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Abstract

Due to rise in the price of fossil fuels and technical advances in the area of renewable energy, integrated systems became more
popular now a day. However uncertain nature of wind, solar irradiation due to weather and climate change, integration of
renewable power generation system complicates the ELD formulation. The paper presents optimum scheduling of integrated solar-
wind-thermal system using backtracking search algorithm (BSA). BSA is a novel population based stochastic search optimization
technique, having simple structure and only one control parameter as population size. BSA has two new types of operator’s as
crossover and mutation for exploration and exploitation of search space of problem desired to be optimized and also satisfies all
associated constraints of the objective function.
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1. Introduction

Economic load dispatch (ELD) problem is an essential optimization problem in electrical power system. The core aim of ELD
problem is to minimize the operating fuel cost while satisfying all associated operating constraints (Wood et al., 1984). Finding
optimal solution is very difficult as practical ELD problem is highly nonlinear due to presence of various practical operating
constraints like valve point loading (VPL) effect, ramp rate limits(RRL) and prohibited operating zones(POZ)(Walter et al., 1993;
Wang et al., 1993; Oreo et al., 1996). Conventional methods fail to solve problem with these types of operating constraints. To
optimize these types of problems an intelligence scheduling of generating units is required and by this we can achieve minimum
operating cost with higher reliability.

Recently, different nature inspired (NI) techniques that follow heuristic approaches have been proved to be effective with
promising performance due to their ability to solve complicated problem specially related to power system. These include genetic
algorithm (GA) (Walter et al., 1993; Oreo et al., 1996), evolutionary programming (EP) (Sinha et al., 2003), simulated annealing
(SA) (Vishwakarma et al., 2013) , differential evolution (DE) (Noman et al., 2008), particle swarm optimization (PSO)
(Selvakumar et al., 2007; Chaturvedi et al., 2008; Park et al., 2010) etc. Recently novel NI techniques as well as improved version
has been also proposed for solution of complex constrained ELD problem as bacterial foraging optimisation(BFO) (Panigrahi et
al., 2008), biogeography-based optimization(BBO) (Bhattacharya et al., 2010) , group search optimizer(GSO) (Dalvand et al.,
2012 ), ant colony optimization(ACO) (Pothiya et al., 2010), cuckoo search algorithm(CSA)( Basu et al., 2013), krill herd
algorithm(KHA)(Mandal et al., 2014) , chemical reaction optimization (CRO)( Roy et al., 2014) , flower pollination
Algorithm(FPA) (Dubey et al., 2015), gravitational search algorithm(GSA)(Udgir et al., 2013), hybrid PSO GSA(Dubey et al.,
2014; Duman et al., 2015) , invasive weed optimization(IWO) ( Barisal et al., 2015) etc. Detail review of NI techniques for
solution of ELD can be found in (Dubey et al, 2014).

Now a day’s renewable energy resources and integrated power generation system has attracted much attention of researchers.
Even though initial installation cost of renewable power generating system is higher, but the operating cost of solar and wind
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generating unit is significantly low. These are the two potential alternate energy resource attract much to match growing electric
power demand of electricity as prices of limited fossil resources is increasing day by day. However unpredictable wind velocity of
wind and weather dependent solar irradiation, unable to match time varying power demand as a result integrated power generation
system creates new operational challenges for optimum generation scheduling. Here maintaining reliability is a big issue for the
resulting integrated solar-wind-thermal system problem. Therefore ELD problem needs reformulation to include the operating
constrains occurs due to uncertain nature of wind and weather dependent solar irradiation. In this area also from energy
conservation point of view more researchers expressed their interest. Considering weather dependent and uncertainty, wind speed
is mostly expressed as probability distribution function (pdf) )( Hetzer et al., 2008; Reddy et al., 2013; Zhu et al., 2014; Dubey et
al., 2015 ). The wind integrated ELD modeling using pdf can be presented in ( Hetzer et al., 2008; Reddy et al., 2013; Zhu et al.,
2014; Dubey et al., 2015 ) and modeling of solar-wind system is presented in(Karaki et al., 1999; Habib et al., 1999; Deshmukh et
al., 2008; Reddy et al., 2015). Renewable power integration makes ELD model much complex due to additional constraints and
required robust algorithm to solve these types of problems.

In this paper a novel optimization algorithm namely back tracking search (BSA) is applied to solve the ELD problems with/
without solar and wind power integration. BSA utilizes the principles of evolution and natural genetics where the population is
updated by mutation, crossover and selection to generate the trial population.

2. Problem formulation of ELD problem with solar and wind integration

The ELD problem with wind integration has complex equality and inequality constraints associated with thermal, and wind
power generating units. Due to zero fuel cost of solar power generation, the prime objective becomes minimization of fossil fuel
cost of thermal units along with cost of wind power generating units (FTotal ) . The objective function to be minimized as:
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The  cost of thermal power generation with VPL effect can be written as:
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The  cost of thermal power generation with cubic function can be expressed as:
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The cost of wind power output using wind power coefficient j can be expressed as (Hetzer et al., 2008; Dubey et al., 2015):
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2.1 Equality constraints
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2.2 Inequality constraints

Generation power should lie within minimum and maximum values.

maxmin
iii PPP  (6)

maxmin
wjiwj PPP  (7)

2.3 Modeling of wind power system

The wind velocity is an arbitrary variable and wind power imparts a nonlinear connection to it. The wind speed information from
different places is found to take after weibull distribution nearly and it is use for processing wind speed and wind power. pdf of
wind velocity is expressed as (Hetzer et al., 2008; Reddy et al., 2013):
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The wind power (Wp) can be represented as a stochastic variable and calculated from wind speed as (Hetzer et al., 2008).
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Whenever the wind speed is in between the vr  and vci, the power output of the wind farm is assumed to be a continuous variable,
its pdf is given as  (8). The total of all wind generator yields is taken as one random variable Pwj and the pdf is given by
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To describe the condition that the available power is not ample to satisfy the total power demand, a probabilistic tolerance δa is
chosen to model the uncertainty of wind power availability. In context to this the power balance constraint in (12) with wind and
solar power is modified as expressed below.
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A smaller value of δa decreases the risk of not enough wind power and increases the thermal generation to ensure the good
reserve capacity.

2.4 Modeling for photovoltaic (PV) system

Power output PV generator mainly depends on solar radiation and temperature. The hourly power output of PV generator can be
calculated as (Deshmukh et.al., 2008, Habib et al.,1999) :

pvTs AIP  (13)

For PV system average solar radiation (IT) for an inclined surface can be calculated as (Duffie et al.,1991) :

rbabbaaT RIIRIRII )(  (14)

System efficiency (η) is represented as (Habib et al.,1999):

fpcem P  (15)

Where,  )(1 rekrem TT   (16)
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3. Backtracking search algorithm

BSA is a metaheuristic technique based on the principles of evolution and natural genetics where the population is updated by
mutation, crossover and selection to generate the trial population(Civicioglu et al.,2013). The five processes used here are
initialization, selection-I, mutation, crossover and selection-II. The mutation and crossover operations in BSA are relatively
different from that of GA and DE and are found to produce better population diversity. BSA is a double population algorithm
which makes use of random past experiences stored in its memory. Most NI techniques make use of the better or best individuals
for generating new solutions but BSA employs the current and previous iteration populations, non-uniform crossover, a random
mutation strategy having only one direction individual for each solution and a novel boundary control mechanism. The magnitude
of mutation is controlled by a random mutation factor drawn from the normal distribution which randomly controls
exploration/exploitation depending on larger/smaller value of the mutation factor. There is only one control parameter mixrate
which controls the number of elements of individuals which are mutated in each iteration. BSA has various principle steps as
initialization, selection-I, mutation, crossover and selection-II and are described as below. Figure 2 shows the flow chart of BSA.

3.1. Initialization

In this process a set of population is randomly generated within the limits of upper bound (ub) and lower bound (lb) as:
)(* lbubrandlbpop  (17)

rand is any random number between 0 and 1.

3.2. Selection-I

Here a set of historical population is generated. The process of generation of historicalpop is same as the pop.
)(* lbubrandlbpophistorical  (18)

Then each element of historical population is updated through a simple reasoning as below:

)1,0(,,  jiendpoppophistoricaljiif (19)

The advantage of generating historical pop is that, it is stored in BSA as a memory and historical pop is not changed until it’s get
a better fitness value.

After that a permute process is used to change the order of individuals of pophistorical :

))(( popsizerandpermpophistoricalpophistorical  (20)

3.3. Mutation

In mutation process mutants i.e. trial population matrix are generated as:

mutant )(* poppophistoricalMpop  (21)

Where M is taken (3*rndn) and it controls the amplitude of search- direction matrix (historicalpop-pop) and it is based upon
standard Brownian walk. Mutants take some advantage from grown experienced or previous generation due to involvement of
historical population.

3.4 Crossover

As an initial form of trial population is generated as per (21) and here final form of trial population is generated. There are two
algorithms inside crossover process, first is for generation of integer valued matrix (Bmap) and second is for mixrate that controls
the number of elements and they will further mutate by (mixrate * rand* D). Here D is the dimension of the problem.

3.5. Selection-II

It is the final stage of BSA, here all the population sets are put together and compared to get a better fitness value of population.
If in selection-II process the updated values have better fitness then the global minimum value of individual of population obtained
so far. Then it is updated to global minimizer.

The pseudo code depicted in Figure 1 shows the process applied as selection I, Mutation and crossover in BSA algorithm for
optimization.
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Figure 1. Section I, Mutation and crossover process for BSA algorithm

Figure 2. Flow chart of Backtraking search algorithm

Algorithm-2

Boundary control mechanism for trial population
for i=1:popsize
    for j=1:D
        k=rand<rand;

 if pop(i,j)<lb(j)
          if k
             pop(i,j)=lb(j)
         else
            pop(i,j)=rand*(ub(j)-lb(j))+lb(j);
         end
      end
     if   pop(i, j)>ub(j),
        else
        pop(i,j)=rand*(ub(j)-lb(j))+lb(j);
     end
   end
end
    T(i,:)=pop(i,:)

end

Algorithm-1

Define mixrate
historicalpop=historicalpop (randperm(popsize),:)
Map=zero(popsize,D);
If rand<rand,
  for i=1:popsize
       u=randperm(D);
       map(i,u(1:ceil(mixrate* rand* D)))=0;
 end
 else
   for i=1:popsize

      map(i, randi(D))=0;
   end
end
mutant=pop+(map*F)*(histiricalpop-pop);

    Start

Select popsize , Dimension (D) maximum iteration, ub, lb

Generate initial population (pop) and historical
population randomly

Select i and j (0,1)

i<j Update historical population as per (19)

Permute historicalpop

Generate Trial population (T) as per (21)

Randomly select Bmap are either 0 or 1

Update trial population (T)Bmap=1

Satisfy Boundary ConditionGenerate trail population (T) again

Compare the trial population (T) and pop

Best fitness set of population
updated to global minimizer

Stop

No Yes

NO

Yes

YesNO
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4. Implementation of BSA for solar-wind-thermal scheduling

Step-1: Each individual set of population matrix is Initialized as per (22) generated within the limits of maximum and minimum
power dispatched

)(*),( minmaxmin
iii PPDNrandPpop  (22)

Step-2: Evaluate the objective function for each set of population generated by (22) with the satisfaction of all constraints (5)-(10).

Step-3: Based on values of objective function identify the best population set which gives minimum values of (1), and keep it
unchanged after each iteration without making any modification in it.

Step-4: Now historical population is initialized the using (18).Compute the objective function as per the historical population after
that each set of historical population is updated as per (19) for each iteration. After making new set of historical population each
set of power dispatched is shuffled as per (20).

Step-5: Initial position of mutant matrix is produced using (21).

Step-6: Trial population set (T) is generated in this step. The algorithm-1 defines the mixrate and algorithm-2 defines the boundary
control mechanism. Update the values of T is applicable to individuals of generated matrix. Compute the objective function for T.

Step-7: For population (pop) set and trial population (T) set the values of objective function is compared. If the set of population
has better fitness than the global minimum value then this new set of population is updated to global minimizer.

Step-8: Iteration process is terminated here as if current iteration is greater than or equal to maximum iteration. Store the best
power output in an array otherwise repeat step-1 to step-7 in that order.

5. Results and discussion

To demonstrate the efficiency of BSA, it is applied and test on three types of test cases, namely optimal scheduling of thermal
system, optimal scheduling of solar-thermal system and optimal scheduling of solar-wind-thermal system. code of all test cases is
developed and implemented in MATLAB 9 and programs are executed on 2.10 GHz Intel Pentium Processor with 1.0 GB RAM.

5.1. Description of Test cases

Test Case-1:
In this test case standard 13 generating unit with valve point loading effect (Sinha N. et al., 2003).
Load demand is set at 2520MW and transmission loss is not considered here.

Test Case-2:
In this test case has 26 generating units with cubic fuel cost characteristic (Chandram et al., 2011). The power demand is set at
2900MW and transmission losses are not considered here.

Test Case-3:
It is a composite solar-thermal system having 26 thermal generating units similar to test case 2 and a solar plant of maximum
rating 50 MW. The data for radiation and average ambient temperature is adopted as per (Solar Radiation Hand Book, et al.,2008)
for city Delhi (India).The other data for PV generator are set at Pf =0.9, Apv =90163.04m2, β=-4.7e-3, ηre=0.105, ηpce=0.9 and Tre

=25ºC.

Test Case-4:
It is an integrated wind-solar-thermal system. Here all power generating unit data are considered similar to test case 3 along with
an additional wind farm. The cost coefficient for wind farm considered as kr =1, kp=5, rated power output 155 MW. The other
constants are set at vci=5, vco =45 and vr=15. The shape and scale factor are considered as 1 and 15 respectively. The whole
network adopted for simulation analysis in this test case is shown in Figure 3.
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Figure 3. Wind-solar- Thermal system

5.2. Selection of Parameters

BSA belongs to the family of stochastic method; it requires optimal selection of tuning parameter to get global optima solution.
In order to explore best tuning parameter BSA, it is applied and tested on test case 1 having 13 power generating unit system with
non convex fuel cost characteristic. As BSA have only one control parameter as pop size (NP), twenty-five independent run were
conducted with different value of NP. The statistical results obtained by simulation are tabulated in Table.1. Here it is observed
that optimum operating cost is obtained with NP=100 with comparatively low standard deviation (SD) of 0.750, therefore selected
for simulation analysis.

Table 1. Effect of pop size (NP)
Pop Size (NP) Min cost ($/h) Max cost ($/h) Ave cost ($/h) S.D CPU (s)
50 24165.2809 24166.7871 24165.9115 0.574 4.07
100 24164.0524 24166.5831 24164.2942 0.750 5.12
150 24164.7986 24165.9506 24165.2273 0.4261 7.65
200 24164.5755 24165.4754 24164.9175 0.3068 11.36

5.3. Optimal dispatch solution Comparison of results

As test case 1 is highly nonlinear multi-model problem due to valve point loading effect, and it is quite difficult to get global best
solution. Here the optimum cost obtained by BSA is 24164.0524 $/hr, which is found to be better than recent reported method as
Genetic algorithm (GA) (Noman et al., 2008), Differential evolution (DE) (Noman et al., 2008), Hybrid Chemical reaction
Optimization(HCRO) (Roy et al., 2014), Chemical Reaction Optimization (CRO) (Roy et al., 2014), Iteration PSO with time
varying acceleration coefficients (IPSO_TVAC) (Ivatloo et al., 2012) and Simulated annealing (SA) (Vishwakarma et al., 2012).
The Optimal dispatch solution obtained by BSA and statistical comparison of results are presented in table 2 and table 3
respectively. The convergence characteristic obtained by BSA for test case 1 is plotted in Figure 4.
For test case 2, which is comparatively a large system and have cubic fuel cost characteristic, the optimum cost obtained by BSA
over twenty-five repeated trails  is 43436.5297($/hr) . Here also the results obtained by BSA are found to be comparable with
Hybrid PSO-GSA (Dubey et al., 2014) and Equal Embedded Algorithm (EEA)   (Chandram et al., 2011) as depicted in Table 4.

Similarly for renewable power integration as in test case 3, the best cost solution obtained by BSA is 42250.8926 ($/hr), where as
for wind-solar-thermal test case 4 it is 40608.8435($/hr). Their full dispatch solutions are presented in Table 5. Here it observed
that total operating cost reduced by approximately 3% by solar integration and by 6.5% by integration of both wind and solar
system as compared to thermal system with cubic fuel cost characteristic as described in test case 2. The smooth and stable
convergence characteristic obtained by BSA for thermal system (test case 2), solar thermal system (test case 3) and, integrated
wind-solar- thermal system (test case 4) is plotted in Figure 5.

Table 2. Optimal Power Dispatch for 13 unit system test case 1
Unit GA** DE** CRO** HCRO** IPSO_TVAC** SA** BSA
P1 (MW) 628.32 628.3185 628.3149 628.3185 628.319 628.3185 628.3185
P2 (MW) 356.49 299.1993 299.2010 299.1993 299.199 299.1993 299.1993
P3 (MW) 359.43 299.1993 294.9875 294.9957 295.878 299.1993 294.4848
P4 (MW) 159.73 159.7331 159.7100 159.7331 159.265 159.7331 159.7331

Wind power Plant Solar Power Plant Thermal Power Plant

Power Demand
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Table 2 (cont’d). Optimal Power Dispatch for 13 unit system test case 1
Unit GA** DE** CRO** HCRO** IPSO_TVAC** SA** BSA
P5 (MW) 109.86 159.7331 159.7335 159.7331 159.733 159.7331 159.7331
P6 (MW) 159.73 159.7331 159.7330 159.7331 159.733 159.7331 159.7331
P7 (MW) 159.63 159.7331 159.7332 159.7331 159.733 159.7331 159.7330
P8 (MW) 159.73 159.7331 159.7330 159.7331 159.733 159.7331 159.7331
P9 (MW) 159.73 159.7331 159.7332 159.7331 159.733 159.7331 159.7331
P10 (MW) 77.31 77.3999   77.3631   77.3999   77.363 77.3999 77.3999
P11 (MW) 75.00 77.3999   77.2999   77.3999   77.397 77.3999 77.3999
P12 (MW) 60.00 92.3999   92.4154   92.3999   92.397 87.6845 92.3997
P13 (MW) 55.00 87.6845   92.0423   91.8882   91.517 92.3999 92.3997
Total cost($/h) 24398.23 24169.9177 24,165.1664 24,164.8260 24,166.8 24169.9176 24164.0524

Table 3. Statistical results for 13 unit system test case 1
Methods CRO** HCRO** IPSO_TVAC** SA** BSA
Min cost ($/h) 24,165.1664 24,164.8260 24,166.8 24169.9176 24164.0524
Max cost ($/h) 24,169.3642 24,165.3402 24,169.41 N.A 24166.5831
Average cost ($/h) 24,166.9355 24,164.9837 24,167.37 N.A 24164.2942
S.D 0.94 0.93 N.A N.A 0.75
Ave CPU time(sec) 5.56 5.04 N.A N.A 5.12
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Table 4. Optimal Power Dispatch for 26 unit system

Table 5. Optimal power dispatch solution for renewable integrated system obtained by BSA
(Test case 3 and Test case 4)

Unit Test case 3:Solar Thermal system Test case 4:wind-Solar- Thermal system
P1 (MW) 2.40195 12.0000
P2 (MW) 2.40296 2.4014
P3 (MW) 2.40235 2.4118
P4 (MW) 2.40286 2.4012
P5 (MW) 2.40033 2.4059
P6 (MW) 4.00003 4.0006
P7 (MW) 4.00003 4.0000
P8 (MW) 4.00005 4.0008
P9 (MW) 4.00005 4.0000
P10 (MW) 75.9999 76.0000
P11 (MW) 75.9999 75.9999
P12 (MW) 75.9999 76.0000
P13 (MW) 75.9999 76.0000
P14(MW) 100.0000 99.9988
P15(MW) 99.9999 99.9984
P16(MW) 99.9998 99.9979
P17(MW) 155.0000 155.0000
P18(MW) 155.0000 154.9998
P19(MW) 155.0000 154.9988
P20(MW) 155.0000 155.0000
P21(MW) 175.1190 119.1194
P22(MW) 148.2370 93.2265
P23(MW) 124.6710 71.0914
P24(MW) 350.0000 349.9996
P25(MW) 400.0000 399.9985
P26(MW) 400.0000 399.9980

Psolar(MW) 49.9636 49.9521
Pwind(MW) NA 154.9992

Total thermal cost($/h) 42250.8926 40283.6778
Wind over estimation cost($/hr) NA 325.1642

Wind under estimation cost($/hr) NA 0.0015
Total operating cost($/hr) 42250.8926 40608.8435

Unit EEA* TVPSOGSA** BSA Unit EEA** TVPSOGSA** BSA
P1 (MW) 2.40000 2.40000 2.40001 P14(MW) 100.00000 100.00000 100.00000
P2 (MW) 2.40000 2.40000 2.40002 P15(MW) 100.00000 100.00000 100.00000
P3 (MW) 2.40000 2.40000 2.40000 P16(MW) 100.00000 100.00000 100.00000
P4 (MW) 2.40000 2.40000 2.40004 P17(MW) 155.00000 155.00000 155.00000
P5 (MW) 2.40000 2.40000 2.40001 P18(MW) 155.00000 155.00000 155.00000
P6 (MW) 4.00000 4.000000 4.00003 P19(MW) 155.00000 155.00000 155.00000
P7 (MW) 4.00000 4.00000 4.00003 P20(MW) 155.00000 155.00000 155.00000
P8 (MW) 4.00000 4.00000 4.00004 P21(MW) 190.99000 187.86800 190.99900
P9 (MW) 4.00000 4.00000 4.00002 P22(MW) 166.00000 165.09440 166.00000
P10 (MW) 76.000000 76.00000 76.00000 P23(MW) 141.00000 145.03760 141.00100
P11 (MW) 76.00000 76.00000 76.00000 P24(MW) 350.00000 350.00000 350.00000
P12 (MW) 76.00000 76.00000 76.00000 P25(MW) 400.00000 400.00000 400.00000
P13 (MW) 76.00000 76.00000 76.00000 P26(MW) 400.00000 400.00000 400.00000

Total cost($/h) 43436.5 43436.58355 43436.5297
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5.4. Computational efficiency and robustness

The computation time for BSA over 25 independent trials is used to authenticate the computational efficiency of applied
approach.  Form table 3 it is evident that standard deviation for test case 1 is found to be low which approves that BSA is
computationally efficient .Also as per statistical results in terms of minimum, maximum, average cost, S.D and average CPU time
in table 3 confirms the superiority and robustness of BSA for complex constrained optimization problems related to power system.

The average CPU time associated with different test cases under investigation are depicted in figure 6.which is found to be
obvious as per complexity and dimension of test cases.
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Figure 6. Average CPU time for different test cases

6. Conclusion

The paper presents a novel optimization technique BSA to solve ELD problem with / without integration of solar power. Wind
power is model by pdf where as solar photo voltaic system is model by deterministic approach. As BSA is a double population
algorithm employs the current and previous iteration populations, non-uniform crossover, a random mutation strategy having only
one direction individual for each solution and an efficient boundary control mechanism which helps to attain global best solution.
As a results simulation results obtained by BSA is found to be significantly better than individual performances of GA, DE, CRO,
IPSO_TVAC, SA and TVPSOGSA. All operating constraints are satisfied as well as BSA compute best dispatch solution in
efficient manner irrespective of dimension and complexity of test cases. It can be easily applied and extended for solution of large
scale optimization problem related to power system operation and control.

Nomenclature

Fth(Pi) Cost associated with power generation of ith  thermal unit
Fw(Pwj) Cost associated with power generation of jth wind farm
FTotal Total operating cost of power generation
ai, bi, ci, di & ei Cost coefficients of ith generating unit
m number of thermal power units
n number of wind farm
PD Total Power Demand

maxmin , ii PP Minimum and maximum power output limit of ith thermal generating unit

maxmin , wjwj PP Minimum and maximum power output limit of jth wind farm

pdf Probability density function
α ,β shape and scale factor
vr, vci and vco rated wind speed, cut-in speed and cut-out speed
IT Average solar radiation incident on PV surface
Ia and Ib normal and diffuse solar radiations
Ra, Rb and Rr tilt factor for normal, diffused and refracted surface
Apv Area of Solar Modules
Ps Average power output of PV generator
η System efficiency
ηpce Power conditioning efficiency
Pf Packing factor
ηm Module efficiency
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ηre Reference module efficiency
β Array efficiency temperature coefficient
Tk Average cell temperature
Tre Reference temperature for cell efficiency
** Result from references
NI Nature Inspired
NA Not available in literature
S.D Standard Deviation
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