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Abstract

This paper presents investigation of laser bending of AISI 304 plate having a rectangular cut out at its middle via process
modeling by finite element method and statistical techniques. The objective is to study the effects of process and geometric
parameters on thermal and deformation fields. Correlations are developed, with satisfactory accuracy, to predict maximum
temperature and bending angle in the form of second order equations using response surface methodology. Artificial Neural
Network models are also developed to predict maximum temperature and bending angle. Results indicate that maximum
temperature and bending angle increases with laser power and decreases with increase in scanning speed. Moreover, bending
angle decreases with increase in cut out dimension along laser scanning path due to the reduced interaction time between the
work piece and the laser beam. Predictions from regression models and neural network models are compared with simulation
results and performance of both approaches are found to be satisfactory.
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1. Introduction

Laser forming is an emerging technology in diverse manufacturing industries, such as, automobile, shipbuilding, aerospace,
micro electronics etc. Laser forming is realized by introducing residual thermal stress in the component under consideration. The
internal stress induce plastic strain to yield bending in the component. In contrast to conventional techniques, laser bending
requires no physical contact and possesses the inherent advantage of process flexibility associated with laser manufacturing
techniques.

Extensive studies have been undertaken in the area of laser forming process to explore the process and geometrical parameters
using experimental and numerical techniques. The temperature field is simulated by (Ji and Wu, 1998). In their following work,
(Wu and Ji, 2002) presented the deformation field during laser forming. (Kyrsanidi et al., 1999) presented their results for laser
forming process of metallic plates. (Cheng et al., 2004) presented the effects of geometry, including sheet width and length on
deformation. They found that the bending increases with the sheet dimension along scanning path and sheet dimension across the
scanning path has little effect on bending angle. (Shi et al., 2007) presented numerical simulation of bending for with different
shapes of laser beam such as circular, square and rectangular. (Gollo et al, 2010) presented numerical and experimental studies
with DoE technique to characterize the effects of process parameters on deformation. They have found that bending angle depends
on beam diameter, pulse duration, scan velocity and laser power in diminishing order of significance. (Venkadeshwaran et al.,
2012) used FEM and RSM to predict bending angle and optimise process parameters for bending of stainless steel. They have
identified optimised parameters to increase productivity, reduce operating cost and HAZ. (Zahrani and Marasi, 2013)
experimentally investigated role of process parameters on edge effect and longitudinal distortion during laser bending. Their
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results indicate that edge effect and longitudinal distortion decreases with increase in sheet thickness, scan speed and laser power
and decrease in beam diameter. (Maji et al., 2013) presented experimental investigation of bending with pulsed laser to explore the
effect of process parameters. (Shichun and Jinsong, 2001) studied the effect of line energy, material properties and sheet geometry
on bending angle. Their results show that bending angle decreases sharply with increase in sheet thickness. (Chen et al., 2004)
investigated the effects of deformation parameters on bending angle for Ti-6Al-4V alloy sheets. They observed that bending angle
decreases with increase in sheet thickness and increases with sheet width. (Nadeem and Na, 2011) studied the deformation
behavior different specimen geometries such as rectangular, circular and ring shape. They found that linear irradiation paths for
rectangular plates have more deformation than curved irradiation paths for ring and circular specimens.

So far, Laser bending of rectangular plates have been studied extensively by many researchers. However, many applications
require bending of rectangular plates with a rectangular cut out at its middle. Forming of such parts, with rectangular cut out, is
extensively used in automotive industries. The  front and rear panels in car bodies have this type of cut out geometries requiring
sheet bending. The cut outs are required for fitting bulb housings, creation of opening for mounting air grills for radiator, etc.
Rectangular plates with central cut out have not been studied till date with the exception of (Shen et al., 2012). The present paper
makes an in-depth study of the effects of process parameters on the bending of AISI 304 plates. The present work further
investigates the effects of variation of the dimensions of the rectangular cut out on the final bending. The present work also
investigates the effects of process parameters on temperature distribution and deformation on laser bending of AISI 304 plate
metal with rectangular cut out at its center through finite element method and response surface methodology. COMSOL/MATLAB
programming code is used to develop the finite element model.

2. Finite Element Simulation

The workpiece dimension used in the study is of 100 × 50 × 1.5 mm3. To investigate the effects of rectangular cut out and laser
process parameters, namely, power, scanning speed and their interactions on temperature distribution and final bending angle,
different dimensions of cut out and process parameters are chosen for the present numerical simulation. Figure 1 shows a typical
work piece, scanning direction and fixed end of the plate. The simply-supported boundary conditions are applied at the fixed end
of the plate, and other ends are free. A laser beam traverses along the middle of the plate along the y-axis. The laser beam is
modeled as a moving surface heat flux.

Figure 1: Schematic diagram of the work piece

A 3-D free tetrahedral mesh is used in this numerical modeling. The temperature gradient and the stress gradient around the laser
scanning path are high and therefore, require a denser mesh. A non-uniform mesh pattern is used to reduce simulation time and
memory requirement. Figure 2 shows, typical mesh pattern used for numerical modeling.

Figure 2: Finite element mesh used for modeling
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Following assumptions are made for simulation of the process:
1. Material properties of the work piece are isotropic.
2. Laser intensity follows a Gaussian distribution.
3. Within the work piece, heat transfer takes place by conduction obeying Fourier's law and heat loss by free convection and

radiation are considered from the surfaces of the plate metal to the surrounding.
4. Melting is not involved in the work piece during laser forming process, so phase changes and heat generation are

neglected.
5. von-Mises yield criterion is considered in the bending process.

2.1 Governing Equations and Boundary Conditions
Following three-dimensional heat conduction equation within the specimen is considered
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where  is material density (kg/m3), c is specific heat (J/kg○C), k is thermal conductivity (W/m○C), T(r,t) is the temperature (K), r

is the coordinate (m) in the reference configuration, t is time (s) and r is the gradient operator.

Material cooling phase is made through natural convection and radiation from its surfaces exposed to ambient air and expressed
through following boundary conditions.
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where, h is heat transfer coefficient, which is taken as (10 W/m2K), Ts is plate metal surface temperature and T0 is the ambient
temperature , which is taken as 300K,  is emissivity and  is Stefan Boltzmann constant (5.6703×10-8 W/m2K4).

2.2 Heat Flux
The moving heat flux Q is applied along the scanning path with a Gaussian distribution and expressed as follows:
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where, A is the absorption coefficient, P is laser power (W), R is beam radius (m) and r is distance (m) of a point from beam
centre.

2.3 Material Properties
The material AISI 304 stainless steel is used in this numerical study. Stress-strain behavior is expressed through bi-linear curves.
The temperature dependent material properties are taken from (Che et al, 2011). Elasto-plastic properties (Paramasivan et al.,
2014) also used in the present analysis.

2.4 Validation of Finite Element Model
To validate the capability of the current simulation, results are compared with published results of (Venkadeshwaran et al, 2012)

and (Jung, 2006). The materials used are AISI 304 and Ship-building steel 1.0584 (D36) for validation. The plate size and process
parameters are taken from their work for validation. Two bend angle histories and two temperature histories obtained from the
simulations are compared to the experimental results reported by (Jung, 2006). In the present model, the temperature reaches a
maximum of 722○C at plate centre during heating. (Jung, 2006) have achieved maximum of 728○C at plate centre. Table 1
summarises the input parameters, the simulation results of temperature field and percentages of error for validation with published
work of (Jung, 2006).

Table 1: Validation of temperature field
Parameter Temperature at plate centre (○C) Percentage

Error
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Plate
thickness
[mm]

Present( t ) (Jung, 2006) ( s )

1500 5 16 6 722 728 -0.82
3000 10 16 4 903 844 6.99
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Table 2 summarises the input parameters, the simulation results of bending angle and percentages of error with published work of
(Venkadeshwaran et al., 2012) and (Jung, 2006). Bend angles and thermal fields achieved from the present simulations are found
to be in close agreement with those from the both references (Venkadeshwaran et al., 2012) and (Jung, 2006).

Table 2: Validation of deformation field
Parameter Bending angle (degrees) Percentage Error
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aran et al,

2012) ( v )

(Jung, 2006)

( v )

125 20 2 1.5 0.0975 0.101 ------- -3.46
375 20 2 1.5 1.2044 1.257 ------- -4.18
1500 5 16 6 0.468 ------- 0.47 -0.42
3000 10 16 4 1.41 ------- 1.32 6.81

3. Results and Discussion

In this segment, the temperature distribution and deformation field of AISI 304 plate with 15 × 15 mm2 cut out is presented at
different time intervals for laser power of 375 W, scanning speed of 10 mm/s, spot diameter of 2 mm and plate thickness 1.5 mm
as a typical case within the range of study.

3.1 Transient Temperature and Deformation Fields of a Plate
Figure 3 shows the temperature distributions of the plate at three instances: (a) when the laser beam is before the cut out (at t = 1.6
s), (b) when the laser beam is at the farthest edge of the plate (at t = 5.6 s) and (c) after 30 s. During heating, peak temperature of
1702 K is reached at the farthest point on the scanning line. After 30 s, the temperature drops further in the range of 300 to 339 K.

Figure 3: Temperature distribution at three instances: (a) beam is before the cut out, (b) beam is at plate end, (c) after cooling
(laser power = 375 W, scanning speed = 10 mm/s, beam diameter = 2 mm, plate thickness = 1.5 mm)
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Figure 4: Maximum temperature along the scan line

The maximum temperature observed along the scan line of the plate is shown in Figure 4. It can be seen from the figure that the
temperature starts rising gradually on the top surface and reaches a steady maximum in the initial stage of heating. The
temperature increases rapidly when the beam approaches the cut out. The reason for this is that heat deposited by the laser beam
and the heat retained by the material behind the beam is conducted into the cold region ahead of the beam, and as the beam reaches
the cut out edge the heat flowing ahead of the beam can only be transported to the surrounding air by convection through the cut
out surface at a much slower rate as air is a poor dissipater of heat. Hence, a heat buildup occurs at the edge of the cut out with a
consequent rise in temperature. The plate attains a maximum temperature when laser beam reaches the upper edge of the plate due
to a similar reason. The nature of maximum temperature variation from the start of the plate to the starting edge of the cutout is
identical to the variation of maximum temperature from the farthest edge of the cutout to the end of the plate, as may be observed
in Figure 4. The small differences in maximum temperature, on a point to point basis in the lower and upper parts of the plate,
varies from a minimum of 0.001% to a maximum of 2.32% , and the same can be attributed to numerical inaccuracy.

Figure 5: z-component of displacement (mm) after 30 s: (a) full plate, (b) 15 × 15 mm2 cut out plate, (c) 15 × 35 mm2 cut out plate,
(d) 35 × 35 mm2 cut out plate (laser power = 375W, scanning speed = 10 mm/s, plate thickness = 1.5 mm, beam diameter = 2 mm)
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Figures 5 (a-d) show the variation of z-displacement for different size of the cutouts after 30 s. It can be seen that under the
conditions of same process parameters, displacement is varying depending upon the size of the cutout. The maximum out of plane
displacement (along z) is achieved for a full plate without cutout followed by 15 × 15 mm2 cut out plate, 15 × 35 mm2 cut out plate
and 35 × 35 mm2 cut out plate. It is evident from these figures, that z-displacement decreases with the depth of cut out and width
of cut out has little effect on bending angle. The reason for this is that the sample without cutout has more heating time, receiving
maximum amount of energy. So, a greater thermal stress and plastic strain develop in the region of the scanning path compared to
the plates with cutout.

3.2 Response Surface Methodology
Response surface methodology is a set of mathematical and statistical techniques that are useful for empirical model and
optimization. A model predicting the response for some independent input variables can be obtained by conducting experiments
and applying regression analysis (Acherjee et al, 2012) and (Montgomery, 2001). If all independent parameters are measurable,
the response surface can be expressed as:

(5)),.....,,( 321 ernr xxxxfy 
where y is the response, rf is the function of response, er is the experimental error, and ),.....,,( 321 nxxxx are independent

parameters. The application of response surface method is to use a series of designed experiments to find an approximate
relationship between a response and a number of input variables, based on the observed data. In the present work, response is
collected from numerical simulation for laser bending of AISI 304 plate with a cut out at its middle after one laser pass. The
process parameters (low actual and high actual) and their notation and units are presented in Table 3.

Table 3: Process parameters and their units and limits
Parameter Notation Unit Low actual High actual
Laser power P W 275 375
Scanning speed V mm/s 10 20
Cut out dimension in
x-direction

X mm 15 35

Cut out dimension in
y-direction

Y mm 15 35

Further, numerical simulations are carried out using the developed FEA model as per the design layout furnished in Table 3. The
choice of laser parameter ranges are based on the criteria that the plate attained significant bending, yet the material did not attain
melting temperature. The maximum temperature and deformation of the plate as responses are listed in Table 4.

Table 4: Design layout and responses from simulation
Sl. No Process parameters Responses

P (W) V (mm/s) X (mm) Y (mm)

Maximum
temperature

maxT (K)
Bending angle

b (deg)

1 325 15.0 25.0 43.2 1451 0.233
2 275 20.0 15.0 35.0 1203 0.249
3 325 5.9 25.0 25.0 1726 0.970
4 325 15.0 25.0 25.0 1424 0.550
5 375 20.0 35.0 15.0 1456 0.588
6 275 10.0 15.0 15.0 1397 0.609
7 325 15.0 25.0 25.0 1424 0.550
8 375 10.0 35.0 15.0 1701 0.963
9 375 20.0 15.0 35.0 1459 0.495
10 375 20.0 15.0 15.0 1458 0.600
11 275 10.0 35.0 35.0 1397 0.420
12 275 20.0 15.0 15.0 1202 0.317
13 275 20.0 35.0 35.0 1201 0.239
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Table 4 (cont’d): Design layout and responses from simulation
Sl. No Process parameters Responses

P (W) V (mm/s) X (mm) Y (mm)

Maximum
temperature

maxT (K)
Bending angle

b (deg)

14 325 15.0 25.0 25.0 1424 0.550
15 325 15.0 43.2 25.0 1418 0.539
16 325 15.0 25.0 25.0 1424 0.550
17 234 15.0 25.0 25.0 1163 0.266
18 275 10.0 15.0 35.0 1398 0.457
19 375 10.0 15.0 35.0 1703 0.810
20 325 15.0 25.0 25.0 1424 0.550
21 325 15.0 25.0 25.0 1424 0.550
22 375 10.0 35.0 35.0 1702 0.735
23 375 10.0 15.0 15.0 1702 1.014
24 275 10.0 35.0 15.0 1396 0.566
25 275 20.0 35.0 15.0 1200 0.291
26 325 15.0 25.0 6.8 1425 0.593
27 325 15.0 6.8 25.0 1415 0.573
28 375 20.0 35.0 35.0 1457 0.458
29 416 15.0 25.0 25.0 1667 0.868
30 325 24.1 25.0 25.0 1272 0.352

The final mathematical model for maximum temperature as a function of process parameters and cut out dimensions is obtained
through Design-Expert® 7.0:

028065003684208488901065484110000005

0490000158751888221278953260517417281624
222233
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(6)

The model F-value of 569.72 indicates the model is significant, with only 0.01% chance that a 'model F-value' this large could
occur due to noise. The ANOVA table of the quadratic model with other adequacy measures are listed in Table 5. Normally, R2

value varies from 0 to 1. The R2 value is 0.99 for predicted regression model, which is very close to 1, and is representing that this
regression model has good predictive capability.

Table 5: ANOVA for response surface quadratic model of maximum temperature
Source Sum of

Squares
Degrees
of
freedom

Mean
squares

F-value p-value

Model 750345.6 14 53596.11 569.7189 < 0.0001 significant

P 441714 1 441714 4695.356 < 0.0001

V 295642.1 1 295642.1 3142.633 < 0.0001

PV 2401 1 2401 25.52228 0.0001

V2 9323.156 1 9323.156 99.10379 < 0.0001

Standard deviation=9.69921
Mean=1437.1
Coefficient of variation=0.674915
Predicted residual error of sum of squares
(PRESS)=7603.404

R2=0.998123
Adjusted R2=0.996371
Predicted R2=0.989886
Adequate precision=80.62916

The associated p-value of less than 0.05 suggests that model terms are significant. ANOVA results show that the effect of laser
power (P), scanning speed (V), the quadratic effect of the square of scanning speed (V2) and the two level interaction of laser
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power and scanning speed (P×V) are the most significant model terms for maximum temperature of the plate. The other model
terms are not significant and, hence, those can be eliminated to improve model adequacy. But in this present study, non-significant
terms are not eliminated from the final regression equation. The final regression equation has good prediction rate without
eliminating non-significance terms.

3.3 Effect of Process Parameters on Maximum Temperature
The effects of parameters on the response are identified through the developed response surface model. Figure 6 (a) shows the
response contour plot of the effect of the interaction between process variables (laser power and scanning speed) on maximum
temperature. From the plot, it is observed that maximum temperature increases with laser power for a scanning speed. However,
with increase in scanning speed for fixed laser power, maximum temperature decreases. Figure 6 (b) shows the response contour
plot of the effect of interaction between geometric parameters of the rectangular cutout (length and width) on maximum
temperature. It is observed from the figure that cut out dimensions in both directions have little effect on maximum temperature of
the plate. Figure 6 (c) and 6 (d) show the response contour plot and surface plot regarding the effect of interaction between process
parameter, laser power and geometric parameter, cutout width on maximum temperature. We observe that maximum temperature
increases with laser power and is negligibly affected by the cutout width, corroborating our observations from Figure 6(a) and
6(b).

Figure 6: Contour plots and response surface plot showing effects of input parameters on maximum temperature

The model F-value of 172.68 indicates the model is significant, with only 0.01% chance that a 'model F-value' this large could
occur due to noise. The ANOVA table of the quadratic model with other adequacy measures are listed in Table 6. The R2 value is
0.99 for predicted regression model, representing that this regression model has greater predictive capability. The associated p-
value of less than 0.05 for the model indicate model terms are significant. The ANOVA results show that the effect of laser power
(P), scanning speed (V), cut out in x-direction (X), cut out in y-direction (Y) and the quadratic effects of scanning speed (V2), cut
out in y-direction (Y2) and the two level interaction of laser power and scanning speed (P × V), laser power and cut out in y-
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direction (P × Y), scanning speed and cut out in y-direction (V × Y) are the most significant model terms associated with maximum
bending angle of the plate.

Table 6: ANOVA of response surface quadratic model for bending angle
Source Sum of

squares
Degrees
of
freedom

Mean
squares

F- value p-value

Model 1.33275 14 0.095196 172.6837 < 0.0001 Significant

P 0.576272 1 0.576272 1045.342 < 0.0001

V 0.529448 1 0.529448 960.4039 < 0.0001

X 0.005499 1 0.005499 9.974155 0.0065

Y 0.133832 1 0.133832 242.7677 < 0.0001

PV 0.011299 1 0.011299 20.49612 0.0004

PY 0.003812 1 0.003812 6.914757 0.0189

VY 0.00876 1 0.00876 15.89062 0.0012

V2 0.023796 1 0.023796 43.16585 < 0.0001

Y2 0.034561 1 0.034561 62.6927 < 0.0001

Standard deviation=0.023479
Mean=0.550179
Coefficient of variation=4.267571
Predicted residual error of sum of squares
(PRESS)=0.045031

R2=0.993834
Adjusted R2=0.988078
Predicted R2=0.96642
Adequate precision=48.79678

The final mathematical model for bending angle as a function of process parameters and cut out dimensions is obtained through
Design-Expert® 7.0:
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3.4 Effects of Process Parameters on Bending Angle
The effects of parameters on the response are identified through the developed response surface model. Figure 7 (a) shows the
response contour plot of the effect of the interaction between process variables and bending angle. From the figure, it can be seen
that bending angle increases with laser power for a constant scanning speed. Conversely, bending angle decreases when scanning
speed is increased at a fixed laser power. As scanning speed increases, interaction time between the workpiece and the laser beam
decreases, resulting in reduced absorption of heat by the workpiece, leading to reduction in bending angle. Figure 7 (b) shows the
response contour plot of the effects of the interaction between cut out geometric parameters and bending angle. It is observed from
the figure, that bending angle is hardly affected by the cut out dimension along x-direction while cut out dimension in y-direction
is kept constant. It also shows that bending angle decreases with increase in cut out dimension in y-direction while cut out
dimension in x-direction is kept constant. As cut out dimension in y-direction increases, interaction time between the workpiece
and the laser beam decreases, resulting in reduced absorption of heat by the workpiece. Thus, the amount of bending decreases
with increase in cut out dimension in y-direction. Figure 7 (c) shows the response surface plot of the interaction effect of
parameters laser power and cut out in y-direction on bending angle. The response is consistent with what have already observed in
Figure 7 (a) and (b).
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Figure 7: Contours and response surface plot showing the effects of input parameters on bending angle

4. Artificial Neural Network Design

Artificial neural network (ANN) is used to predict maximum temperature and bending angle. ANN is a multilayered architecture
made up of one or more hidden layers placed between the input and output layers. In the present work, a multilayer feed-forward
neural network with back-propagation learning algorithm is created to predict maximum temperature and bending angle. The input
variables, namely, laser power, scanning speed and cut out dimensions are used for training of the network while output variables
maximum temperature and bending angle are used for the present study to create the logical relationships between input variables
and output variables. The neural network performance depends on the number of hidden layers and number of neurons in them.
The network is trained with one and two number of hidden layers. The number of neurons and transfer function in each hidden
layer is varied at the time of training. Thus, more than a few number of combinations are trained to choose the best combination
with highest prediction accuracy. Six number of simulation data from out of 30 simulation results are used as test data. The
selected simulations data for testing is marked in boldface in Table 2. The remaining  24 simulation data are selected for training
the network. All the input and output variables are normalized between 0 and 1 to increase the accuracy of prediction and speed of
the network. Finally, the input and output are denormalized after prediction. Matlab 2011a application code is used to develop and
train the network. The selected structure of the neural network to predict maximum temperature are 4-6-5-1 (4 neurons in the input
layer, 6 neurons in the first hidden layer, 5 neurons in the second hidden layer and 1 neuron in the output layer). The selected
structure of the network is shown in Figure 8. The network training function TRAINLM is used for training the network, which is
the fastest and highly recommended algorithm.  The selected network is trained with learning rate of 0.05, maximum number of
epochs 5000, performance goal value of 0.0001 and maximum validation failure of  6. The selected structure of the neural network
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to predict bending angle is 4-7-3-1. The selected structure of the network is shown in Figure 9. The network training function
TRAINLM is used for training the network. The selected network is trained with learning rate of 0.05, maximum number of
epochs 5000, performance goal value of 0.0001 and maximum validation failure of 6. The training is continued until the error
reaches the performance goal or when the given number of epochs elapse.

Figure 8: Structure of network used for prediction of maximum temperature

Figure 9: Structure of network used for prediction of bending angle

5. Comparison of ANN and RSM Results and Discussion

5.1 Artificial Neural Network
The most fitting network architecture is selected based on the minimum prediction error and a very high value of regression. The

performance of the selected network to predict maximum temperature is satisfying with the mean squared error value of 3.2383e-5.
The regression plot of output vs. target is also obtained with regression value of  0.990 at end of the training. For a best fit, the
regression value should come to around 1. In training, the selected network architecture comes closest to 1 in comparison to other
trained network architectures. The performance of the selected network to predict bending angle is satisfactory with regression
value of  0.995 at the end of training. The accuracy of the selected network architecture is better portrayed through Figure10.

5.2 Accuracy of Neural Network and Regression Models
The maximum temperature and bending angle of a rectangular AISI 304 plate with a rectangular cut out at its middle are

predicted from predictive models i.e., neural network and response surface method, and predicted responses are compared based
on their prediction accuracies. Outputs of neural network and regression model are compared with numerical simulation results of
maximum temperature and bending angle for given input parameters, and the percent error in both cases are compared for
evaluating accuracy and relative performance of the predictive models. The efficiency of the predictive models is calculated by
Percentage error in prediction

(8)100
Pr





resultsimulationNumerical

RSM or ANNofoutputedictedoutputsimulationNumerical

The performance of neural network and regression models are compared in terms of percent error (%) for predicting the
maximum temperature and bending angle of laser forming of rectangular AISI 304 plate having a rectangular cut out at its middle.
The comparisons are made between simulation results and predicted results of neural network and regression models, as listed in
Tables 7 and 8. It can be observed from these results that ANN predictive model and regression model are in close agreement with
simulation results.
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Figure 10: Selected network training regression plot for bending angle

Table 7: Comparison of simulation and prediction results for maximum temperature

Sl.
No

P
(W)

V
(mm/
s)

Cut out
dimen-
sion in
x-dir.
(mm)

Cut out
dimen-
sion in
y-dir.
(mm)

Simula-
tion
result

Regression model ANN result

Actual
value

)( a

Predicted
value )( b

Error (%)

  100
)(




a

ba




Predicted
value )( c

Error (%)

  100
)(




a

ca




1 325 15.0 25.0 25.0 1424 1424.88 -0.062 1435.65 -0.818
2 375 20.0 15.0 15.0 1458 1452.34 0.388 1463.80 -0.398
3 325 15.0 43.2 25.0 1418 1412.15 0.413 1404.89 0.925
4 275 10.0 15.0 35.0 1398 1405.90 -0.565 1424.18 -1.873
5 375 10.0 15.0 35.0 1703 1709.86 -0.403 1696.75 0.367
6 275 10.0 35.0 15.0 1396 1400.94 -0.354 1415.41 -1.391
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Table 8: Comparison of simulation and prediction results for bending angle

Sl.
No

P
(W)

V
(mm/
s)

Cut out
dimen-
sion in
x-dir.
(mm)

Cut out
dimen-
sion in
x-dir.
(mm)

Simula-
tion
result

Regression model ANN result

Actual
value

)( d

Predicted
value )( e

Error (%)

  100
)(




d

ed




Predicted
value )( f

Error
(%)

  100
)(




d

fd





1 325 15.0 25.0 25.0 0.550 0.549 0.047 0.527 3.964

2 375 20.0 15.0 15.0 0.600 0.609 -1.523 0.578 3.885

3 325 15.0 43.2 25.0 0.539 0.529 1.893 0.519 3.736

4 275 10.0 15.0 35.0 0.457 0.453 0.809 0.447 2.103

5 375 10.0 15.0 35.0 0.810 0.802 0.976 0.801 1.076

6 275 10.0 35.0 15.0 0.566 0.584 -3.169 0.549 3.123

5.3 Comparative Study of Simulated and Predicted Models
The comparison plots of the numerical simulation data and prediction data of the maximum temperature and bending angle are
shown in Figure 11 (a) and (b), respectively. It can be noticed from these figures that results obtained by both predicted models are
in closer agreement with numerical simulation.

Figure 11: Comparison of simulation and predicted results for (a) maximum temperature, (b) bending angle

6. Conclusion

The present study investigates in considerable detail, laser bending of a rectangular AISI 304 plate with a rectangular cut out at
its middle as it finds application in diverse industries. Following conclusions can be drawn from the present study using finite
element method together with artificial neural network and response surface methodology:

1. The developed regression equation can predict responses effectively within limits of laser bending parameters used.
2. Maximum temperature increases with laser power and decreases with scanning speed. The maximum temperature does

not depend much on the cut out dimensions.
3. Bending angle increases with laser power and decreases with scanning speed and it does not depend much on cut out

dimension in x-direction. It is also noticed that bending angle decreases with increase in cut out dimension along y-
direction.

4. A multiple regression model is developed and its performance is compared with the performance of the neural network
model. Results obtained from these models are found to be in good agreement with numerical simulation.
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5. Simulation results generated out of the present work could be useful in implementing laser forming of AISI 304 plates
with its end-use in process industry, aerospace, automotive and ship building industries etc. Simulation results indicate
that bend angle decreases with increase in cut-out dimension along the laser scanning path.

6. To increase the magnitude of the bending angle, external cooling can be incorporated at the bottom of the plate and in
depth studies in this direction may be taken up.

Nomenclature
Symbols

A Absorption coefficient

C Specific heat (J/kgK)

rf Function of response

h Natural convection coefficient (W/m2K)

K Thermal conductivity (W/mK)

P Laser power (W)

qconv Heat loss by convection per unit area (W/m2)

qrad Heat loss by radiation per unit area (W/m2)

Q Heat flux (W/m2)

r Distance from center of  laser beam (m)

R Beam radius (m)

T Time (s)

0t Initial time (s)

Ts Surface temperature (K)

T0 Surrounding temperature (K)

T(r,t) Temperature (K)

maxT Maximum temperature (K)

nxxx ,...., 21
Independent parameters

y Response

Scanning velocity (mm/s)

X Cut out dimension in x-direction

Y Cut out dimension in y-direction

Greek symbols

b Bending angle

r Coordinate in the reference configuration

 Material density (kg/m3)

 Stefan Boltzmann constant (W/m2K4)

 Emissivity

er Prediction error



Paramasivan et al. / International Journal of Engineering, Science and Technology, Vol. 9, No. 1, 2017, pp. 1-1515

Operator

r Gradient operator
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