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Abstract 
 
   The study considers the propagation of surface waves on the stress-free surface of a porous solid saturated with non-viscous 
fluid. The surface pores have the option of being either sealed or fully-opened. With the presence of dilatant cracks, the interior 
of the porous solid is characterised through three different crack-regimes, based on the connections between embedded cracks. 
Secular equations are derived in closed form for the propagation of Rayleigh waves in the porous media with sealed or fully-
opened surface pores. The velocity of non-dispersive surface waves varies significantly with the density of cracks present. 
However, aspect (thickness to radius) ratio of (circular) cracks may not have much effect on the velocity of Rayleigh waves. The 
opening of surface pores may be an important reason for a faster propagation of Rayleigh waves in any realistic elastic medium. 
Finally, the dilatancy due to the growth of cracks up to their interconnection or drainage may be able to affect the velocity of 
Rayleigh waves quite significantly.  
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1.  Introduction 
 
   The concept of porosity and dilatancy in elastic media has gained much attention in recent years. The applications of these 
studies cover a variety of fields including geophysics, soil mechanics, earthquake preparation and civil engineering. In particular, 
in the exploration of oil and gas reservoirs, it is important to predict / estimate the rock porosity, the presence of fluid in pores and 
the channels of fluid-flow due to abnormal pore-pressures. These micro-structural properties and in-situ rock conditions can be 
obtained mainly from seismic properties such as travel times (or phase / wave velocities), amplitude information (reflection / 
refraction coefficients) and wave polarization (motion of constituent particles). These measurable quantities are affected by the 
presence and saturation of pores and cracks with fluids. However, there must be some definite relationship between the seismic 
properties and rock characteristics such as porosity, permeability and tortuosity of porous solid matrix as well as shape, stiffness 
and density of cracks present. The use of modeling and inversion procedures for the interpretation of the seismic response of 
reservoir rocks requires an understanding of such relations.  
   The study of mechanical behaviour of porous media is of special importance in the seismic exploration, for the closer description 
of physical phenomena around the oil reservoirs. Sedimentary rocks contain water-filled pore spaces after deposition and can be 
modeled as water saturated porous solid. Moreover, every hydrocarbon field is also a reservoir of cracks filled with water, oil or 
gas. The full-dynamic theory for wave propagation in fluid-saturated porous media was developed by Biot (1956). Biot used 
Lagrange’s equations to derive a set of coupled differential equations that govern the motions of solid and fluid phases. Biot 
(1962a) extended the acoustic propagation theory in the wider context of the mechanics of porous media. Biot (1962b) developed 
the new features of the extended theory, in more detail. This theory is obtained through a new and simplified derivation of the 
fundamental equations of poroelastic propagation. This, also, provides an exact procedure for the evaluation of the dynamic 
properties of the fluid motion relative to the solid. Since then, most of the studies on propagation in porous media are based on 
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Biot’s theories. Using Biot’s theory, a modified Christoffel equation for the propagation of plane harmonic waves in an anisotropic 
fluid saturated porous media is derived by Sharma (Sharma, 2004a,b) have derived expression for the dispersion of surface waves 
in a general anisotropic poroelastic medium. Vashisth and Khurana (2005) studied the problem of elastic wave propagation along a 
cylindrical borehole embedded in an anisotropic fluid-saturated porous solid of infinite extent and derived the equations for the 
frequency of the surface waves corresponding to the empty and liquid-filled bore holes. Plane-strain deformation of a multilayered 
poroelastic half space by surface load is modeled by Singh and Rani (2006). In another study, Singh et al. (2007) presented an 
analytical solution of the fully coupled diffusion-deformation system of equations governing the quasi-static plane-strain 
deformation of a parabolic poroelastic half-space with anisotropic permeability and compressible constituents.  
   The effects of cracks on seismic waves are important since seismic experiments are one of the few geophysical techniques 
capable of examining the properties of in-situ rocks in the crust. Modifications of these cracks are the most direct effects of 
accumulation of stress before an earthquake. These may be the changes in orientation, density and thickness of the cracks. These 
modifications in the configuration of cracks in a focal region are believed to be the driving mechanism for the precursors of an 
earthquake. The theory of effects of cracks on the elastic solids started with the classic paper by Eshelby (1957). The wave 
velocities for the elastic solids containing cracks have been approximated by Garvin and Knopoff (1973, 1975a,b). O’Connell and 
Budiansky (1974) and Budiansky and O’Connell (1976) calculated the effects of introduction of cracks on the elastic properties of 
an isotropic solid using self-consistent procedure. Hudson (1980, 1981) developed these ideas further for dilute concentration of 
cracks, treating cracked solid as anisotropic one. Crampin (1978, 1984, 1985, 1987) studied various aspects of wave propagation in 
cracked solids with presence of aligned crack leading to anisotropy. Crampin (1987) explained the effects of stress accumulation, 
before an earthquake, on the modifications of the cracks present. It may be useful to estimate the possible changes in crack 
scenario, prior to an earthquake, as a precursor.  
   The effect of co-existence of cracks and pores on the overall properties of a cracked porous solid sounds a comprehensive and 
very significant aspect of wave motion. Sharma (1996) considered this co-existence and studied the surface waves in fluid layer 
overlying a cracked porous solid. Hudson et al. (1996) considered the existence of connections between otherwise isolated cracks 
and of small-scale porosity within the ’solid’ material. They provided effective medium models for the calculation of elastic wave 
propagation with wavelengths greater than the dimensions of the cracks. Sharma (1999) studied the effect of crack connections on 
the reflection and refraction at an interface with elastic solid. Sharma and Saini (2001) studied effect of presence and modifications 
of cracks on the velocity anomalies in a cracked poroelastic medium. Recent observations (Crampin, 2006) of stress-aligned shear-
wave splitting (seismic-birefringence) show that the splitting is controlled by the stress-aligned fluid-saturated inter-granular 
microcracks and preferentially-orientated pores. Such pores are pervasive in most in-situ igneous, metamorphic, and sedimentary 
rocks in the earth’s crust. These fluid-saturated microcracks are the most compliant elements of the rock-mass and control rock 
deformation. A fundamental revision of conventional fluid-rock deformation is identified as New Geophysics (Crampin and Gao, 
2008) with implications for almost all solid-earth geosciences, including hydrocarbon exploration and production, and earthquake 
forecasting. However, there remains a scope to modify Biot’s theory with the changes in elastic and dynamical constants for the 
presence and modification of cracks, beyond the definition of microcracks considered in Hudson’s formulation. Moreover, the 
wave-induced fluid-flow from the surface pores to the adjoining medium may be analysed for the changes in crack parameters. 
Such an induced flow plays an important role in the diagnosis of an earthquake preparation region.  
   The work presented studies the problem of Rayleigh waves propagation in a fluid-saturated porous solid pervaded with 
microcracks. The effects of presence, modification and interconnection of cracks as well as closing of surface pores, are calculated 
on the existence and phase velocity of Rayleigh waves.  

 
2.  Fundamental Equations 

 
   Following Biot (1956, 1962a,b), a set of differential equations governs the particle motion in an isotropic porous solid frame 
saturated by a non-viscous fluid. These equations, in the absence of body forces, are given by  

 , = ,ij j i f iu wτ ρ ρ+&& &&
 

 ,( ) = ,f i f i ip u mwρ− +&& &&
  

(1)
 

 where ijτ  and fp  are the stress components in porous aggregate and fluid pressure, respectively. The iu  are the components of 

the displacements for the solid and iw  are the components of average displacement of fluid relative to the solid. Indices can take 
the values 1, 2 and 3. Summation convention is valid for repeated indices. The comma (, )  before an index represents partial space 
differentiation and dot over a variable represents partial time derivative. The ρ  and fρ  are the densities of porous aggregate and 
pore-fluid, respectively. The inertial parameter m  controls dynamical coupling between fluid and solid phases. 
   The stresses in the isotropic solid matrix of porous aggregate, following Biot (1962a), are defined as  

 , , ,= ( ) ( ),ij k k ij i j j iu u uσ λ δ μ+ +   (2) 
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 and these are related to ijτ  by  

 = ( ) ,ij ij f ijpτ σ α δ+ −   (3) 

 through the parameter α  to represent the elastic coupling between the two constituents. ijδ  is Kronecker delta. Finally, using the 
above relations, the stresses in the porous aggregate and pore-fluid, are expressed as  

 2
, , , ,= [( ) ] ( )ij k k k k ij i j j iM u Mw u uτ λ α α δ μ+ + + +  

 , ,= ( ),f k k k kp M u wα− +   (4) 

 where , , Mλ μ  are the elastic constants. The coefficients , λ α  and M  can be expressed in terms of measurable quantities as 
follows. 
 

2 1 1= ,   = ,    =1 ,   = ( ),
3

s
s

s s f s

K KK M f
K K K K

λ μ α γ
γ α

− − −
+

  (5) 

 where f  denotes porosity and , , s fK K K  are the bulk moduli of solid grains, pore-fluid and porous aggregate respectively. 
Three waves (two dilatational and one shear) propagate in a saturated porous medium. Following Sharma (1996), the velocities of 
dilatational waves (called , f sP P ) are written as  

             

22 ( 1) 4= ,   = ;  ( =1,2),
2

j

j j
j

B B AC j
M

λ μα ρ
ρ
+ + − −

  
(6)

  
 where 2 2= ( 2 ) ,  = ( 2 ) 2 ,  =f fA M B M m M M C mλ μ ρ λ μ α ρ α ρ ρ+ + + + − − . The = (1 ) s ff fρ ρ ρ− +  defines 

the density of porous aggregate in terms of densities of solid grains ( sρ ) and pore-fluid ( fρ ).  The velocity of lone S wave is 
given by 
   β2=μ/ρ3,    ρ3=C/m.       (7) 
  
3. Cracked Poroelastic Solid 

 
   A porous aggregate of bulk modulus K  and rigidity modulus μ  is saturated with a fluid of bulk modulus fK . It is embedded 

with fluid-filled circular cracks ( = >> )r r d , each of radius r  and a very small aspect ratio /d r . In case these cracks are 

isolated, the modified elastic constants ( , )K μ  of the cracked solid are given by Budiansky and O’Connell (1976),  

 
216 (1 ) 32 3= 1 ,   = 1 ( )(1 ) ,

9 1 2 45 2
K D D
K

ν ε μ ν ε
ν μ ν

−
− − + −

− −
  (8) 

 where, in presence of cracks, the Poisson’s ratio (ν ) of uncracked solid changes to ν . The saturation parameter D  and crack 
density parameter ε  are expressed as follows. 

 

 
2

1
2

4 1 45 2= [1 ] ,   = ,
3 1 2 16 1 (1 3 )(2 ) 2(1 2 )

KD
K D

ν ν ν νε
π ν ν ν ν ν

−Ω − − −
+

− − + − − −
  (9) 

 where, for circular cracks, = ( / ) / ( / )fK K d rΩ  and vanishing of Ω  represents the dry cracks. Following Sharma (1996), the 

Poisson’s ratio ( 0 < < 0.5ν ) of the cracked solid is calculated as a real root of the algebraic equation, given by  
 5 4 3 2

1 2 3 4 5 6 = 0.a a a a a aν ν ν ν ν+ + + + +   (10) 

 The coefficients ja , the functions of , ν ε  and Ω , are as follows. 

' ' '
1

9 45 3= (1 2 ) [2 (1 3 )] (1 3 )[ (1 3 ) ],    = ,
8 16 4

a ν ε ε ν ν ε ν ε ε ε
π
Ω

− + + + + − +  
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' '
2

45 9 2025 45 405 81= (1 2 ) [4 (1 2 ) (1 3 )( 4 )] (1 3 )[ ( 4) (1 3 )],
4 4 256 16 128 16

a ν ε ε ν ν ε ν ε ν ε ν− − − + + − + + + + − − +

' '
3

45 45 2025 45 405= (1 2 ) [ ( 2) (1 3 )( 4 )] ( 2) (1 3 )[ (3 4 ) (9 2 )
4 8 128 16 256

45 (1 3 )],
8

a ν ε ν ν ε ν ν ε ν ν

ε ν

−
− + + + − − + + + − + + +

+ +

' 2 '
4

45 2025 45 1215= (1 2 ) [(1 2 )( 8 ) 8 (1 3 )] ( 8 4) (1 3 )[ (4 3 ) (4 3 )
4 256 16 256

45 (1 3 )],
16

a ν ε ν ε ε ν ν ν ν ε ν ν

ε ν

− − − + + + + + + + + − − − +

+ +

' '
5

45 45 2025 45 405 27= (1 2 ) [ (2 ) (1 3 )( 2 )] ( 2) (1 3 )[ (1 ) (1 3 )( ]),
4 8 64 4 64 4

a ν ε ν ν ε ν ν ν ε ν ν ε− − + + + + − + + + + + + −

' 2 '
6

45 9 2025 45 9 9= (1 2 ) [ 4 (1 2 ) (1 3 )( 4 )] (1 3 )[ ( ) (1 3 )].
2 4 64 4 16 4

a ν ε ν ε ν ν ε ν ν ν ε ε ν− + − + + − − + + + − + + +  

 
   For given values of , , ε ν Ω , the equation (10) is solved for a value of (0, 0.5)ν ∈ . Then, the elastic constants for porous 
solid modified due to the presence of fluid-filled cracks are calculated for the newly calculated Poisson’s ratio ν . The relations 
(5) enable to calculate the corresponding values of , α γ  and M . The presence of cracks in a solid are classified in three 
categories on the basis of the interconnection between cracks. The following section explains the modifications in the elastic and 
dynamical properties of the cracked material in these categories.  

 
3.1 Crack Interconnection Regimes 
   Fluid-filled pores are considered to be inherited since the formation of sedimentary rocks. These pores are small and 
interconnected. However, the cracks appear later with the accumulation of tectonic stresses. Initially, these cracks may be isolated 
and dry as well. With lapse of time, the fluid-filled connected pores may squeeze out their fluid to fill these cracks. With the 
further increase of stress, the newly formed cracks may help to connect the isolated cracks. The ultimate dilatancy may force the 
connected cracks to be drained. Following Budiansky and O’Connell (1976), different interconnection regimes of cracks are 
considered and corresponding modifications in elastic and dynamical parameters are explained as follows. 

 
a) Saturated Isolated Cracks 
   The term porosity in Biot’s theory means the effective porosity that considers only the connected void space that could be 
substituted with a liquid. On the contrary any smaller but sealed void space is considered to be the part of the elastic structure. The 
cracks are introduced and then modified with the accumulation of stress in an elastic material. The stress induced modifications in 
the shape and size of cracks may end up with the squeezing the boundary pores of a crack. This may prevent the communication of 
fluid pressure between modified cracks and the host porous solid. Such isolated cracks reduces the interconnected void space in the 
porous material. In this case the effective porosity (i.e., inter-connected fluid communicating space), reduces with the presence of 
isolated crack space and is given by  

 
4= ,   = ,
3c c
df f f f
r
πε−   (11) 

 where the cf  measures the volume occupied by circular cracks of density ε  and aspect ratio (thickness to radius) /d r . The 
constants and parameters relevant to the elastic characteristics of the medium are modified as follows.  

 
216 (1 ) 32 3= [1 ] ,   = [1 ( )(1 ) ] ,

9 1 2 45 2
DK K Dν ε μ ν ε μ
ν ν

−
− − + −

− −
 

 
1 1= ,    = 1 ,   = ( ).s

s s f s

K KM f
K K K K

α γ
γ α

− −
+

  (12) 

 The dissipation parameter D  is calculated from the relation  

 
2

2 45 (1 )(1 2 )(1 ) = 2 .
16 1 3 (1 3 )(2 )

D ν ν ν νε ν ε
ν ν ν

− − −
− +

+ + −
  (13) 
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b) Saturated Isobaric Cracks 
   The fluid-pressure in all the cracks is assumed same throughout the porous medium. This may be possible with the presence of 
inter-crack communication. In other words, the crack dilatancy intensifies to the extent that all the cracks get connected to each 
other. The effective Poisson’s ratio, for given values of ν  and ε , is calculated from the relation  

 2

45 (2 )( )= .
16 (1 )(10 3 )

ν ν νε
ν ν ν νν

− −
− − −

  (14) 

 The following relations are used to modify the elastic coefficients.  

 
32 (1 )(5 )= ,   = [1 ] .
45 (2 )

K K ν νμ ε μ
ν

− −
−

−
  (15) 

 c) Drained Cracks 
   This may be the ultimate state of the dilatancy of cracks. The cracks are extended up to the outer surface and discharge of 
saturating fluid is possible from the sample. The elastic material behaves as if no fluid is there, which is equivalent to the one 
embedded with dry cracks. The modified Poisson’s ratio is given by (14) but the modified elastic constants are calculated from 
relations (12) with = 1D .  

 
4. Free Surface of Porous Solid 

 
   Surface of the porous solid is considered a plane identified with its normal n̂ . A free surface is considered to be free of stress. 
Hence, at every point on the free surface of porous material the resultant energy must vanish (Deresiewicz and Skalak, 2008). This 
can be achieved through  

 
= ,

[ ] = 0,nj j nn n
j n t

u s wτ +∑ & &   (16) 

 at every point on the surface of material body. The indices n  and t  identify, respectively, the components of tensors along n̂  and 
in-plane parallel to free surface. Then the boundary conditions, appropriate for a free surface, are given by  

 )  = 0;  )  = 0;  )  = ,nn nt nn ni ii iii s Zwτ τ &   (17) 

 where, Z  (a constant) may be termed as a surface flow impedance for the pore-fluid (Denneman, 2002). The value = 0Z  
corresponds to fully open pores (i.e., = 0nns ) and Z →∞  corresponds to sealed pores (i.e., = 0nw ).  

Another parameter ε  may be used to represent the opening of surface pores of the material. Then, Z  will be assumed a 
non-zero, finite constant value for surface flow impedance. The extreme values of ε , i.e., 0 and 1, denote sealed pores and open 
pores, respectively. The intermediate values of ε  may represent some restricted or partial opening of pores. The last condition is 
then written as  

 = (1 ) .nn ns Z wε ε− &   (18) 
 The use of ε , as above, has a special significance. This implies that even a small or restricted opening to the interconnected pores 
may cause a large drop in the normal stress of pore-fluid. In case of partial opening of pores (i.e., 0 < <1ε ), the condition iii) in 
(17) is replaced with the condition (18). Then we have  

 )  = 0;  )  = 0;  )  = (1 ) ,nn nt nn ni ii iii s Z wτ τ ε ε− &   (19) 
 as the appropriate generalised boundary conditions for the free surface of a saturated porous solid.  

 
5. Motion in a Plane 
 
   In Cartesian coordinate system ( , , )x y z , the plane = 0z  serves as the surface of the porous solid half space occupying the 

region > 0z . The medium being isotropic provides a facility to study the wave motion confined to a plane without losing any 
information. Hence, the wave motion is studied in x z−  plane and all the quantities are independent of y -coordinate. We have 

= ( ,0, )x zu u u  and = ( ,0, )x zw w w  and these displacement components are expressed as follows.  

 3 31 2 1 2= ;   = ;x zu u
x x z z z x

φ φφ φ φ φ∂ ∂∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂
 

 3 31 2 1 2
1 2 3 1 2 3= ;   = ;x zw w

x x z z z x
φ φφ φ φ φμ μ μ μ μ μ∂ ∂∂ ∂ ∂ ∂

+ + + −
∂ ∂ ∂ ∂ ∂ ∂

  (20) 
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 where = , ( = 1,2)f j
j

f

j
m

ρ α ρ ρ
μ

ρ α
− +

−
 and 3 = f

m
ρ

μ
−

. The displacement potentials , ( = 1, 2,3)j jφ  represent the 

propagation of fP , sP  and SV  waves in porous medium, with velocities 1 2, α α  and β  respectively.  

   The boundary conditions appropriate for particle motion in x z−  plane are considered at the plane surface = 0z . This surface 
is considered to be free of stress, which implies that normal stress (i.e., zzτ ) and tangential stress (i.e., zxτ ) should vanish. One 
more condition is to be satisfied at this surface, which is derived from the exposure of pore-fluid in the surface pores. The opening 
of surface pores are ensured through the vanishing of fluid pressure (i.e., fp ) at the plane surface = 0z . The sealed surface 
pores, on the other hand, disallow the seepage of pore-fluid out of the solid matrix. 

 
6. Rayleigh Waves 

 
   For the propagation of harmonic plane waves along the x-direction decaying exponentially in z-direction, the displacement 
potentials are chosen as follows.  

 
( )

= ,  ( =1,2,3),
ik x ct kd zj

j jA e jφ
− −

  (21) 

 where k  is horizontal wave number, c  is apparent phase velocity and 2 2= 1 / , ( = 1,2)j jd c jα− ,  2 2
3 = 1 /d c β− . 

Using these potentials, the displacements of solid and fluid particles are calculated from relations (20). Then relations (4) are 
employed to calculate the stresses in the porous medium. Thus the calculated displacements and stresses are subjected to boundary 
conditions as follows. 

 
a) Fully-opened surface pores 
   The appropriate boundary conditions to be satisfied at the stress-free surface = 0z , in this case, are given by  

 )  = 0,  )  = 0,  )  = 0.zz zx fi ii iii pτ τ   (22) 
 The condition for the existence of Rayleigh waves in saturated porous medium is specified through a secular equation, given by  

 
2 2 2 2 2 2

1 2
2 2 2 2 2 2

1 2 3 3

4 1 ( 1 1 ) = (2 )[(2 ) (2 )],c c c c c cρ ρη η
β α α β ρ β ρ β

− − − − − − − −   (23) 

 where 21 2

2 1

= ( )α μ αη
α μ α
+
+

. 

With the substitution of = 0η  and 3 1= =ρ ρ ρ , the equation (23) reduces to the secular equation for propagation of classical 
Rayleigh waves in perfectly elastic solid. 

 
b) Sealed surface pores 
   In this case, the boundary conditions includes the restriction on the drainage of pore-fluid at the surface = 0z . hence the 
appropriate boundary conditions to be satisfied are  

 )  = 0,  )  = 0,  )  = 0.zz zx zi ii iii wτ τ &   (24) 
 
With these boundary conditions the secular equation obtained for existence of Rayleigh waves in porous solid half space is given 
by  

 
2 2 2 2

1 22 2 2 2
1 1 2

4 1 (1 ) 1 ( 1 1 ) =c c c cη η
α β α α

− − − + − − −  

 

2 2

2' ' 22 2 2 2
21 2 2 1 2 1

1 22 2 2 2 2 22
3 3 3 1 2

22
22

1 1
(2 )[(2 ) (2 ) ] 2 ( ) ,

11

c c
c c c c

cc

αρ ρ η λ λ αη
β ρ β ρ β ρ α α β

αα

− −
− − − − + −

−−

  (25) 
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 where 31
1 2

2 2

= , = μμη η
μ μ

 and = ( ),  ( = 1, 2)j jM jλ λ α α μ+ + . 

With the substitution of 1 2= = 0η η  and '
1 3= =ρ ρ ρ , the equation (25) reduces to the secular equation for propagation of 

classical Rayleigh waves in perfectly elastic solid. 
 
6. Numerical Example 

 
   The main objective of this study is to observe the effect of the presence, modifications and saturation of cracks on the velocity of 
Rayleigh waves. But, the relations for elastic characteristics in the previous sections are not very simple to be explored 
analytically. Moreover, the secular equations derived for propagation of Rayleigh waves can not be solved through algebraic 
methods. Hence, we consider a numerical example to understand the role of cracks and pores on the propagation of Rayleigh 
waves. Following the experimental results of Fatt (1959) for kerosene-saturated sandstone, we choose the following values for the 
relevant parameters: = 4.6 ,   = 2.7 ,   = 6 ,   = 2.14 ,s fK GPa GPa K GPa K GPaμ  

3 3= 2100 / ,   =1000 / ,   = 0.26,  =1.1 /s f fkg m kg m f m fρ ρ ρ . 

The porous sandstone is assumed to be embedded with circular cracks identified with the fixed values of aspect ratio ( /d r ) and 
density (ε ). 
   Using the above parameters, the velocities ( 1 2, , α α β ) of three body waves and phase velocity of Rayleigh waves (i.e., c ) are 
computed for fully open as well as sealed surface pores of the porous solid. The variations of velocities with crack density (ε ) are 
shown in Figure 1 and the corresponding variations aspect ratio ( /d r ) are shown in Figure 2. Other two figures display the effect 
of modifications of cracks through three interconnected crack regimes. Here follows the detailed discussion of the plots in these 
figures. 

  
           Figure 1: Variations of velocities of body waves and Rayleigh wave  

    with crack density;  ( / = 0.001d r ). 
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   Figure 1: Plots in this figure exhibit the variations of velocities of body ( , , f sP P S ) as well surface (Rayleigh) waves with the 

crack density. The crack density is varied with (0, 0.38)ε ∈ . The aspect ratio of circular shaped cracks is fixed with thickness-
to-radius ratio as / = 0.001d r . The surface pores are either sealed or fully opened. It is noted that irrespective of pore-opening 
status, the velocities of , f sP P  and Rayleigh waves decrease with the increase of crack density. However, this effect is negligible 

on the velocity ( β ) of S waves. It is further noted that the velocities ( 1 2, , α α β ) of body waves are not affected with the opening 
or closing of the surface pores. But, the velocity ( c ) of Rayleigh waves is significantly larger when the surface pores are open. 
While comparing the Rayleigh velocity curves in two parts of this figure, it may be noted that decrease of c  with ε  is more 
steady when surface pores are open. 
   Figure 2: The variations of velocities ( 1 2, , α α β ) of body waves and velocity ( c ) of Rayleigh waves with the thickness of 

circular cracks are shown in this figure. The value of crack density is fixed as = 0.2ε  and aspect ratio is varied as 
/ (0, 0.01)d r ∈ . Surface pores keep the option of either sealed or fully opened. It is noted that whether the surface pores are 

opened or sealed, the extent of crack thickness have negligible effect on the velocities of body ( , , )f sP P S  waves or the surface 
(Rayleigh) waves. Comparison of the solid-line curves in two parts of this figure shows that faster propagation of Rayleigh waves 
due to the opening of surface pores remains unaffected with any change in the aspect ratio of circular cracks. 

 

 
Figure 2: Same as the Figure 1 but variations with aspect ratio; ( = 0.2ε ). 

   
 

   Figure 3: In general, the phase velocity of classical Rayleigh waves is analysed through its ratio ( /c β ) with the velocity of S 

(or shear) wave. But in porous medium, the sP  wave is, generally, found to be the slowest wave. This implies that a valid 

Rayleigh waves in porous medium should propagate with velocity lower that the velocity ( 2α ) of the slowest body wave. Keeping 
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this in mind, the non-dimensional phase velocity (i.e. ratio 2/c α ) is plotted in figure 3. Its variations with (0, 0.38)ε ∈  are 
plotted for three interconnection crack regimes (i.e, Isolated: saturated isolated cracks; Isobaric: saturated isobaric cracks; Drained: 
drained cracks). The aspect ratio of circular shaped cracks is fixed as / = 0.001d r . The surface pores are either sealed or are 
fully-opened. From the plots in this figure, it is noted that a change in crack density may affect the propagation of Rayleigh waves 
most when cracks are interconnected but drained. This implies that the presence of fluid may mitigate the effect of cracks on the 
(non-dimensional) velocity of surface waves. In case of sealed surface pores, the effect of crack density on 2/c α  is least when the 
embedded cracks are saturated but isolated. On the other hand, in case of fully-opened surface pores, the effect of crack density on 

2/c α  is least when the embedded cracks are interconnected and saturated, i.e. isobaric.  

 Figure 3: Variations of Rayleigh wave velocity with crack density;  
                        ( / = 0.001d r ); crack regimes: saturated  Isolated cracks,  
                             saturated  Isobaric cracks,  Drained cracks. 
   

   Amongst three crack regimes considered, the presence of saturated isobaric cracks indicates the smallest value of ratio 2/c α , 
whether the surface pores are opened or not. However, in general, the larger values of this ratio may be expected for isolated 
cracks when surface pores are sealed and for drained cracks when surface pores are open. Overall, in any of the three crack 
regimes, this velocity ratio ( 2/c α ) is larger when the surface pores are open.  

   Figure 4: Modifications of cracks leading to different crack regimes may be caused mainly with the changes in aspect ratio /d r  
(thickness-to-radius ratio) of embedded cracks. Hence, in the figure 4, the variations of non-dimensional phase velocity (i.e. ratio 

2/c α ) are displayed with / (0, 0.01]d r ∈ . Note that, whatever is the aspect ratio and whichever is the crack regime, the 

velocity ratio ( 2/c α ) is larger when the surface pores are open. Changes in aspect ratio may not affect the values of the velocity 
ratio to a noticeable extent, particularly when cracks are saturated isobaric. However, velocity of surface waves may affect a little 
with a change of /d r , when the cracks are isolated or drained. 
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 Figure 4:  Same as the Figure 3 but variations with aspect ratio; ( = 0.2ε ) 

   
   The work presented considers the propagation of seismically significant Rayleigh waves in a realistic model of the crust. This 
improves upon a much earlier work of Tajuddin (1984) with the presence of dilatant cracks and using the more realistic boundary 
conditions. The numerical example explains the importance of crack characteristics (i.e. density, thickness-to-radius ratio and 
connections among cracks) on the velocity of Rayleigh waves as well as body waves in the cracked poroelastic medium.  
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