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Abstract

Wave propagation in an infinitely long poroeiastomposite hollow cylinder in is examined by eoyihg Biot's theory of
wave propagation in poroelastic media. A porogdlasbmposite hollow cylinder consists of two contenporoelastic
cylindrical layers both of which are made of diffat poroelastic materials with each poroelasticentas homogeneous and
isotropic. The inner and outer boundaries of conted®llow poroelastic cylinder are free from sreShe frequency equation
of flexural vibrations of poroelastic composite bl cylinder is obtained. In addition some partamutases such as poroelastic
composite hollow cylinder with rigid casing, porasfic composite bore and poroelastic bore are sésetli Non-dimensional
phase velocity is computed as a function of nonedlisional wavenumber. The results are presentedigedly for two types of
poroelastic composite cylinders and then discussed.
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1. Introduction

Gazis (1959) studied the propagation of freentwanic waves in elastic hollow circular cylinder. Nigen et al. (1963) discussed
propagation of axially symmetric waves in composiastic rods. Soldatos and Hadjigeorgiou (19¢%0)e obtained a three-
dimensional solution for free vibration problem lmdmogeneous isotropic cylindrical shells and pan€ls et al. (1997) and
Abousleiman and Cui (1998) presented poroelastigieas in an inclined borehole and transversedyrigpic well-bore cylinders.
Ahmed shah and Tajuddin (2009) discussed axiallgrsgtric vibrations of finite composite poroelastidinders. Malla Reddy
and Tajuddin (2010) studied axially symmetric vilmas of composite poroelastic cylinders. Sharné &harma (2010) analyzed
free vibration in a homogeneous transradially ot thermoelastic sphere. Flexural wave propagaiiocoated poroelastic
cylinders is presented by Ahmed shah (2011). Taju@@D11) et al. discussed axial shear vibrationa poroelastic composite
cylinder. Shanker et. al. (2012) studied radiatailons in an infinitely long poroelastic composiigdinder.

In the present analysis, flexural vibrationspwroelastic composite hollow cylinder are investglemploying Biot's (1956)
theory of wave propagation in porous materials. ot’Bi model consists of an elastic matrix permeatgda network of
interconnected spaces saturated with liquid. Teaguency equations of flexural vibrations are of®difor poroelastic composite
hollow cylinder and as well for some particular &s$.e., poroelastic composite hollow cylinder wiifid casing, poroelastic
composite bore and poroelastic bore each for pesvand impervious surfaces. Non-dimensional phatmcity as a function of
non-dimensional wavenumber is computed in each. caBee results are presented graphically for twoesy of poroelastic
composite cylinders and then discussed. The pateleonstants of only two poroelastic materials§andstone saturated with
water and 2. Sandstone saturated with kerosen@yaikable. So, the numerical work has been doheanthese two materials.



14 Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 8, No. 1, 2016, pp. 13-33

2. Governing Equations, formulation and solution othe problem
The equations of motion of a homogeneous, isotrppioelastic solid (Biot 1956) in the presenceis$ighationb are:

2
ND2u+(A+N)De+QD£=:?(pllu+p12U)+b%(u—U)
-9 b9 (- (1)
QUe+ ROe atz(,012u+,022U) bat(u U)

where 2 is the Laplacian operatou(u, v, w) and U(U, V, W) are solid and liquid displacements ; & anare the dilatations of
solid and liquid.A, N, Q, R are all poroelastic constants and,,, 0,,, 0,, are the mass coefficients following Biot (1956¢Isu

that the sums(p,, + p,,) and (0, + p,,) are masses of solid and liquid, respectively, theameter 0, represents mass

coupling between solid and liquid. The poroelastiastantsA andN correspond to familiar Larheonstants in a purely elastic
solid. The coefficienN represents the shear modulus of the solid. Tk#icentR is a measure of the pressure required on the
liquid to force a certain amount of the liquid intee aggregate while the total volume remains @mst The coefficient)
represents the coupling between the volume charfgaslid to that of liquid.

The stresseg,, and the liquid pressuseof the poroelastic solid are
gu=2Ne, +(Ae+Qe)s,, (k,1=r1,68,2)
s= Qe+ Re, (2)
where g, is the well-known Kronecker delta function ag@re strain components of poroelastic solid.

Let (r,s ,z) be cylindrical polar co-ordinates. Consider agedastic composite hollow cylinder whose inner éoand outer
(casing) shells are made of different poroelastitamals with each poroelastic material as homoges@nd isotropic and whose

axis is in the direction of z-axis. The inner raof core isr;, outer radius of casing ig and &' is the interface radius. The

prefixesj =1, 2 are used to denote two cylinders relategotmelastic composite cylindeThe quantities with prefix (1) refer to
the core, while the prefix (2) refers to the casing

The displacements of solip.l(ju, Vs J-W) which can readily be evaluated from field equatibnare

U=[,C Mgy(nN+,C Myr+,C M r+,C M r)+,C_ M r)+,C_ M (r)+
C. ;Mg ¢ )+ ,C M )]coge

V=[C M (n+,C M () +,C ;M {r)+,C ;M ([r)+,C_ M r)+,C M ¢r)+
iC. Mg (r)+,C_ ;M g(r)]singe =,

W=[,C M (r)+,C ;M () +,C_;M {r)+,C ;M [r)+,C M r)+,C ;M fr)+
iC. M, € ) ,C. /M, )coge

®3)

where
M) = 23,0, 60) = 9.,1)
M) = 3,(,60)
j Mg, (r) = 2ik‘]2(j€tsr)
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Mey(r) = =23, )

M) =23, 60+ (E3 4, 6D)
jM67(r) :Zisz(ij)

jM71(r) :ile(jflr)

jM75(r) =0

jM77(r):_153‘]1(jE§) (4)

and ;C,, ,C,, ,C;, ,C,,,C; and; C care constantsyis frequency of wavek is wavenumberJ, andY, are Bessel functions of
first and second kind, respectively, each of orger

£=Y e forl=12,3
v

’ :(ijR_ in)_ ivlz(jRlel_ QM)

2 ; Z fork=1,2
ij(jRlez_ijMzz)
lelszll_;’JMlzzjp12+;’jM22:jp22_51 (5)

jV1, J-V2 are dilatational wave velocities of first and set&ind, respectively, angléis shear wave velocity.

By substituting the displacements in equationst(® relevant stresses pertaining to outer cyliaerinner
cylinder are

j(Jrr +S):[JC11M11(r)+ iCZJM14r)+ jCSiM 1£r)+ jC4jM 1£r)+ jC E;M 1€r)+ jC QM 1(5r)+
jC7le7 I( ). jcnglgr( )]CO@e“kZ_Hd) ,
j(a’g)z[iCUM?l(r)'l- JCZJMzz(r)"' iCaM Ar)+ iC4M A1)+ CsM AN+ ,C ¢M &)+
G My, ( » ;Cg;M - )]sirﬁe‘(k““‘) ,
((0,) =[G [ Myy(r) +,C, ;M p{r) + ,C5;M ofr) + ,C 4 M 4fr) +,C oM (r)+,C ;M {r)+
iC; My, € 3 ,Cg M 5 € )]coge )
jsz[jC1]M41(r)+ ]C2]M 42(r)+ ]C3JM 4:(|')+ JC4JM 4£|’)]Cosgei(k2+ﬂ),
as i (kz+
(a_rj:[icli Nui(r) + ;Co N A1)+ ,C4 N fr) + C ;N r)]cosge ),
i
(6)
where
i 2 2 2 2iNj£1
JMll(r):{[(iQ+ iR o —(jA+,QIK"+[(,Q+ R ;0°—( P+ jQ)]fl}Jﬁ KU J{<M

r

-2 N.
les(r):JTJ{g‘]z(jfsr)
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M -—szikJ 2 Nik . &£J
le7(r):2iijj{3‘]1(j£3r) j 31(I’)— ; 1(j<tsl')_ i | jfl 2(j<tlr)
2.N. “Nik
iM(r)= Jrjgl‘]z(j{lr) sts(r)ZJT‘J1(j<(3r)
2J.NJ.E2 - N. ) )
M (1) = . J,(i€ ) J-M37(r)=17'53\]1(j£3r)+jN(jf3—k)J L, €4)

M= N EIGEN-2800 g gy M) = (RO = QK™ EDI (€ 1)

r —
M o(r) = | Nik; ;£ (1€ o) iM 4(r) =0
JM ~(r)=0

(M, (r) = ;M (r) for i=1,2,3,4,5,6,7 with replacing, and its derivatives, respectivel
byY, and its derivatives,

J.Mm(r) = jMis(r) fori=1,2,3,4,5,6,7 with replacing, and its derivatives, respectivel
byY, and its derivatives,

J.MiB(r) = J.Mi5(r) fori=1,2,3,4,5,6,7 with replacing, and its derivatives, respectivel
byY, and its derivatives,

(Mg(r) =M, (r) fori=1,2,3,4,5,6,7 with replacing, and its derivatives, respectivel
byY, and its derivatives,

R - Qk*+ &7
Ny = AT 5 (e (R 0= QU+ I (6D
jN45(r):O
jN47(r):O

()

3. Boundary conditions and frequency equation

We assume that the outer surface of casing ramef isurface of core are free from stress and tiseaeperfect bonding at the
interface, thus the boundary conditions for stfess-vibrations of a poroelastic composite hollogiraler in case of a pervious
surface are

atr=r; ,00,+s)=0, ,0,)=0,,6,, F (

atr=r,; ,(,+s)=0, ,0,)=0, ,0, F (

atr=a;, ,(o,+s)=,(0,+s), ,(0,)=,(0,),,0,,)=0, u=nu

V=LV, W= LW

atr=r,r,anda ; ;s=,5= C 8)
while the boundary conditions in case of an impausisurface are

atr=r; ,0,+s)=0, ,0,)=0,,6,, F (

atr=r,; ,(,+s)=0, ,0,)=0, ,0,, F (
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atr=a l(arr +S) ~2 (Jrr +S)’ 1(Urz) =2(Jrz) 10,4 )= 0, u= 4
V=V W= W

3,595
or or

Egs. (3), () and (8) results in a system of sixteehomogeneous equations in  constants

atr =r,r, anda;

J-Cl, J-CZ, jCs, jC4,1-CS,J-C6, J-C7 andj G (j =1, )2 such a homogeneous system has non-trivial solutigy if the

determinant of the coefficients of the unknownsishes identically. Thus by eliminating the constathe frequency equation of
flexural vibrations for poroelastic composite helloylinder for a pervious surface is

C|=0 forij=12,...1 (10)
where
C, = 1M11(r1); =1,2,...8, C;= 0 j=9,10,...16,
C, = M,(r); j=1,2,.8,C, = 0; j=9,10,...16,
C; =M 3j(r1); =1,2,...8, Cy;=0; j=9,10,...5,
C, = .M, (r); j=1,2,34,C, = 0; =5,6,...16,
Cs; =My (a); J=1,2,...8, Cy = M 1J._gi{l ); J79,10,...1¢
G =M, (@); j=1.2,..8, C; = M, .4 ); j=9,10,...1
C,; =My (a); J=1,2,...8, C,i =My 4 ); j=9,8,..16
Ce; =M (a); j=1,2,3,4, Cg = 0; j=5,6,...16,
Gy =0 j=1,2,...8,13,...16, Co; =My 5 a( ); j=9,.12,
ij =,My (a); j=1,2,...8, Cloj =,Mq, 4 a(;)j=9,10,...16
Cuy =My (a); =1,2,...8, Cuj = Mg_g a( )j=9,10,...16
Cp =M, (a);  =1,2,..8, Cp, = M, 5@); j=9,10,...1¢
C13Yj =0; =1,2,...8, C13,j = ,M 1,j—8(rz); j=9,10,...16
Cuy =0 =1,2,...8, Chj = M, 1,( %9,10,...16.
ClS,j =0; j=1,2,...8, Cls'j =.,M 3J_SQ’Z); j=9,10,...16
Ci,; =0; j=1,2,...8,13,...16, Cp,; = M 4]j_g(rz); j=9,.....12.
(11)
In case of an impervious surface, equations (3)ai@ (10) gives the frequency equation as
ID;|=0fori, j=1,2,....16 (12)

where
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= 1Ny (r);
=1 21(r1);
1N (ry);
i = 1Ny (r);
1Ny (a);

& wN
]

(&)

i=1,2,...8,
i=1,2,...8,
i=1,2,...8,
i=1,2,3,4,
i=1,2,...8,

1]

N

D
D,
Dy
4

5j

D
D
D

0; j=9,10,...16
0; j=9,10,...16

j=9,10,...16
j=5,6.,...16,

0;
0;
=N, & ); j=9,10.16,
N
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j=1,2,...8, 6; = 2N, 6(8); j=9,10,...16,
=1,2,..8, D,

_2N318€() 19816
j=1,2,3,4, D, = 0;
N

i = 1Ny (a);
= 1Ny (a);
= 1Ny (a);
9J—0 j=1,2,...8,13,...16,
=,N5(@); j=1,2,..8, Dy = ,Ng¢d )

) = Ng(@);  j=1,2,..8, D N gd )
DlZJ = N7,(a) j=1,2,...8,
j=1,2,...8,
=1,2,...8,
j=1,2,...8,
=1,2,...8,13,...16,

~

i j=5,6,...16,
Dy; = ,N,;5(a); J=9,..... 12,
j=9,10,16,
j=9,10,16,
- & ) j=9,10,186,
1-s M4 ) $10,...16,
=N, sr{ ); $10,...16,
= ,N;;_«1,); j=9,10,...16,
=N, e 7L ) 79,.12.

©
(XJ

UUUU@UUUUU
|

10j —

o

h1j —
Dy, 2N
Dy, = ,N
Dy,
Dys,
Dy =

and
N, (r)=,M,(r) for 1=1,2,35,6,7,8 m =1to 8,

,N,.(r)=,M,(r) for 1=1,2,3,5,6,7,8m =1to08,
N, (r) for m=1,2,3,4 andM, r( ) for allm are dieéd in equations (3) and (

(13)

Motions having infinite wavelength
When the wavelength is infinite or the wavenunibeero, the frequency equation (10) of poro@éasimposite hollow

cylinder for a pervious surface reduces to

AA =0 (14)

with

My ME, ME), O 0 0 0 0 0

M) ML Mg, O 0 0 0 0 0
Mg) O 0 0 0 0 0 0 0

M@ M@ M@ M@ M@ M M M@ M
Mg ML M@ M@ M@ M@ M@ M@ M@
M & 0 0 0 0 0 0 0 0

My @) Mu@) Moe) M) O 0

Mey(@) My(@) M) Myfa) M) M) M M@ M@ M@ M@ M@
M@ Mefa) Mfa) Mga) M M@ M@ M@ M@ M@ M@ M@
My(r) M) Mor) M) M), Mgr) M) Mdgry Mg) M) ME) ME)
Ma(r) M) Mor) M)y M) ME), MGE), MK, ME ,ME) M) M)
M) M) Mgy Mpr) O 0 ML) ML) M) M) O 0

M.fr)
Mofr)
M)
M.{a)

lMll(rl)
Mar) MA)
1M4l(r]) 1M 4&")
1 Mll(a') 1M 12(a)
MA@ MAD) M fa)
p oM@ Medd) M3

0 0 0 0 0 0

Mr)
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Mg (r)  M{r) 0 0
- Mg(@ My @) M@ M)
M@ M) M M3
O o 2 M37 (r2) 2M 38(r 2

A

(15)
where the element§M im(r) are defined in egs. (4) and (7) for 0. From eq. (14) it is clear that eit®&r= 0 orA; = 0. The

equation
A =0 (16)

is the frequency equation of plane-strain vibratioha poroelastic composite hollow cylinder fdirite wavelength in case of a
pervious surface. The frequency equation

A=0 (17)

involves only shear wave velocity, hence it isfileguency equation of longitudinal shear vibrasiaf a poroelastic composite
hollow cylinder for infinite wavelength in case @pervious surface. Eq. (14) shows that the pléaéasvibrations and
longitudinal shear vibrations of poroelastic cosipmhollow cylinder for a pervious surface areauped when wavelength is
infinite.

Similarly, the frequency equation (12) of vibraisoin poroelastic composite hollow cylinder foriampervious surface
reduces to

BB, =0, (18)
Nu() Ny Nofr) N N@), N, O 0 0 0 0 0
Na() NoAr) Nor) N N NE), O 0 0 0 0 0
iNa(r) NAr) Ngr) N g 0 0 0 0 0 0 0 0
Nu@ Nd) N Nyf@ N NEH N@ N@ NJa) Nf) N N
with @ NA N N N& N @ N@ N@ NG Na NG
_|iNa@® N N Ng 0 0 0 0 0 0 0 0
A= 0 0 0 0 0 0 Ny @) Np&) Ngh) N,a) 0 0
Nsy(@ N8 N@ Nofa) Nya) N N NE NE@ N@ N@ N@
Na@ Nefd) Nefa) Nefa) Nga) N@ DN@ N@ N@ N@ N@ N@
Nu(r)  NLr) Nofr) Nr) N @), Ne(m) Nfrd Nufr) Ng) NO) NE), NG
N NoAT) NArY N N ), NG, NG NG o N5 5 No(l) 5Noe(r)  NoJr)
Nu(r) NAr) NJgr) Ng) O 0 N ) N E) Ngr) NI O 0
Nar(r) Ngr) 0 0
— 1N37(a) 1N 33(3) 2N 3{3) J\I 3&a) (19)
* |INg(@) Ng@) Ni@ Nia)
0 0 2Nar (r2) Nl

where the element§N,m(I‘) are defined in eq. (7) and (13) and are calculfdek = 0.

From eq. (18) it is clear th8; = 0 orB, = 0. Equation
Bl=0 (20)

is the frequency equation of plane-strain vibratiohporoelastic composite hollow cylinder for ampervious surface when
wavelength is infinite, whereas the equation

Bz=0 (21)

is the frequency equation of longitudinal shedorations of poroelastic composite hollow cylinder an impervious surface
when wavelength is infinite. Eq. (18) shows tHag¢ plane-strain vibrations and longitudinal sheirations of poroelastic
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composite hollow cylinder for an impervious surfame uncoupled. Also, we see that the equatier® andB,=0 are same,
hence the frequency equation of longitudinal slvéznations of poroelastic composite hollow cylindeindependent of nature of
surface for infinite wavelength.

4. Particular cases

Under suitable boundary conditions the poroslastmposite hollow cylinder reduces to the follagiparticular cases
4.1 Poroelastic composite hollow cylinder withidigasing,
4.2 Poroelastic composite bore.

4.1 Poroelastic composite hollow cylinder with rigid casing
When shear modulus of the casing is larger thahof core, we can assume that casing is peyfeicfid. Letting the shear

modulus of the casing approaches to infinity i.bl(,z) - o, then the shear wave velocity of casing approathesfinity and
hencef?fz) - 0. Under this limiting condition, the frequencyuatjon (10) of vibrations of poroelastic compogitdlow cylinder

for a pervious surface reduces to

C,C= 0 22)
M) M) M) Myry M) M E) M @&, M G
Ma(r) Mpfr) Mofr) Mry Mgy M &) M &) M @)
Ma(r) Mgfr) Mofry M) Ma) Mg M) M &
Mu() My(r) Mr) M [r) 0 0 0 0
Muy@ My (a Ma) M3 0 0 0 0
Ma(@) Mg(a) Mga) Mga) ML) M) WML N (@
Me(a) Mgfa) Mgfa) Mga) Mga Mga) M H N (@)
M@ M@ M fa) M [a) 0 0 M, @) M@)

with C-=

[an

[ee)

~~
a
D

AR LAL@) AR Au@) As@) AR A @) A
MA@ AR Ax@) Au@) Ax@) A @) A (@) A
2An@) AR Ap@) Au@) Ax@) Ag@) A @) A
AR LAL@) Ag@ Au@ As@ ALE) AL@) A@

Y

w

[o2)

~
O

C,=

Ar) ALY ALY ALY ALY AL, AG) AG)

Aar) ALY AM) ALY AK)L AK): AG) AG

A ALY ALY ALY ALY, AR AN A

A AL ALY ALY ALL AK): AGE), AG
where 23)
AN ={(Q+ R 2K+ Q+ R a2-2 g33( £ +2%3(, g1,

r

AN QR AR R+ B 412 @Y £ +22v a0,

220’2
r

A ={(Q+ R K+ R+ R 452 a3l £y +=22I(, g1,



21 Kumar et al. / International Journal of Engineering, Science and Technology, Vol. 8, No. 1, 2016, pp. 13-33

AD QB AR H R+ B a2 @Y 9 +22¥ g
AL =2k @I £+ 253 (£),

A =2k a3 £+ 25 ),

A =2523 (£), AnCF Y L€ 1)

A =2523 ( 5), A 5223 @ )
A= £ E D22 (£,

A1) = V£ 1) =220 (),

.
A () =ik EI(£1),
A1) =ik &Y £1),
AN = R A1k + £DILFD), Ad)= R @K+ &N (4r),
2Au(N) = R 5K+ £DI(£1), Ad)= R &+ ) (&),

and

-2V ? R .
,at = G fori=1,2 and 2
2Rk = Q Ky, (24)
From eq. (22) it is clear that the physical paeters in the determinan@, C, are, respectively, related to core and casing.
Hence, the vibrations of poroelastic compositedwlktylinder related to core and casing for a parsisurface are uncoupled
when the solid in casing is rigid, also we obt@ir 0 orC,= 0. The equation

C=0, (25)

represents the frequency equation of vibratiorgoobelastic core for a pervious surface whendgtasnped along its outer
surface, whereas the equation

C,=0, (26)

represents the frequency equation of vibrationsofibw rigid casing for a pervious surface whenle@ndaries are free from
stress.

In a similar way, when the solid in casing is ridite frequency eq. (12) of vibrations of poroeétasbmposite hollow cylinder for
an impervious surface reduces to

Dl Dz = O, (27)
with
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Nup(r)  Nr) Ny Nogry Ng) NG N @) NG
Nou(r) Nofr) Ny Nor)y N &) N &) N @) N G)|
Naa(r)  Ngr)  Nofr) Nor) N &) N &) N @) N @)
D, = lN4l(rl) 1N42(rl) lN 43(r]) lN 4A(r) O o O 0
© Na@ Ng@ NJga) Nua) o0 0 0 0
1N51(a) 1N52(a) lN 5:£a') lN 5£a‘) N 5ga) N 5@) I}I Jﬂ) N g@')
Ne(®) Ne(@) Ngfa) Nefa) Nea) N N N @
lN71(a) 1N 72(a) lN 7:£a) 1N 7£a) O O lN77 (a) lN 78(a)
and
Bu(@ ,B(@ Bp@ Bu@ Bis@ B@ B(@ B e
:Bn(@)  ,By(@) Bp@ Bu@ Bi@ B @ B (@ B k¢
:Bu(@)  ,By(@) Byu@ Bau@ Bs(@ B@ B (@ B
D. = :Bu(@ ,Bp@) Byu@ Bu@ Bs@ Be@ Biy@ B,@
*7|,Bur) Bur) Bur) B BE) BG) B BG)|
Bu() Bur) BAr) By BA) BG) BG) B®
Bul) Baudr) Bur) Bdr) BA) B Bulr) Bulr)
Bal) Bur) Bdr) BATY BA) BG) BG) B G
(28)
where
,B,(r)=,A,(r) for m=12,.....8,
,B,n(r)=,A,.(r) for m=12,.....8,
,Bsn(r) = LA, (r) for m=1,2,.....8,
By(r) =R ZEMCE 2 5 oy - e Rat- QU+ £D3( €0
B(r) = LR ZMCE By ey (R at- QU+ £2Y( ),
B = e Ay en - e (Rt QU £D34 €,
Bu(n) =l MLy ey - b (Ra - QW+ £DY( £
(29)

and ; N, (r) are defined in egs.(7) and (13) apé, () are defined in eq. (24).

As in the case of a pervious surface, the vitnatof poroelastic composite hollow cylinder rethto core and casing for an
impervious surface are uncoupled when the solhsing is rigid. From eq. (27) it is clear titgt= 0 orD,= 0. The equation

D:= 0, (30)

represents the frequency equation of vibrationoglastic core for an impervious surface when itlamped along its outer
surface, whereas the equation
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D,=0, (31)

represents the frequency equation of vibrationshoflow rigid casing for an impervious surface whbee boundaries are free
from stress.
4.2 Poroelastic composite bore

When the outer radius, of casing tends to, the frequency equation (1Q)arbelastic composite hollow cylinder for a penso
surface reduces to

E, =0, (32)

where
M6 M) M) MG)Y MG, M@, M@, ME, 0 0 0 0
M) M) M) MgY MG, M@, ME,ME&, 0 0 0 0
M) M) M) Mg)Y MG, MG, MG, M 0 0 0 0
M) Mg) Mg Mgy 0o o 0o 0 0 0 0 0
M@ M Mg M@ M@ M@ M@ M@ MO M@ M@ M@

E= M@ M) M) My ML) M@ M@ M@ M@ M@ M) M43
M@ Mfa) Mfa) M M@ ME M@ M@ M@ M@ M@ M@
M@ Mg MJfa Mg 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o ,M,&) M,&) O 0

M@ Mg@) Mg@ Mgy@ M@ Mgl M@ Mdfa) Mfa) M@ M) M@
M@ Me@ M@ Me@ M@ M@ M g@ M @M @M @M @M
M@ M) MAa) MiAfa) O 0 M) M@ M M@ 0 M@

(33)
where the elementsM are defined in eq. (8).

Eq. (32) is the frequency equation of flexural aifiwns in poroelastic composite bore for a perviewface.

Similarly, the frequency equation of flexural rakions in poroelastic composite bore for an impmrs surface can be
obtained as

F.=0, (34)
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Nu(r)  NLr)  Nygr) N Ng) 0 0
Na(r) NAr) NATY N N &) N@E), N@, NG, O 0
Na(r)  Ngfr) Nofr) Ny N&g) NE) NE ., N® 0 0
Na() NAr) N} Ng) O 0 0 0 0 0 0 0
Nu(@ N8 Nyfa) N N@ N@ N@E N@ N@ N@ NG@ N@
where_ _|:Nx(@) NA8) N3 N N& N N N@ NG@ N@ Ne@ NA)
TiNy@ Ngd Nigfa N N N@ N@ N@ N@ N@ N@ N@
Ny@ N ) N N 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ,N,&) .,N,&) 0 0
Ne(@  Nefd) Ngfa) Nea) NLa) N N(@ Nga) Ngfa) Nga) N N )
Ne(@ Nef@d) Ngfa) Nga) Nga) N N@ N@ N@ N@ N@ N@
NA@ N NA) NI 0 0 N@ N N N@ 0 N @

(35)

N @) NE. N,

o O o
o O O

where the elementsN, are defined in egs. (7) and (13).

For infinite wavelength, the frequency equatitire 0 of flexural vibrations of poroelastic compesitore for a pervious surface
reduces to

E2 E3 = O, (36)

with

M) M{r) Myr) Mgy Mgy M) 0 0 0

Ma(r)  Mpfr) M r) Mfry M)y ML) O 0 0

Ma(r) Myr) M r) M) O 0 0 0 0

My@ Mfa) M) Mya) M@ M WA M@ M@,
E,=|iMy(@) M) M{a) Myfa) M) ML) M@ M@ M@

My@ My M) M) 0 0 0 0 0

0 0 0 0 0 0 My, e) M, &) 0

Me(d) Mg(a) Mga) Mgfa) Mfa) M) M ME M@
Mei(8) Mgfa) Mg(@) Mg(a) Mga) Moa) Ma) Mda) W H)

and
ll\/I 37(r1) lM 36(r]) O

ES = lM 37(a) lM 37(a) lM 37(a) (37)
1'\/I 77(a) 1M 78(a) ZM 74a)

where the elementsM  are defined in eq. (7) and are evaluateckfer0.

From eq. (36), it is clear that eitheéy = 0 orE; =0. In particular,

E,=0, (38)
is the frequency equation of plane-strain vibragiohporoelastic composite bore for a perviousemgf whereas the equation
Es=0, (39)

is the frequency equation of longitudinal shearafiions of poroelastic composite bore for a persisurface. Eq. (36) shows that
the plane-strain vibrations and longitudinal shehrations of poroelastic composite bore for a pmrs surface are uncoupled.
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In a similar way, for infinite wavelength, the fiegency equatiorF; = 0 of vibrations of poroelastic composite bore &m
impervious surface reduces to
F2 F3 = O, (40)

with
1N11(r1) lN lZ(r]) lN l!r) N lgr)l [N {J )l N (g )l 0 0 0
iNoy(r)  aNofr)  Nofr) Nofr) N &) N &) O 0 0
1N41(r1) lN 42(r]) ll\I 4!r ) N 4gr )l 0 0 0 0 0
Nu@)  Nya) NyJfa) Nyfa) Nga) N@ NE N@ N
F,=|iNx(@) N@) Na) Nofa) N N N N@ N@
Nau(@) Na) Nya) N, fa) 0 0 0 0 0

0 0 0 0 0 0 ,N,, &) ,N,,6) 0
Ney(@)  Ng(@) Ngfa) Ngfa) Nia) N N NE N@
iNes(@)  Nef(d)  Nes(@) Ne(d) Ned@d) Nofa) Ne@) N2 N @)

1 N37(r1) 1N 36(r]) O
F;=|.Ny» (@) Ny @) N, /) (41)
1Nz(@) Ny N (@)

where the elementsN,  are defined in eq. (13) and are evaluatekferO.

and

From eq. (40), clearli#, = 0 orF3 =0. In particular,

F,=0, (42)
is the frequency equation of plane-strain vibratiohporoelastic composite bore for an imperviaufsse.
The equation

Fe=0, (43)
is the frequency equation of longitudinal shearatiions of poroelastic composite bore for an imjmars surface which is same as
equationE;=0 using (13), hence the frequency equation of itadial shear vibrations of poroelastic compodi@re is
independent of nature of surface for infinite wavgjth. Eq. (40) shows that the plane-strain vitnat and longitudinal
vibrations of poroelastic composite bore for an@nwious surface are uncoupled for infinite waveténg

5. Non-dimensionalization of frequency equation
The natural frequency will be real when the igaon coefficient is zero i.eb = 0. For the sake of numerical work the

dissipation coefficiently is taken as zero and hence we obtained only freguency. To analyze the frequency equations of
vibrations of poroelastic composite hollow cylinglgit is convenient to introduce the following ndimensional parameters:

alzi, azzﬁl a3:i,a4:2—,d1:—2p11,d2: 2/012,d3: L 2
lH 1H lH lH 1/0 1p 1p
_ 4P _4Q _ 4R _ 4N _ 4P - P - P
b_li’b_li b—l—,b—l—g 111,9 1lzg 22
1 1H 2 1H 3 ] 4 1H 1 0 2 0 3 P
\Y; Y V C
v = (37 vz (1) 2= () = ()7 v = (797, 2= (97 m=—
171 yZ }/3 yl y2 YS 1~0
(44)
wherem is non-dimensional phase velocity and
N H
1H :1P+21Q+1R, 1P = 1p11+21p12+ P o 920:1_/), \420:1_/) (45)
1 1

Non-dimensional phase velocity is calculatedtfeo types of composite cylinders, namely composyénder-l and composite
cylinder-1l each for a pervious and an imperviousface. Composite cylinder-I consists of core mapeof sandstone saturated
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with water (Yew and Jogi, 1976) and casing is magl®f sandstone saturated with kerosene (Fatt,)198%re as in composite
cylinder-l11, the core is sandstone saturated witokene and casing is sandstone saturated with. Wéie physical parameters of
these poroelastic composite materials followingatigu (44) are given in Table 1.

Table - 1 Physical parameters of poroelastic coitgaosaterials

Material a d d d X .
Parameters L % 8 % il 2 3 2 Y2 2
Composite
Cylinder-I 0.445 0.034 0.015 0.123 0.88Y -0.001 0.099 1.863 8843.| 7.183
Composite
Cylinder—II 1.819 0.011 0.054 0.780 0.891 0 0.125 0.4B9 2.330 .1421
b, b, bs by O1 92 O3 X1 Y1 Z;

0.960 0.006 0.028 0.412 0.877 0 0.123 0.91B 4,347 129
0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 763. 3.851

6. Results and Discussion

For given poroelastic parameters, the frequegpations when non-dimensionalized using equd#ldh, constitute a relation
between non-dimensional phase velocity and non-aéin@alized wavenumber. Different values of afd s/a, viz., 1.1 and 3
are taken for numerical computation. For a pomalashell made of single material, the value éraif outer radius to inner
radius) 1.1 represents thin poroelastic shell, eagthe value 3 represents thick poroelastic shell.

Figures 1-4 depict phase velocity of vibrati@migoroelastic composite hollow cylinders | anddt different combinations of
thin and thick shells for a pervious and an impausi surfaces. In Fig.1, phase velocity for thinecand thin casing has been
plotted. The phase velocity of pervious and impausi surfaces for each of the cylinders | and lalimost same. The phase
velocity of cylinder Il is more than that of cyliadl when wave number is between 0 and 4. lItearcthat the phase velocity of
cylinder | is steady. Fig. 2 shows the phase vefdar thin core and thick casings. The phase viglds same for both pervious
and impervious surfaces in case of composite cglihdwhereas for cylinder 1l it is true when wavember is greater than 3. The
variation of phase velocity for thin casing andckhicore is shown in Fig. 3. The phase velocity asme for pervious and
impervious surfaces when the wave number is lems Zhand greater than 7 in case of cylinder |, e&gin case of cylinder Il it
is true when the wave number is greater than 2. #ishows the phase velocity for thick core aridktltasings. The phase
velocity is same for pervious and impervious swrfamn case of cylinder |, whereas in case of cginid the phase velocity of
impervious surface is slightly more than that ofvieus surface.

Figures. 5-6 depict phase velocity for poroétasasing when the solid is rigid. In particuldrint casing is considered in Fig.5,
whereas thick casing is considered in Fig. 6. keaaf thin casing, the phase velocity is more fdinder | when the wave number
is between 0 and 4. The phase velocity is condtanan impervious surface for both the cylindersewththe wave number is
greater than 4. There is a sudden increase in pleseity when wave number is 8 for cylinder | iase of thick casing. The
variation in phase velocity for poroelastic coreentit is clamped along its outer surface is showRigs. 7-8. In particular, thin
core is considered in Fig.7, whereas thick coreoissidered in Fig.8. From Fig. 7, it is clear ttieg phase velocity is same for
both cylinders for each pervious and impervioudasag. The phase velocity is same for both cylindengn wave number is
between 0 and 2. Also, the phase velocity is marimhen wave number is 1. In case of thick coresphaelocity is same for
both cylinders when wave number is between 0 and 1.

The variation in phase velocity for poroelastienposite bore is shown in Figs. 9-10. In particutamposite bore with thin core
is considered in Fig. 9, whereas composite boré thick core is considered in Fig.10. From Figitds clear that the phase
velocity for composite bore | higher than that glireder 11 when wave number is less than 4.5 foirapervious surface. Also, the
maximum phase velocity is observed when wave nunsb@&ifor an impervious surface for composite dore

7. Conclusion

A study on vibrations in a poroelastic compositdlow cylinder and composite bore has been dalss, the effects of rigidity
and infinite wavelength have been observed, argkthead to the following conclusions:

(i) Plane-strain vibrations and longitudinbéar vibrations of poroelastic composite hollowiryér are uncoupled when
wavelength is infinite each for a pendg@and an impervious surface. Similar observat@asmbeen found in the case of
composite bore.

(i) The frequency equation of longitudinal shetrations of poroelastic composite hollow cylénds independent of nature of
surface for infinite wavelength.
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(i) The vibrations of poroelastic composite llog¥ cylinder related to core and casing for pergisurface are uncoupled when

the solid in casing is rigid. In partiaulin case of core the vibrations are observeeinwhclamped along its outer surface.
(iv) The phase velocity of poroelastic compokitlow cylinder is almost same for pervious and @émyious surfaces for both
cylinders | and Il in cases of thin coreldhin casing as well as thin core and thickreasthus, the phase velocity is
independent of nature of surface wherctre is thin.
(v) Variations in phase velocity is more in thiore than thin core when core is clamped alangtiter surface.
The thermal effect on composite cylinder can beuwlised; also similar study can be done on compogliaders and finite
composite poroelastic cylinders in various dimensiand on composite spheres.
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Nomenclature

1AaN QR } — Poroelastic constants
2A 2N, Q3R

a — iterface radius
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b — dissipation coeffitie
e — dilatation of solid
J,— Bessel function of first kind of order
[— inner radius of core
oF outer radius of casing
s — liquid pressure
t—time
U — liquid displacement
u — solid displacement
v, v, — dilatational wave velocities of first kind

Vo N, dilatational wave velocities of second kind
Y,, — Bessel function of second kind of order

1p11’ 11012’ Jp 22
Zpll’ Zp 121 2p 2

— stresses

10,201
€ — dilatation of liquid
k — wavenumber
m — non-dimensional phasevelocity
g2— Laplacian operator

}— mass coefficients
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