has been obtained as, 
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and equation (3) reduces to 
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The equation of continuity is satisfied if a stream function ( , )x yψ  is chosen such that  
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By introducing the following dimensionless co-ordinate variable (Khan and Sanjayanand. 2005) viz; 
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whereη   is the similarity variable, ψ  is the stream function, θ  is the dimensionless temperature and f is the dimensionless 
stream function. The above momentum and energy equations  by using equations  (13) to (15) are made free from dimension & 
reduces to 
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  with the boundary condition; 

                                                                  0, 1, 1f f θ′= = =                               at  0η =                                                            (18)                  

                                                                            , 0f β θ′ = =                              at  η = ∞                                                           (19)                  
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where, dash represent differentiation with respect to η  and  b
a

β =  is the velocity parameter, 
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The skin friction co-efficient fc  and the Nusselt number xNu  are two important physical quantity and are defined as 
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By using equation (21) and (20), the skin friction co-efficient ௙ܿ and the Nusselt number ௨ܰೣ reduces to  
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To assess the accuracy of the present method, comparison with previously reported data available in the literature has been made. 
It is clear from Table 1 that the numerical values of (0)θ ′−  in the present paper for Pr 1=  when 0, 0, 0M N R= = = and 0E = are 
in good agreement with results obtained by Mahapatra et al. (2002). From Table 1 it is clear that the scheme used in this paper is 
stable and accurate. 
 
3. Numerical Simulation 
 
   In order to solve the set of non linear differential equations (16) and (17) subjected to the boundary conditions (18) and (19), the 
most efficient numerical shooting technique with Runge Kutta scheme is been used where it is most important to choose the 
appropriate finite values of  η →∞  .The solution process is repeated with another large value of  η∞ until two successive values 
of (0)f ′′ and  (0)θ ′  up to the desired significant value. The last value of η∞  is chosen as appropriate value of the limit η →∞  
for that particular set of parameters. The differential equations (16) and (17) were first converted into a set of five first-order 
simultaneous equations. To solve this system five initial conditions are required but there are only three initial conditions, (0)f  
and (0)f ′  on ( )f η′  and  (0)θ  on ( )θ η . Still there are two initial conditions (0)f ′′  and (0)θ ′  are required, which are not 
prescribed. However the values ( )f η′′  and ( )θ η′  are known at η → ∞  . Shooting technique has been employed to find the two 
unknown initial values utilizing these two ending boundary conditions. After finding the required boundary conditions, the 
problem has been solved numerically using Runge-Kutta scheme.   
 
4. Results and Discussion 
  
   To analyse the results numerical computations have been carried out by using the method described in the previous section for 
various value of velocity parameter β , magnetic parameter M , porosity parameter N , Prandtl number rP , Radiation parameter 
R  and for Eckert number E . 
   It is evident from Fig 2 (b), that when 1β > the flow has a boundary layer structure and the thickness of the boundary layer 
decreases with the increase in β .  Moreover the straining motion near the stagnation motion for 1β > , increase so the acceleration 
of the external stream increases which causes to decrease the thickness of the boundary layer with increase in β and as a  result the 
horizontal velocity increases with the increase of β .  
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On the other hand, when 1β <  the flow has an inverted boundary layer as shown in Fig 2(a). These results agree with those 
reported by Mahapatra and Gupta (2002). In this case, the stretching velocity of the sheet exceeds the velocity of the external 
stream. It is also observed that no boundary layer is formed when 1β = . 
   The magnetic parameter M represent the importance of magnetic field on the flow. The presence of transverse magnetic field 
sets in Lorentz force, which results in retarding force on the velocity field and there for as M increases, so does the retarding force 
and hence velocity decreases as shown in Fig.3 (a), when 1β < .When 1β > which just opposite of 1β < ,  expected velocity 
increases with increase of magnetic parameter as shown in Fig.3 (b). This explain the results presented in Table.4 is that the shear 
stress at the sheet decreases due to increase in magnetic parameter when 1β < , while it increases with the increase in magnetic 
parameter when 1β > . 
   Fig. 4(a) and Fig. 4(b) represent the influence of the porous medium on horizontal velocity. In these figure the graphical 
representation of horizontal velocity for different value of the porosity parameter for two set of value 1β < and 1β >  is obtained. 
It is found that for 1β < , the horizontal velocity ( )f η′  decreases with the increase of N  i.e. porosity parameter resistance to the 
flow  since it restricts the motion of the fluid along the surface, with increasing the value of N , the thickness of the velocity 
boundary layer increase, so the velocity decreases with the increases of the value of N .This is due to the fact that the effect of 
porous medium which opposes the flow also increases and leads to enhance deceleration of the flow, but horizontal velocity 
increases with the increase of N when 1β > .   
   Fig. 5(a) and Fig. 5(b) represent the effect of Prandtl number rP  on temperature profile for both cases 1β < and 

1β > respectively. Prandtl number defines the ratio of momentum diffusivity to the thermal diffusivity. It is noticed that as rP  
increases, the temperature decreases for both cases. This is because, physically, if rP increases, the thermal diffusivity decreases 
and these phenomena lead to the decreasing of energy ability that reduced the thermal boundary layer thickness. 
From Fig. 6(a) and Fig. 6(b) it is very clear that with increasing value of the radiation parameter R , the thermal boundary layer 
thickness decreases and the heat flux of the surface increases since the temperature profiles become steeper. The effect of radiation 
parameter for both cases 1β < and 1β > , at a particular point is to reduce the temperature significantly in the flow region. The 
increase in radiation parameter is equivalent to the release of heat energy from the flow region and so the fluid temperature 
decreases as the thermal boundary layer thickness become thinner. 
   From Fig.7 (a) and Fig.7 (b) we observe that with increasing value of Eckert number E  temperature increases for both cases 

1β < and 1β >  respectively. Eckert number, physically, is a measure of frictional heat in the system. Hence the thermal regime 
with larger E values is subjected to rather more frictional heating causing a source of rise in temperature. 
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Fig. 2. Velocity profile ( )f η′  for different values of  (a) 1β < and (b) 1β >   for fixed value of     
                           0, 0, 0, 0rN M P R= = = =  and 0E = .                                                                                                                    
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                    Fig. 3. Velocity profile ( )f η′  for different values of M by taking  (a) 0.1β = and  (b) 2β =  for fixed value of     
                              1, 1, 1rN P R= = =  and 0.1E = . 
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                    Fig.4. Velocity profile ( )f η′  for different values of N by taking (a) 0.1β = and  (b) 2β =  for fixed value of     
                           1, 1, 1rM P R= = =   and 0.1E =  
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                  Fig.5. Temperature profile ( )θ η  for different values of rP by taking (a) 0.1β = and  (b) 2β =  for fixed value of     
                          1, 1, 1M N R= = =  and 0.1E =  
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                 Fig.6. Temperature profile ( )θ η  for different values of R by taking (a) 0.1β = and  (b) 2β =  for fixed value of     
                          1, 1, 1rM N P= = =  and 0.1E =  
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                                                (a)                                                                                                        (b) 
                      Fig.7. Temperature profile ( )θ η  for different values of E by taking (a) 0.1β = and  (b) 2β =  for fixed value of     
                          1, 1, 1M N R= = =  and 1rP =  
 
   The numerical value of skin friction co-efficient and Nusselt number are computed using the  Mathematica software and  are 
displayed in the tabular form in Tables 2 to 9 for various value of  , , , ,rN M P Rβ  and E . Table 2. shows that with increase of β , 
numerical values of wall shear stress decreases provided that 1β < , but  increases  provided that 1β > respectively. This is 
because of the nature of the value of (0)f ′′ which is positive when 1β > and negative when 1β < .  
   Table 3 and Table 4 give the computed value of the dimensionless shear stress for various value of  M  for the cases 1β < and 

1β >  respectively. It may observe that for a fixed value of β   the wall shear stress decreases with increase in the value of M   for 
the case 1β <  , but increases for the case 1β > .  
   Table 5 gives the computed value of the dimensionless shear stress for various value of  N  for the cases 1β < and 1β >  
respectively. It may observe that for a fixed value of β  the wall shear stress decreases with increase in the value of N   provided 
that 1β <  , but increases provided that 1β > .  
   Table 6 display a decrease of thermal boundary layer thickness with increasing value of Prandtl number for the cases 1β < and 

1β > respectively. In heat transfer problems, the Prandtl number rP controls the relative thickening of momentum and the thermal 
boundary layers. Fluid with lower Prandtl number wills posses higher thermal conductivities so that heat can diffuse from the sheet 
faster than for higher rP fluids. Hence Prandtl number can be used to increase the rate of cooling.  
 Table 7 displays a decrease of Nusselt number with increasing value of Radiation parameter for the cases 1β < and 

1β > respectively because Radiation/absorption has tendency to reduce rate of heat transfer. Therefore, Nusselt number (rate of 
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heat transfer) decreases with increase in radiation parameter. Table 8 and Table 9 display an increase in Nusselt number with 
increasing value of Eckert number because Heat transfer increases with increase in viscous dissipation which is measured by 
Eckert number. So, the Nusselt number increases with increase in Eckert number for the cases 1β < and 1β > respectively 
 

Table. 1. Comparison of   (0)θ ′  for Pr 1=  when 0, 0, 0M N R= = = and 0E =  

                                             β                                              (0)θ ′  
          Mahapatrta et al (2002)             Present paper 

                                              0.1               - 0.603               - 0.603142 
                                              0.2               - 0.625               - 0.625147 
                                                 2               - 0.974               - 0.973912 
                                                 3               - 1.124                -1.134276  
 
 

Table. 2. Value of (0)f ′′−   for various value of , , , Pr, ,M N Rβ  and E . 
Parameter (fixed value)                   Parameter (Different Value)                           (0)f ′′−                

0, 0, Pr 0, 0, 0M N R E= = = = =   β   0.1    1.25366          
           0.2    1.19512  
        0.3    0.11145  
        2    5.29462  
        3    9.87654 
        4    14.41795 
             
 
 

Table.3. Value of (0)f ′′−   for various value of M for fixed 0.1, 1,Pr 1, 1, 0.1N R Eβ = = = = =  when 1β > . 
Parameter (fixed value)                   Parameter (Different Value)                          (0)f ′′−                                        

1, 1, 1, 0.1rN P R E= = = =   M  1      1.79345           
      2      3.34267         
      3      4.20286          
 
 

Table.4. Value of (0)f ′′−   for various value of M for fixed value of 2, 1,Pr 1, 1, 0.1N R Eβ = = = = =  when 1β < . 
Parameter (fixed value)                   Parameter (Different Value)                        (0)f ′′−                                        

1, 1, 1, 0.1rN P R E= = = =   M   0.5      4.39678   
      1.0           4.43828 
      1.5          4.69732  
 

Table. 5.Value of (0)f ′′−   for various value of N for fixed value of 1, Pr 1, 1, 0.1M R E= = = =  for both cases. 
Parameter (fixed value)                   Parameter (Different Value)                        (0)f ′′−  

1β <                        1β >   
                                                                                                                                       

1, 1, 1, 0.1rN P R E= = = =   N  0     1.76718  4.53688   
      1          2.54609  4.65972 
      2         4.58755  4.86378  
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Table. 6.Value of (0)θ ′−   for various value of Pr for fixed value of 1, 1, 1, 0.1M N R E= = = =  for both cases. 
Parameter (fixed value)                   Parameter (Different Value)                        (0)θ ′−  

  1β <   1β >  
                                                                                                                                       

1, 1, 1, 0.1rN P R E= = = =   Pr  1     0.75903   0.97818 
      2          0.84548  1.37410 
      3         1.71293  1.703891  
 

Table. 7.Value of (0)θ ′−   for various value of R for fixed value of 1, 1, Pr 1, 0.1M N E= = = =  for both cases. 
Parameter (fixed value)                   Parameter (Different Value)                        (0)θ ′−  

  1β <   1β >  
                                                                                                                                       

1, 1, 1, 0.1rN P R E= = = =   R  1     0.75903   0.97876 
      2          0.84361  1.24063 
      3         0.98323  1.34015  
 

Table. 8.Value of (0)θ ′−   for various value of E for fixed value of 2, 1, Pr 1, 1M N R= = = =  for the case 1β < . 
Parameter (fixed value)                   Parameter (Different Value)                        (0)θ ′−   
                                                                                 

1, 1, 1, 0.1rN P R E= = = =   E  0.1     0.75903   
      0.9          0.47281 
      0.15         0.39754  
 

Table. 9.Value of (0)θ ′−   for various value of E for fixed value of 2, 1, Pr 1, 1M N R= = = =  for the case 1β > . 
Parameter (fixed value)                   Parameter (Different Value)                        (0)θ ′−  
                                                                                                                                       

1, 1, 1, 0.1rN P R E= = = =   E  1      0.98651 
      2           0.83803 
      3          0.67685  
 
4. Conclusions  

   The effect of thermal radiation and heat transfer over an unsteady two dimensional viscous, incompressible fluid flow of an 
electrically conducting fluid on exponentially stretching surface embedded in a porous medium has been investigated. Fluid is 
considered in the influence of transverse magnetic field and thermal radiation. Numerical solution for governing equation has been 
obtained. Which allow the computation of the flow and heat transfer characteristic for various values of the magnetic parameter, 
permeability parameter, radiation parameter, Eckert number and Prandtl number.  

   The main result of the paper can be summarized as follows: 

• The boundary layer thickness decreases as β  increases. The increase in the value of β  implies that free stream velocity 
increases in comparison to stretching velocity, which results in the increase in pressure and straining motion near 
stagnation point.  

• When Hartman number increases the velocity profiles decreases when β < 1. In case when β > 1, which is just opposite 
to β < 1, the velocity profiles increase with the increase in the Hartmann number. The shear stress at the sheet decreases 
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due to increase in the Hartmann number when β  < 1, while it increases with the increase in the Hartmann number when 
β   > 1which explains the results presented in tab. 4. 

• The effect of porosity parameter N depends on β . When β < 1, velocity profile decreases as porosity parameter 
increases. The velocity profiles increase with the increase in the porosity parameter when β  > 1. 

• The temperature profile decreases with an increase in the Prandtl number. This is in agreement with the physical fact that 
at higher Prandtl number, fluid has a thinner thermal boundary layer . 

• With increase in radiation parameter the temperature profiles decrease but with increase in Eckert number the temperature 
profiles increases.  

 
Nomenclature 
 
         
     β          Velocity ratio parameter 

     ρ           Fluid density  

     υ            Kinematic viscosity  

    μ            Dynamic viscosity   
     T           Temperature 
     k           Thermal conductivity 
    pc           Specific heat and   
     rq          Radiative heat flux.  

0T  and T∞  Temperatures at and far away from the plate  
     l            Constant. 
                Mean absorption co-efficient  
              Stefen Boltzman constant 
     a            Stretching sheet parameter 
     b            free stream velocity parameter 

    
M           Magnetic parameter.  

    
N           Permeability parameter 

    R            Radiation parameter  

    
rP            Prandtl number 

    E            Eckert number. 
    ψ            Stream function 
    η             Similarity variable 
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