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Abstract 
 
   The combined effect of variable thermal conductivity and radiative heat transfer on steady flow of a conducting optically thin 
viscous fluid through a channel with sliding wall and non-uniform wall temperatures under the influence of an externally applied 
homogeneous magnetic field are analyzed in the present study. The similarity transformation reduces the time dependent 
governing equations for momentum and thermal energy into a set of coupled ordinary differential equations which are solved 
using perturbation method together with Hermite- Padé approximation. The velocity and temperature profiles are presented 
graphically to interpret the effect of various physical parameters of the problem. The critical relationships among the parameters 
are also performed qualitatively.  
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1. Introduction 
 
   The flow and heat transfer between parallel plates channel has been studied by a number of authors (Arpaci et al, 2000), 
(Makinde, 2008), (Sahin, 1999) and occur in many technological applications, such as in biomedical engineering, material 
processing, as well as the food and petro-chemical industries. Thermal radiation always exits and can strongly interact with 
convection in many situations of engineering interest.  
   Convection in a channel in the presence of thermal radiation draw the attention because of its importance in many practical 
applications like a furnace, combustion chamber, cooling tower, rocket engine, and solar collector (Chang et al, 1983). However, 
radiative heat transfer has a key impact in high temperature regime. Many technological processes occur at high temperature and 
good working knowledge of radiative heat transfer plays an instrumental role in designing the pertinent equipment. (Makinde and 
Mhone, 2005) considered heat transfer to MHD oscillatory flow in a channel filled with porous medium. In (Cogley et al, 1968), 
the differential approximation for radiative heat transfer in a nonlinear equation for gray gas near equilibrium was proposed. 
(Chawla and Chan, 1980) studied the effect of radiation heat transfer on thermally developing Poiseuille flow with scattering. The 
interaction of thermal radiation with conduction and convection in thermally developing, absorbing–emitting, non-gray gas flow in 
a circular tube was investigated by (Tabanfar and Modest, 1987). (Choudhury and Das, 2012) have extended the problem 
(Makinde and Mhone, 2005) to the case of viscoelastic fluid characterized by second-order fluid. (Makinde, 2008) studied the 
steady state solutions for viscous reactive flows through channels with a sliding wall. The steady-state solutions of a strongly 
exothermic reaction of a viscous combustible material in a channel filled with a saturated porous medium under Arrhenius kinetics 
using brinkman model analysed by (Makinde, 2006). The thermal conductivity of the fluid had been assumed to be constant in all 
the above studies. However, it is known that this physical property may be change significantly with temperature. For a liquid, it 
has been found that the thermal conductivity k varies with temperature in an approximately linear manner in the range from 0 to 
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4000F (Kay, 1966).   
   Meanwhile, the thermal boundary layer equation for variable conductivity fluid in the presence of thermal radiation composes a 
nonlinear problem.  The theory of nonlinear differential equations is quite elaborate and their solution remains an extremely 
important problem of practical relevance in science and engineering. In the last few decades quite a few numerical methods have 
developed, e. g. finite difference, spectral method, shooting method, etc to tackle this type of problem. Moreover, the models on 
classical semi-analytical methods have experienced a revival, in connection with the scheme of new hybrid numerical-analytical 
techniques for nonlinear differential equations, such as Hermite–Padé Approximation Method, which demonstrated itself as a 
powerful benchmarking tool and a prospective substitute to traditional numerical techniques in various applications in science and 
engineering. (Makinde, 2009) investigated the variable viscosity and thermal radiation effects on entropy generation rate, the 
problem of inherent irreversibility in the flow of a temperature dependent variable viscosity optically thin fluid through a channel 
with isothermal walls studied using Hermite–Padé semi-analytical approach. (Yasir et al, 2011) analyzed the effects of variable 
viscosity and thermal conductivity on the flow and heat transfer in a laminar liquid film on a horizontal stretching sheet. (Paresh 
and Archana, 2010) studied that thermal radiation effects on steady boundary-layer flow with variable thermal conductivity over a 
non-isothermal stretching sheet placed at the bottom of a saturated porous medium. (Pinarbasi et al, 2011) investigates the effect of 
variable viscosity and thermal conductivity of a nonisothermal, incompressible Newtonian fluid flowing under the effect of a 
constant pressure gradient at constant temperatures in plane Poiseuille flow using Chebyshev pseudospectral method. (Sadık et al, 
2011) studied the effect of variable thermal conductivity and viscosity on single phase convective heat transfer in slip flow. 
   In view of the above analysis, the aim of the present work is to study the effect of thermal radiation on viscous temperature 
dependent conductivity flows through a channel with sliding wall under the influence of an externally applied homogeneous 
magnetic field with the help of perturbation method along with Hermite–Padé approximation. It is assumed that thermal 
conductivity has a linear variation with temperature. To the best of our knowledge the study undertaken here has not been reported 
so far by any investigator. It has, therefore, prompted us to investigate heat transfer with variable thermal conductivity and 
radiation aspects in flow due to sliding wall with non-uniform temperature through a channel. 
 
2. Mathematical formulation 
 
   Consider a steady two-dimensional laminar incompressible flow of conducting optically thin viscous fluid through a channel 
with the lower sliding wall and non-uniform wall temperatures under the influence of an externally applied homogeneous magnetic 
field and radiative heat transfer. Assume that the fluid with negligible absorption has small electrical conductivity and the 
electromagnetic force produced is very small. A Cartesian coordinate system is used and the flow is chosen along the x-direction 
under constant pressure-gradient which is driven solely by uniform velocity at the lower wall, i.e. the velocity profile is linear with 
zero at the upper fixed wall and maximum value at the lower moving wall.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                               Figure1 Geometry of the problem 
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   Consider all the physical properties of the fluid constant except the thermal conductivity which varies linearly with temperature, 
assuming Boussinesq approximation for radiative heat flux and neglecting the viscous dissipation in the energy equation, the 
boundary-layer equations are 
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Where u is the flow velocity in the x-direction, ν is the kinematic viscosity, T  is the temperature, k is the thermal conductivity 
which is assumed to be variable, ρ   is the density of the fluid, p  the constant pressure, pc is specific heat at constant pressure, g 

the gravitational force, q the radiative heat flux, β  the coefficient of volume expansion due to temperature, )( 00 HB eμ= the 
electromagnetic induction, eμ the magnetic permeability, 0H the intensity of magnetic field, eσ the conductivity of the fluid 
The appropriate boundary conditions of the problem are 

0,1 TTuu ==   at  ,0=y                       (3) 

bTTu == ,0      at by =                        (4) 
It is assumed that the medium is optically thin and with relatively low density. Following (Cogley et al, 1968) equilibrium model, 
the radiative heat flux is given by 

            )(4 0
2

bTT
yd

dq
−= γ                                                                                      (5) 

Where γ is the mean radiation absorption coefficient. The dimensionless temperature T is given by, 
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Where ∞k is the thermal conductivity at the fluid ambient temperature 0T  and ε  is defined by ⎟
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Dimensionless quantities and parameters are initiated in the problem as follows 
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where GrHR and,,,α are thermal conductivity variation parameter, radiation parameter, Hartmann number and Grashof  number 
respectively. 
The governing equations (1) and (2) together with boundary conditions (3) and (4) reduced to  the following dimensionless form    
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,0,1 == Tu   at   0=η                 (12) 
 
3. Perturbation analysis 
 
 The following power series expansions are considered in terms of the parameter α as equations (9) and (10) are non-linear for 
velocity field and temperature distribution 
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The non-dimensional governing equations are then solved into series solutions by substituting the Eq.(13) into Eqs. (9) and (10) 
and equating the coefficients of  powers of α .  
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With the help of MAPLE, we have computed the first 18 coefficients for the series of the velocity u and temperature field T as well 

as the series for the wall heat transfer rate, 
ηd

dTNu −=  at 1=η  in terms ofα , H , R, Gr, N . The first few coefficients of the series 

for u and T are as follows: 
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4. Computational procedure 
 
   In the present analysis, we shall employ a very efficient solution method, known as Hermite-Padé approximants, which was first 
introduced by (Padé, 1892) and (Hermite, 1893). All the one variable approximants that are used or discussed throughout this 
article belong to the Hermite-Padé class. In its most general form, this class is concerned with the simultaneous approximation of 
several independent series.  
   For any non-negative integer d, let the 1+d  power series  ( ) ( ) ( )ηηη duuu ..,,.........1,0  are given. Assume that the ( )1+d  tuple of 

polynomials: [ ] [ ] [ ]d
NNN PPP ....,..........,........., 10  

where [ ] [ ] [ ] ,deg...degdeg 10 NdPPP d
NNN =++++                                                                                        (22)                  

is a Hermite-Padé form of these series if      [ ]( ) ( ) ( )N

i

i
N O

d

iuP ηηη =
=
∑

0
 as .0→η                        (23) 



Alam and Khan / International Journal of Engineering, Science and Technology, Vol. 6, No. 1, 2014, pp. 88-97 

 

92

 

Here ( ) ( ) ( )ηηη duuu ..,,.........1,0  may be independent series or different form of a unique series. We need to find the polynomials 
[ ]i
NP  that satisfy the equations (22) and (23). These polynomials are completely determined by their coefficients. So, the total 

number of unknowns in equation (23) is   [ ] 11
0

deg +=++
=
∑ Nd
d

i
P i

N                                                                        (24) 

Expanding the left hand side of equation (23) in powers of η  and equating the first N equations of the system equal to zero, we get 
a system of linear homogeneous equations. To calculate the coefficients of the Hermite-Padé polynomials it requires some sort of 
normalization, such as [ ]( ) 10 =i

NP  for some integer di ≤≤0                      (25) 
   It is important to emphasize that the only input required for the calculation of the Hermite-Padé polynomials are the first N 
coefficients of the series ( ) ( ) ( )ηηη duuu ..,,.........1,0 . The equation (24) simply ensures that the coefficient matrix associated with 
the system is square. One way to construct the Hermite-Padé polynomials is to solve the system of linear equations by any 
standard method such as Gaussian elimination or Gauss-Jordan elimination. (Drazin –Tourigney, 2000) Approximants is a 
particular kind of algebraic approximants and (Khan, 2002) introduced High-order differential approximant as a special type of 
differential approximants. High-order partial differential approximants discussed in (Rahman, 2004) is a multivariable differential 
approximants. More information about the above mentioned approximants can be found in the respective references. An algebraic 
programming language MAPLE is used to compute the series coefficients of non-dimensional governing equation of the problem. 
 
5. Results and Discussions 
 
   The main objective of the current work is to analyze the effect of thermal radiation and thermal conductivity variation due to 
temperature on MHD flow of viscous incompressible optically thin fluid through a channel with the lower sliding wall. Although 
there are four parameters of interest in the present problem the effects of thermal conductivity variation parameterα , radiation 
parameter R, Hartman number Ha and Grashof number Gr. 
   The results of the numerical computations of velocity profiles and temperature distributions for different values of the 
aforementioned parameters are displayed graphically in Figures. (2)-(7) by analyzing the series in (20) and (21) using Hermite- 
Padé approximation method. 
 
 

 
 
 
 
 
 
 
 
                                            
 
 
 
 
 
 
                                            
                                                   (a)                                                                                            (b)      
Figure 2 Temperature distribution (a) for different values of α  at 1=Gr1,=H1,=N1,=R  and (b) for different values of R at 

1=Gr1,=H1,=N0.9,=α  using High-order differential approximants (2002). 
    
   Figures 2 (a)-(b) illustrate the effects of thermal conductivity variation parameter α and thermal radiation parameter R on the 
temperature profiles respectively. It is observed from the Figure 2(a) that an increase in the thermal conductivity variation 
parameter α  leads to decrease in the temperature across the center line region particularly for 1>α . We also observe from Figure 
2(b) that the fluid temperature decreases with the increasing values of R. Because the increasing values of α and R decrease the 
temperature differences between the surface and outside the boundary layer. Then heat is transferred slowly from surface to fluid 
within the boundary layer. That’s why temperature distributions decrease with the increasing values ofα and R. Meanwhile, the 
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minimum temperature is generally seen along the channel centerline and then increases gradually to the prescribed value at the 
upper wall. Figures (3)-(7) reveal the velocity profiles for increasing values of thermal conductivity variation parameterα , thermal 
radiation parameter R, axial pressure gradient parameter N, magnetic parameter H and Grashof number Gr. A parabolic velocity 
profile is observed generally in Figures (3) and (4) with maximum value at the lower wall and minimum value along the channel 
centerline region. It is clear that an increasing presence of α and R gives a reduction in the fluid velocity as demonstrated 
particularly along the centerline, i.e. the reverse flow takes place near the centerline because the influence of α and R surpasses the 
action of the viscous force in that region which specially coincides with generalized Plane Couette flow. From Figure (5), it is 
noticed that the velocity profile exhibits major changes along the centerline region at every increasing values of N.  
                
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Velocity profile for different values of α  at 1=Gr1,=H1,=N1,=R  using High-order differential approximants 
(2002). 
 
   On the other hand, it is seen from Figure (6) an uniform decreases in the centerline velocity at the positive variation of Hartman 
number H. The magnetic field acting along the horizontal direction retards the fluid velocity. Applied magnetic field creates a 
Lorentz force by the interaction between magnetic field and flow field, this force acts against the fluid flow and reduce the velocity 
distribution. Moreover, there is a minor variation is seen to the fluid velocity in Figure (7) due to the effect of Grashof number Gr. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Velocity profile for different values of R  at 1=Gr1,=1,=N1,=H α  using High-order differential approximants (2002). 
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Figure 5 Velocity profile for different values of N at 1=Gr1,=1,=R1,=H α  using High-order differential approximants (2002). 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Velocity profile for different values of H at 1=Gr1,=1,=R1,=N α  using High-order differential approximants (2002). 
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Figure 7 Velocity profile for different values of Gr at 1=H1,=1,=R1,=N α  using High-order differential approximants (2002). 
 
Applying high-order partial differential approximate method to the series (21) the critical relationship among the parameters of the 
solution is analyzed with the influence of R  andα . Figure 8 shows the critical relationship between α  and Nu for 4=d  and the 
curves in this figure really increase due to the effect of increasing values of R . It is also noticed that for 1≥R , there occurs an 
abrupt change in the curve. Figure 9 displays the effect of thermal conductivity variation parameter α on the critical relation 
between R and Nu with the same order of approximation. It is interesting to see that as α  increases Nu increases, but the value of 
Nu decreases rapidly at 10 ≤≤ R  and for 1>R , Nu increases slowly due to the raising values of R. This means that the thermal 
conductivity variation parameter α  acts like a control parameter to the relationship between R and Nu. 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8 Relation between Nu and α for different values of R using High-order partial differential approximants (2004). 
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Figure 9 Relation between Nu and R for different values of α  using High-order partial differential approximants (2004). 
 
6. Conclusion 
 
   The influences of thermal radiation on MHD flow of an optically thin variable thermal conductivity viscous incompressible fluid 
through a channel with the lower sliding wall of non-uniform temperatures are investigated using a special type of Hermite-Padé 
approximation technique. The velocity and temperature profiles are obtained analytically to observe the effect of the parameters of 
the solution. The escalating values of thermal radiation and thermal conductivity reduce centerline velocity while the increasing 
magnetic parameter causes a reduction in the magnitude of centerline velocity field. The relationship between Nusselt number and 
thermal conductivity variation parameter varies due to the effect of radiation parameter whereas the relationship between Nusselt 
number and radiation parameter varies due to the effect of thermal conductivity variation parameter. Moreover, we provide a basis 
for guidance about new approximants idea for summing power series that should be chosen for many problems in fluid mechanics 
and similar subjects.  
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