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Abstract

The principal difference between a dynamic and a static system is that the former includes a signal factor for expressing the
intended output while the later does not. Assuming a linear association exists between the response and signal variables,
Taguchi offered a two-stage route for optimizing a dynamic system: maximize the dynamic signal-to noise ratio (DSN) and
then, change the gradient to the desired gradient by a suitable modification parameter. Some researchers have indicated
limitations to Taguchi’s DSN analysis, and advocated alternative approaches for optimization of a dynamic system. However,
the Taguchi method as well as these alternative approaches is useful for optimizing a single-response dynamic system only. In
realism, the majority of the contemporary manufacturing practices encompass numerous response variables as well as industries
demand for developing procedures for optimizing multi-response dynamic system. This paper proposes a novel procedure that
integrates multiple regression (MR) technique and Taguchi’s DSN concept to optimize the multi-response dynamic system. In
this method, appropriate multiple regression equations according to a chosen model for dynamic system are fitted first based on
the observed experimental data and then DSN (called MRDSN) for different response variables are computed using the MR-
based predicted values. Finally, weighted MRDSN is considered as the objective function for the optimization. The proposed
procedure is investigated with respect to three modelling approaches for the dynamic systems. The results of analysis reveal
that the proposed procedure with response modelling approach results in the best optimization performance. It also results in
better optimization performance than back-propagation neural network-based approach and data mining-based approach
reported by the past researchers.
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1. Introduction

Dynamic systems are those where target values of one or more response variables depend on the setting of the signal factor.
Examples of a signal factor may be the steering angle in the steering mechanism of an automobile or the speed control setting of a
fan. Product/process design with a dynamic system offers the flexibility needed to satisfy customer requirements and can enhance
a manufacturer’s competitiveness. Taguchi (1990) first took interest in designing robust dynamic systems. Assuming that a linear
relationship exists between the response variable and the signal factor of the system, Taguchi proposed a two-step procedure for
optimizing a dynamic system: maximize the dynamic signal-to noise ratio (DSN) and then, adjust the slope to the desired slope by
a suitable adjustment factor. A control factor that has a large effect on the slope but no effect on DSN is considered as an
adjustment factor. Some successful applications of Taguchi method for optimizing single-response dynamic systems are available
in Tzeng and Chiu (2003), Wu et al. (2005) and Tzeng and Jean (2005).

In light of the increasing demands of the customers, the need for dynamic systems is increasing rapidly in industries. In recent
time, therefore, many other researchers (Miller and Wu, 1996; Tsui, 1998; Tsui, 1999; Wasserman, 1996; McCaskey and Tsui,
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1997; Joseph and Wu, 2002; Lesperance and Park, 2003; Bae and Tsui, 2006; Dasgupta et al., 2010) have been motivated to study
the robust design problem concerning the dynamic systems. These researchers have highlighted the potential problems of
Taguchi’s DSN analysis and advocated some alternative approaches for optimization of a dynamic system. The alternative
approaches studied by Miller and Wu (1996), Tsui (1998), Tsui (1999), McCaskey and Tsui (1997), Joseph and Wu (2002) and
Dasgupta et al. (2010) differ from Taguchi’s approach mainly with respect to the modelling approaches. In the Taguchi method,

DSN, i.e. )(log10 22
10  , where  is the slope of the ideal relationship and 2

 is the variance around the slope, is modelled

as a function of control factors. On the other hand, in the alternative approaches, 2  and 2
  are modelled separately as functions

of control factors (known as performance measure modelling), or control and noise factors (known as response function
modelling) or the response is directly modelled as a function of control, noise and signal factors (known as response modelling). In
the alternative approaches, the factors levels that minimize variance is chosen first and then slope is adjusted to its target slope by
using suitable adjustment factor. Wasserman (1996) explained the use of Taguchi's DSN using a regression perspective.
Lesperance and Park (2003) proposed the use of a joint generalized model. Bae and Tsui (2006) generalized the response
modelling approach. On the other hand,  Su et al. (2005) and Jung and Yum (2011) proposed artificial neural network based
approaches for optimizing a dynamic system. These alternative approaches can overcome many potential problems of the Taguchi
method. However, all these research articles are focused on optimization of a single-response dynamic system.

Product/process design has a tendency of being somewhat multifaceted to satisfy persistently shifting needs of the customer as
well as manufacturing know-how. Manifold reactions should essentially be appraised concurrently to resolve complete
process/product value (Tong et al., 2008). Industries have, therefore, all the time more highlighted building up measures competent
of concurrently optimizing the multi-response dynamic systems in the light of the increasing complexity of modern product design.
To deal with the requirements of the contemporary industries, more than a few studies have (Tong et al., 2002; Tong et al., 2004;
Hsieh et al., 2005; Wang and Tong, 2005; Wu and Yeh, 2005; Chang, 2006; Wang, 2007; Wu, 2007; Chang, 2008; Tong et al.,
2008; Wu, 2009; Zhong and Liu, 2009; Chang and Chen, 2011; Wang et al., 2011;  Sharma et al., 2012; Gauri, 2014; Zhang et al.,
2014; Wu, 2015; He et al., 2015; Bashiri et al., 2016) have proposed different procedures for optimizing a multi-response dynamic
system. Applying the two-step procedure is not feasible for optimizing a multi-response dynamic system because it is almost
impossible to find out any control factor that may be considered as an adjustment factor. Therefore, the basic approach adopted by
the researchers is to define first an appropriate overall objective function (performance metric) and then to optimize the objective
function such that each response variable is as close as possible to its target value with minimum variability around the target value
at each signal level.

The available approaches for the optimization of dynamic systems can be broadly classified into three categories: (1)
mathematical modelling based approaches (Tong et al., 2002; Hsieh et al., 2005; Wu, 2007; Zhang et al., 2014; Bashiri et al.,
2016),  (2) multiple attribute decision making (MADM) methods based approaches (Tong et al., 2004; Wang and Tong, 2005;
Wang, 2007; Zhong and Liu, 2009; Gauri, 2014; Wu, 2015) and (3) meta-heuristic approaches (Chang, 2006; Chang, 2008; Tong
et al., 2008; Chang and Chen, 2011). The implementation of the mathematical modelling based approaches requires that the
engineers possess a well-built experience in mathematics or statistics, whereas  the MADM method based approaches are easy to
implement but the optimal solution derived by these approaches may not guarantee that all response means are near to their
relevant goal values at different signal levels. On the other hand, in meta-heuristic based approaches, the actual association amid
the response variables and control factors remain unknown, and therefore, the engineers fail to gain knowledge of professional
engineering practices for the duration of the optimizing process. Therefore,  the process engineers are even now looking for an
effortlessly implementable scheme capable of optimizing the manifold responses, certifying that no particular response move away
remotely from its goal and unevenness in the region of the goal is the least amount at all signal level along with understanding of
the actual relationship between the response variables and control factors.

Pal and Gauri (2010) showed that, in case of a multi-response static problem, multiple regression based weighted signal-to-noise
ratio (MRWSN) method can results in an optimal solution which ensure that every quality features (responses) are extremely near
to their relevant goal values having sensibly little inconsistency in the region of the goal values. In this technique, suitable
polynomial regression expressions for prediction of mean and variance of all response variables are established first based on the
experimental data and then the weighted signal-to-noise ratio (WSN) is computed using the predicted mean and variance of the
response variables, and optimized. Since the method includes establishment of the regression equations, the process engineers also
get clear understanding of the actual relationship between the response variables and control factors during the process of
optimization. The purpose of the present investigation is to extend the concept of Pal and Gauri (2010) in solving multi-response
dynamic problem so that the gap between the available techniques and the process engineers’ requirements in solving multi-
response dynamic problems can be fulfilled.

The research report is ordered as follows. Section 2 outlines succinctly the Taguchi’s dynamic system and reports various
approaches for its optimization. Section 3 presents the review of the literature on the optimization of multi-response dynamic
systems. The proposed method for optimization of a multi-response dynamic system under different approaches for modelling the
dynamic system is presented in section 4. In section 5, analysis of one experimental dataset taken from literature and related results
are discussed. The paper is concluded in section 6.
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2. Taguchi’s Dynamic System and Related Works

Robust design problem of a dynamic system was first addressed by Taguchi (1990). He considered a dynamic system where a
single response variable is expected to assume different target values as a result of changes in the levels of a signal factor. A signal
factor (e.g. speed controller of a fan) is a factor that is controlled by the user of the product to make use of its intended function.

According to Taguchi (1990), perfect quality is established on the perfect association amid the signal factor as well as the
response variable, and quality loss is brought about through deviations from the perfect association. So, noteworthy quality
enhancement is deemed to be attained through first describing a system’s perfect function and after that, employing designed
experiments to seek an optimal design which decreases deviations from this perfect function. Taguchi (1990) supposed that a
linear relationship is present amid the response variable )(Y and the signal factor )(M of the system, and thus the perfect

function could be articulated thus:
  MY (1)

where  is the slope or system sensitivity, and ε denotes random error. Here ε is assumed to follow a normal distribution with a

mean of zero and variance of 2
 . The deviation from the ideal function is represented by the variability of the dynamic system,

i.e. 2
 .

For obtaining the robust design of a product/process, Taguchi suggested a special experimental format (i.e. cross-product of
inner and outer arrays) and analysis of experimental data. In the inner array control factors are assigned and in the outer array
signal and noise factors are assigned. For each combination of control factor levels in the inner array, values of the response
variable under all the combinations of signal and noise factor levels in the outer array are measured, and these observations are

used to estimate the slope (  ) and variance ( 2
 ) of the ideal function. Thus, for an experiment involving one s-level signal

factor ( 1M , 2M , …, sM ), n-level noise factor settings ( 1Z , 2Z , …, nZ ) and with r number of repeated observed values, the

slope (  ) and variance (
2
 ) of a response (Y ) in a fixed combination of control factor settings (levels) are estimated as follows:
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where klmy is the observed value of the response variable ( Y ) in the thm replication at thk  level of signal factor  and thl level of

noise factor setting. The aspiration of robust design is the discovery of the amalgamation of control factor levels such that the
consequence of noise factors on the target response of the dynamic system is trivial (Chang, 2008). Taguchi, therefore,
recommended to use DSN to judge the system’s performance. For a fixed combination of control factor levels, the DSN is
obtained as follows:


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Taguchi (1990) treats the computed DSN values corresponding to different combinations of control factor levels in the inner
array as the responses, and proposes the following two-step procedure for identifying the optimal factor settings. In the first step,
the settings of the control factors that maximizes DSN is determined and in the second step, the slope (  ) is shifted to the target

slope by changing the level of the adjustment factor (a control factor that has a large effect on   but no effect on DSN).

Wasserman (1996) observed that the factor-level combination of a dynamic system using Taguchi’s DSN might not be optimal.
Lunani et al. (1997) noted that using DSN as a quality performance measure might produce inaccuracies due to biased dispersion
effect. Miller and Wu (1996) have highlighted that Taguchi (1990) essentially proposed a performance measure modelling (PMM)
approach for dynamic system optimization. In the PMM approach, the performance measures (PMs) are modelled as functions of
the control factor effects, and Taguchi (1990) considers the DSN as the PM. Tsui (1998) considers that DSN is a loss measure by
which a system’s robustness is quantified, and so he has termed Taguchi’s approach as the loss model (LM) approach. It is not
always possible to identify an ideal signal-response relationship and the assumption of the existence of an adjustment factor also
does not hold in many practical situations. Therefore, Miller and Wu (1996) recommend to consider the intercept, slope (  ) and

variability ( 2
 ) as the separate PMs for the purpose of modelling and analysis. They have also proposed a new modelling

approach, called response function modelling (RFM), which models the PMs as functions of the effects of both the control and
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noise factors.  The advantage of the RFM approach is that it can reveal how a specific control factor interacts with a specific noise
factor. Tsui (1998) has investigated optimization of dynamic systems using response model (RM) which directly models the
response as a function of the control, noise and signal factors.

Tsui (1999) has derived relationship between the effect estimates of the LM approach and those of the RM approach. Tsui (1998)
has compared the performance of LM, RFM and RM approaches. He has found that the LM approach creates unnecessary biases
for the factorial effect estimates and may lead to non-optimal solutions and information loss. McCaskey and Tsui (1997) have
developed a two-step procedure for optimization of dynamic systems under an additive model. Joseph and Wu (2002) have
formulated the robust parameter design of dynamic system as a mathematical programming problem. Lesperance and Park (2003)
have suggested to use a joint generalized linear model (GLM) so that model assumptions can be investigated using residual
analysis. Su et al. (2005) and Jung and Yum (2011) have applied neural network based approaches to optimize parameter design
with dynamic characteristics. Bae and Tsui (2006) have observed that the GLM-RM approach can provide more reliable results.
Dasgupta and Wu (2010) have developed statistical models and performance measures for measurement systems, a kind of
dynamic system. All these research articles are focussed on optimization of a single-response dynamic system.

3. Review of Literature on Optimization of Multi-response Dynamic Systems

The problem of optimization of multi-response dynamic system has drawn lesser attention of the researchers. Tong et al. (2002)
have used dual-response-surface method (RSM) and composite desirability function (CDF) for optimization of a multi-response
dynamic system. Tong et al. (2004) utilizes principal component analysis (PCA) to simplify the dynamic multi-response problems
and applied TOPSIS (technique for order preference by similarity to ideal solution) (Hwang and Yoon, 1981; Hwang et al., 1993)
to derive the overall performance index for optimization. Hsieh et al. (2005) have made use of regression analysis to examine the
noteworthy control factors influencing the deviations as well as responsiveness of a dynamic system and then employed CDF for
optimization. Wang and Tong (2005) have incorporated the TOPSIS and multiple attribute decision making (MADM) method into
the grey relational model (Deng, 1982) for determining the optimal parameter setting. Wu and Yeh (2005) derived total quality
loss and minimized it to determine the optimal settings for a multi-response dynamic system. Chang (2006) has proposed an
artificial neural network (ANN) approach for modelling the response functions and has applied CDF for optimization of the multi-
response dynamic systems. Wang (2007) has developed a procedure of optimizing multi-response dynamic systems using PCA
and multiple criteria evaluation of the grey relation model. Wu (2007) extends the Taguchi's quality loss function for multiple
dynamic quality characteristics and builds a polynomial regression model to optimize the parameter design. Tong et al. (2008)
optimized a dynamic system using data envelopment analysis (DEA). Chang (2008) has proposed a data mining method
comprising of a four-stage system established on ANN, exponential desirability functions and a simulated annealing (SA)
procedure to determine the optimization problem of multi-response dynamic systems. Wu (2009) has presented an approach to
optimize non-linear multiple dynamic quality characteristics based on double-exponential desirability function. Chang and Chen
(2011) have proposed a crossbreed method that contains exponential desirability functions in a neuro-genetic method to optimize
dynamic multi-response systems. Wang et. al. (2011) presented an integrated approach that utilizes desirability function, principal
component analysis, grey relational analysis and TOPSIS method. Zhang et al. (2014) have proposed a modified particle swarm
optimization algorithm for dynamic multi-response optimization based on goal programming approach. Gauri (2014) considered
overall utility value as the objective function for optimization of multi-response dynamic systems. Wu (2015) proposed a
proportion of quality loss (PQL) model for optimization of a multi-response dynamic system. Bashiri et.al. (2016) proposed a
procedure for optimising multi-response dynamic system using multivariate process capability index.

Most of the researchers (Tong et al, 2002; Hsieh et al, 2005; Chang, 2006; Chang, 2008; Wu, 2009; Chang and Chen, 2011)
have attempted to optimize multi-response dynamic systems using Derringer and Suich’s (1980) composite desirability function
(CDF) as a performance metric. The basic advantage of using CDF as performance metric is that it is a simple unit less measure
and it has a good foundation in statistical practice. However, one of the serious limitations of CDF is that it does not consider the
variability of individual response variables. Moreover, if the requirement restrictions regarding the response variables were not
offered, the CDF cannot be computed. On the other hand, grey relational grade, overall utility value, PQL etc. that are used as a
performance metric in MADM method based approaches (Tong et al., 2004; Wang and Tong, 2005; Wang, 2007; Zhong and Liu,
2009; Gauri, 2014; Wu, 2015) may lead to an optimal solution where one or more individual response move far away from their
respective target values.

4. Proposed Method for optimization of Multi-response Dynamic Systems

The main idea behind the proposed approach is to compute DSN for different response variables using some predicted values
obtained by appropriately fitted multiple regression equations and then to construct an overall performance index based on these
computed DSN values. It may be noted that past researchers have advocated three types of modelling approaches for the single-

response dynamic system, e.g. 1) PMM, 2) RFM and 3) RM. In PMM approach,   and 2
  are modelled as functions of the

control factors only. In RFM approach,   and 2
   are modelled as functions of control factors and noise factor settings. On the

other hand, in RM approach, the response Y is directly modelled as function of the control, noise and signal factors. Therefore,
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multiple regression equations may be established for prediction of   and 2
 values based on control factor settings or multiple

regression equations may be established for prediction of   and 2
  based on control factor settings and noise level settings, or

multiple regression equation may be established for prediction of a response (Y) based on control factor settings, noise level
settings and signal level. Therefore, for a fixed control factor settings, DSN for a response variable can be obtained by using

directly the predicted   and 2
  values or by using   and 2

 that can be computed from predicted response values. Since, in

this process, DSN values are computed using multiple regression-based predicted values, it may be called as multiple regression-
based dynamic signal-to-noise ratio (MRDSN).  For a multi-response dynamic system, the weighted MRDSN (WMRDSN) can be
taken as overall objective function or performance metric for optimization.

4.1 Establishing multiple regression equations under different modelling approaches
Suppose that in a multi-response dynamic system, there are p output responses )...,,( 21 pYYY , q control factors ),...,,( 21 qXXX

each with two/three number of levels, a signal factor with s levels ),...,,( 21 sMMM  and n noise factor settings ),...,,( 21 nZZZ .

Also suppose that t trial conditions or experimental runs for the inner array of control factors are conducted each with
r replications to obtain the experimental data. The data in different experimental runs can be recorded in the format shown in
Table 1. In this table, the observed values in a trial conditions for thi ),...,3,2,1( pi   response variable in thm ),...,3,2,1( rm 

replication at thk ),...,3,2,1( sk  level of signal factor and thl ),...,3,2,1( nl  level of noise factor setting is denoted by iklmy .

Table 1. Data format for a multi-response dynamic system
Responses

Control factors
1Y …

pYTrial

No.
1X 2X …

qX

Noise

factor

settings
1M … sM … 1M … sM

1Z

1111y

…

ry111

…

111sy

…

rsy 11

…

111py

…

rpy 11

…

11psy

…

rpsy 1

… … … … … … … …1

nZ

111ny

…

nry11

…

11sny

…

snry1

…

11npy

…

nrpy 1

…

1psny

…

psnry

… … … … … … … … … … … … …

… … … … … … … … … … … … …

t … … … … … … … … … … … …

4.1.1 Multiple regression equation for prediction under PMM approach
In an experimental run, there are rns   observations for each response variable. Based on these observations, compute the

slope (  ) and variance ( 2
 ) values for each response variable in the run using Eqns. (2) and (3) respectively, and let these values

in the run for p response variables iY ),...,2,1( pi  are denoted as
iy  and 2

iy respectively. Similarly, for all the t experimental

runs, compute
iy  and 2

iy ( ),...,2,1 pi  values. Develop now the following regression model for prediction of
iy under an

experimental run:
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uuy XXbXbb
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and the following regression model for prediction of 2

iy value:

  


v
vu

uuv

p

u
uu XXcXcc

iy
,1

0
2

10 )(log (6)

where ub , uc , uvb , uvc ),...,3,2,1;,...,2,1( qvqu   are regression coefficients, uX )...,2,,1( qu  are controllable

variables, ε is the random error term which is assumed to follow a normal distribution with mean value as zero and a constant
variance σ2. It may be noted that apart from the main factors, the quadratic terms of main factors may be included in the model
when there is three or more number of levels in any control factor. The interaction terms of controllable variables may also be
included in the model.

It may be noticed that corresponding to t experimental runs there are values of
iy and 2

iy for each response variable

iY ( ),...,2,1 pi  . Based on these values, the regression coefficients of the regression models for each response variable can easily

be obtained by using the least squares method. The choice of carrying out multiple linear regression analysis is obtainable in
Microsoft Excel as well as in lots of statistical software packages, e.g. SPSS, MINITAB, STATISTICA, etc. The coefficient of
determinations, R2 and adjusted R2, are taken into account to abandon needless model’s expressions and to incorporate merely
those expressions which contain a number of contributions on the dependent variable. In addition, scientific matters should be
employed to incorporate any expression into the regression model. Going by a rule of thumb, if the value of R2 is more than 0.90
and the value of adjusted R2 is more than 0.80, the fitted model is considered adequate.

Problem-solving confirmation for endorsing the regression models ought to be executed. The satisfactoriness of the regression
model could be confirmed by carrying out significance tests employing ANOVA as well as F-test. In an effort to identify likely
irregularities, a residual analysis from the perspective of a variety of plots, for instance, residuals’ normality plot, residual plot
against predicted values as well as residual plot against individual regression variable, etc. should be observed. Following the
problem-solving confirmation, if no grave infringement of model suppositions is noticed, subsequently, the regression expression
could be supposed to be sufficiently robust to forecast the dependent variable. More details about fitting of multiple regression
equations and the diagnostic checks are available in Montgomery et al. (2012).

Suppose that finally established (fitted) regression equations for prediction of
iy  and 2

iy ),...,2,1( pi  are as follows:
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where ub̂ , uĉ , uvb̂ , uvĉ ),...,3,2,1;,...,2,1( qvqu   are the estimates of the regression coefficients.

4.1.2 Multiple regression equations for prediction under RFM approach
In a noise level under an experimental run, there are rs  observations for each response variable. Based on these observations,

slope and variance values can be computed for each response variable in the noise level under the experimental run. Let the slope

and variance of thi  response variable iY ),...,3,2,1( pi   in the thl ),...,2,1( nl  noise level under the experimental run are

denoted as
ily  and 2

ily respectively. Similarly, compute
ily  and 2

ily values for all the experimental runs. Develop, then, the

following regression model for prediction of
ily under an experimental run:
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and the following regression model for prediction of 2

ily value:

   


)()(log
1

0
,1

0
2

10

q

u
uuv

vu
uuv

q

u
uu XNXXcXcc

ily
(10)

where ub , uc , uvb , uvc , 0 , 0  ),...,3,2,1;,...,2,1( qvqu   are regression coefficients, uX )...,2,,1( qu  are

controllable variables.

It may be noted that corresponding to t experimental runs n noise levels, there are nt  values of
ily and 2

ily for each

response variable iY ),...,2,1( pi  . Using these values, the coefficients of the regression models can be easily obtained using the

procedure described earlier, and then, diagnostic checks for validating the regression models as described in section 4.1.1 must be
performed. If no serious violations of model assumptions are detected, the fitted regression equation can be assumed to be
appropriate for prediction of the response variables.
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Suppose that finally established (fitted) regression equations for prediction of
ily  and 2

ily ),...,2,1;,...,2,1( nlpi  are as

follows:
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where ub̂ , uĉ , uvb̂ , uvĉ , 0̂ , u̂  ),...,3,2,1;,...,2,1( qvqu   are the estimates of the regression coefficients.

4.1.3 Multiple regression equations for prediction under RM approach
In RM approach, each response is directly modelled as function of the control, noise and signal factors. Let the value of a

response variable iY ),...,2,1( pi  in the signal level k ),...,2,1( sk   and noise level l ),...,2,1( nl  under an experimental

run is denoted as ikly . Develop now the following regression model for prediction of ikly under an experimental run:
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where ub , uvb , u , u ),...,3,2,1;,...,2,1( qvqu   are regression coefficients, uX )...,2,,1( qu  are controllable

variables, ikly is the value of thi response variable in the thk  signal level and thl  noise level, and ε is the error which is assumed
to follow a normal distribution with mean value as zero and a constant variance σ2. Generally, it is expected that random error will
have increased variability at higher signal levels instead of having constant variability at all signal levels. With the aim to ensure
that its effect be smaller, log transformed value of a response variable is considered as the dependent variable.

It may be noted that apart from the main factors, the quadratic terms of main factors may be included in the model when there is
three or more number of levels in any control and signal factors. The interaction terms of controllable variables may also be
included in the model. But, it is very important to include a few control signal and control noise interaction terms into the
response model. If a few control × signal and control noise interaction terms are not included in the response model,

)(log10 ikly will be additive at different signal levels independent of combinations of control factors X , which implies that

intercept only will change but slopes of the controllable variables X  will remain constant. As a result, it will not be possible to
obtain desired predicted values of the response variables at different signal and noise levels.

Corresponding to t experimental runs, s signal levels, n noise levels and r replications, there are t s n r    values for each
response variable. Using these values, the coefficients of the regression models can be easily obtained, and then, diagnostic checks
for validating the regression models as described in section 4.1.1 must be performed. If no serious violations of model assumptions
are detected, the fitted regression equation can be assumed to be appropriate for prediction of the response variables.

Suppose that finally established (fitted) regression equations for prediction of the response variable iY ),...,2,1( pi  at
thk signal level and thl noise level are as follows:
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where ub̂ , uvb̂ , u̂ , u̂ ),...,3,2,1;,...,2,1( qvqu  are estimates of the regression coefficients.

4.2 Formulating the objective function for optimization

If PMM approach is used for modelling the dynamic system, the values of slope )(
iy  and variance )( 2

iy around the slope for

a response variable iY for a given control factor settings can be predicted using the Eqns. (7) and (8) respectively. So MRDSN for

the response variable iY at the given control factor settings can be obtained straightway from these predicted values using Eqn. (4),

and the weighted MRDSN (WMRDSN) over all the response variables can be considered as the overall performance under the
control factor settings. Thus, the objective function under the PMM approach can be defined as follows:
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where, iw  is the relative weights for the response variables and
iy̂ and 2ˆ

iy are predicted values of slope and variance obtained

by Eqns. (7) and (8) respectively for the response variable iY ),...,2,1( pi  and 1
1




p

i
iw . It is suggested to consider pwi 1 , if

the relative importance of the response variables are unknown.

If RFM approach is used for modelling the dynamic system, the values of slope ( )
ily  and variance

2( )
yil

  around the slope for

a response variable iY  in the noise level l under an experimental run, can be predicted using the Eqns. (11) and (12) respectively.

So using these predicted values, the MRDSN
ily for the response variable iY in the noise level l under an experimental run can be

obtained using Eqn. (4). The performance of the response variable iY at the given control factor settings )MRDSN(
iy can be

measured as the average of MRDSN
ily values over all the noise levels under the control factor settings, and WMRDSN over all

the response variables can be considered as the overall performance under the given control factor settings. Thus, the objective
function under the RFM approach can be defined as follows:

RFM
1 1 1

1
WMRDSN MRDSN MRDSN

i il

p p n

i y i y
i i l

w w
n  

     
 

  
2

10 2
1 1

ˆ1
10 log

ˆ
yil

p n
yl

i
i l

w
n 



 

  
   

    
  (16)

where, 2ˆ
ily and 2ˆ

yil
 are the predicted values of slope and variance for the thi response variable at thl  noise level, obtained based

on Eqns. (11) and (12) respectively.
If RM approach is used for modelling the dynamic system, the predicted values of a response variable iY ),...,2,1( pi  at

thk ),...,2,1( sk  level of signal factor and thl ),...,2,1( nl  level of noise factor, i.e. iklŷ  under a given control factor

settings can be obtained using Eqn. (14). Using these predicted values, the slope )(
iy and variance around slope )( 2

iy  for the

response variable iY under the control factor settings can be obtained using Eqns. (2) and (3) respectively, and then
iyMRDSN for

the response variable iY ( pi ,...,2,1 ) under the control factor settings can be obtained using Eqn. (4). Therefore, the weighted

average of
iyMRDSN values over all the response variables may be considered as the overall performance under the control

factor settings. Thus, the objective function under the RM approach can be defined as follows:
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   and, ˆikly ( 1,  2,..., ; 1, 2,..., ; 1, 2,..., )i p k s l n   are the predicted values of response

variable iY  at thk level of signal factor and thl level of noise factor obtained from Eqn. (14).

4.3 Determining optimal values of the levels of the control factors
It may be noted that WMRDSN is essentially a function of the control factors whatever modelling approach be used for

prediction. Since higher MRDSN implies better quality, the aim is to determine the level values of the control factors that will
maximize the WMRDSN  value. One simple approach for determining the optimal control factor settings can be as follows: a)
choose an arbitrary setting combination of control factor levels, and obtain the predicted values using the relevant fitted multiple
regression equations under the chosen control factor settings  b) obtain MRDSN values for all the response variables under the
control factor settings and then obtain the WMRDSN value under the control factor settings, c) change the level values of the
control factors, compare the resulting WMRDSN  values, and find out the control factor settings that results in the maximum
WMRDSN value.  It has been observed that if all the computations are carried out in Excel worksheet, this enumerative search for
finding the optimal level values of the control factors can be performed very effectively using the ‘Solver’ tool of Microsoft Excel
package. It is a kind of ‘what if’ analysis which discovers the optimal value of a target cell by varying values in cells employed to
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compute the target cell. The ‘Solver’ instrument utilizes the generalized reduced gradient (GRG) technique for searching the
optimal solution, contributed by Del Castillo and Montgomery (1993). Examples on usage of ‘Solver’ tool are available in Pal and
Gauri (2010).

Whilst operating the ‘Solver’ instrument it is essential to identify the range of echelons for the input variables. In particular
instances that one or more input variables take only discrete values, the integer restriction (IR) for those input variables requires
specification. Sometimes, one may have to add an additional constraint to keep the slope of the dynamic nominal-the-best variable
closer to its target slope value. Unless technically there is IR for a response variable, preferably, the optimization ought not to be
limited to only the real experimental design settings since it possibly will show the way to a suboptimal solution. Since
the WMRDSN metric is described established on regression models, the proposed technique can offer an optimal solution in the
whole range of experimental area of the input controllable variables whilst employing the ‘Solver’ instrument of Microsoft Excel
package.

5. Analysis and Results

Under the current research, there is no scope for collection of primary data from industry. Therefore, it is decided to analyse one
set of secondary data, i.e. published data in the literature for illustration of implementation of the proposed procedure as well as for
evaluation of the optimization performance of the proposed procedure under different modelling approaches for the dynamic
system. Chang (2008) has illustrated application of his proposed data mining approach for optimizing multi-response dynamic
systems using a case study adopted from Chang (2006). This case involves simultaneous optimization of three dynamic response
variables named 1Y , 2Y and 3Y . Among these, 1Y is dynamic larger- the-better (DLTB) type, 2Y  is dynamic nominal-the-best

(DNTB) type and 3Y is dynamic smaller-the-better (DSTB) type variable. In this case, six control factors A – F, each at three

levels (1, 2, and 3), were considered and arranged in a standard 18L orthogonal array as shown in Table 2.

Table 2. Experimental design used by Chang (2006)

Factors and levels
Trial no.

A B C D E F
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 1 1 2 2 3 3
5 2 2 3 3 1 1
6 3 3 1 1 2 2
7 1 2 1 3 2 3
8 2 3 2 1 3 1
9 3 1 3 2 1 2

10 1 3 3 2 2 1
11 2 1 1 3 3 2
12 3 2 2 1 1 3
13 1 2 3 1 3 2
14 2 3 1 2 1 3
15 3 1 2 3 2 1
16 1 3 2 3 1 2
17 2 1 3 1 2 3
18 3 2 1 2 3 1

The signal factor of the case had three levels named 1M , 2M  and 3M , the corresponding values of which were 10, 20 and 30,

respectively. Two levels ( 1N  and 2N ) of noise factor settings were considered in this case. The specifications for the response

variables and the experimental data of Chang (2006) are reproduced in Table 2 and Table 3 respectively. The experimental data of
Chang (2006) are analysed here.

It is important to mention that the past researchers, Chang (2006) and Chang (2008), have analysed the same experimental data
for illustrating their optimization methods and determined the optimal settings with respect to the actual experimental design
settings. As highlighted in the previous section, since the optimization function (WMRDSN) in our proposed method is described
established on regression models, it has the capability of offering an optimal solution in the range of the experimental area of the
input controllable variables. However, with the aim to make the optimal solution and related results of our method comparable
with that of the past researchers, it is decided to specify integer restrictions for the level values of the control factors while running
‘Solver’ tool for the optimization.
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Table 3.Specifications for the response variables specified by Chang (2006)
Responses

Y1(DLTB) Y2 (DNTB) Y3 (DSTB)Signal
levels LSL LSL Target USL USL

M1 55 7 10 13 3
M2 110 14 20 26 6
M3 165 21 30 39 9

Table 4. Experimental Data of Chang (2006)

Responses

Y1 Y2 Y3

Trial

no.

Noise

factor
M1=10 M2=20 M3=30 M1=10 M2=20 M3=30 M1=10 M2=20 M3=30

N1 61.6 78.2 128.0 106.0 230.6 226.9 7.4 7.2 16.7 13.2 23.7 24.1 1.9 1.9 4.6 3.7 7.6 4.6
1

N2 70.8 57.1 137.3 160.3 282.2 252.5 9.1 10.2 22.8 17.8 26.2 26.7 2.0 2.1 3.9 4.8 4.7 4.3

N1 88.3 93.6 175.2 181.5 259.7 304.5 10.1 8.8 23.4 22.6 29.6 30.3 1.8 2.0 4.0 2.8 6.0 3.3
2

N2 72.9 72.7 174.0 145.5 258.4 214.6 8.7 9.2 19.1 24.1 31.4 30.5 1.9 2.2 3.8 3.5 6.7 6.1

N1 80.8 81.1 154.3 157.4 238.1 237.8 10.8 10.5 20.1 20.9 30.6 32.4 1.0 3.2 4.4 5.4 8.1 6.7
3

N2 77.2 83.3 167.1 159.0 251.8 257.9 10.6 10.9 21.8 23.7 30.5 32.7 1.4 2.6 3.8 3.9 8.0 2.7

N1 65.9 71.3 179.2 151.5 196.1 221.6 7.6 7.2 15.3 14.8 22.5 22.2 1.7 2.2 4.1 4.9 5.9 6.0
4

N2 83.7 78.4 135.6 177.0 246.9 291.8 8.1 7.6 14.1 14.7 21.9 21.8 2.1 2.6 3.6 3.3 7.7 6.9

N1 79.4 88.6 121.9 151.6 248.8 245.1 11.9 12.7 25.6 25.7 36.6 35.7 2.0 2.1 2.7 3.8 4.8 5.8
5

N2 67.8 87.3 113.6 141.3 171.5 244.7 10.5 11.8 25.8 26.2 39.1 33.1 2.6 1.7 4.1 3.6 5.5 5.2

N1 90.5 87.0 161.8 169.4 286.9 236.5 10.2 10.2 23.7 21.8 32.0 32.8 1.8 2.2 2.5 4.1 4.9 5.4
6

N2 87.6 87.8 160.7 163.9 231.4 288.7 10.7 11.2 22.5 20.0 34.2 28.0 1.2 2.0 4.0 4.4 6.6 3.1

N1 80.9 74.7 165.9 163.4 232.2 246.4 11.7 12.1 23.3 23.3 33.5 32.7 1.9 1.6 5.2 5.1 6.6 5.3
7

N2 69.9 78.7 141.7 159.1 260.4 239.7 11.6 11.6 22.0 22.5 33.8 34.0 1.9 1.7 3.6 5.1 5.8 5.1

N1 92.3 71.7 185.7 154.3 233.1 240.5 8.3 8.4 16.9 18.5 28.1 27.3 2.8 1.5 3.4 3.4 6.2 3.7
8

N2 104.8 89.4 216.1 173.0 340.6 308.9 8.2 6.1 18.5 15.1 29.1 21.1 1.8 2.2 4.1 4.3 9.0 5.0

N1 92.8 59.8 130.7 142.2 257.3 266.0 8.6 9.7 17.3 18.4 30.9 34.5 2.3 1.7 4.5 5.1 7.4 6.5
9

N2 82.1 87.0 175.1 138.2 161.4 274.4 8.2 8.4 18.6 18.0 31.3 30.9 2.2 1.2 4.0 4.0 7.2 6.7

N1 86.0 100.0 179.1 175.4 246.9 244.9 6.9 6.6 15.8 16.4 22.2 24.9 1.7 1.7 3.9 5.8 5.2 8.4
10

N2 81.9 91.2 190.8 137.8 293.5 227.1 8.3 7.2 14.3 16.6 23.1 24.2 2.1 1.8 3.9 4.8 4.5 8.0

N1 76.3 78.2 140.0 154.7 264.1 260.1 9.5 9.2 27.9 25.4 32.3 33.8 1.0 1.7 4.1 4.0 3.9 5.6
11

N2 67.1 76.0 169.5 175.4 239.2 251.8 10.8 12.2 23.6 20.4 26.8 29.2 2.1 2.3 5.0 4.6 6.7 4.5

N1 91.4 81.8 160.1 167.2 238.5 197.2 11.8 10.5 22.9 25.9 36.9 36.8 2.1 1.9 4.0 3.7 7.4 6.2
12

N2 85.1 63.8 123.8 166.4 233.5 242.0 11.6 11.5 22.1 22.6 32.5 31.9 1.6 0.9 4.2 4.1 2.1 6.9

N1 87.9 82.5 146.5 167.0 212.4 222.2 10.1 10.3 19.9 22.2 27.1 27.7 2.0 2.3 5.0 4.7 6.7 7.3
13

N2 57.4 78.5 91.6 182.3 250.3 207.3 10.6 10.1 20.1 19.2 27.8 24.6 2.2 2.1 4.5 4.7 7.4 6.2

N1 88.1 78.1 156.7 170.1 239.1 215.2 12.1 10.0 24.1 20.2 28.0 35.6 1.7 2.1 3.8 3.3 7.2 4.9
14

N2 81.7 75.7 140.2 127.8 241.4 211.7 11.3 11.8 23.3 24.4 32.1 39.9 1.8 2.7 3.1 3.8 4.9 4.7

N1 101.8 78.2 168.3 180.8 240.6 235.2 10.2 7.6 14.9 19.4 26.9 19.5 1.7 2.2 5.3 3.6 5.0 7.5
15

N2 80.4 76.5 206.7 222.6 325.1 285.2 8.7 7.2 16.8 14.1 26.6 25.1 2.2 1.9 4.8 2.6 3.8 5.5

N1 77.4 75.4 171.7 159.0 201.3 219.7 10.4 10.6 20.7 22.2 34.4 30.0 1.9 2.3 3.1 4.2 5.8 3.3
16

N2 72.0 69.5 189.1 168.6 254.3 237.3 11.1 10.9 20.6 21.4 30.5 31.4 2.1 1.6 4.1 4.8 5.4 6.9

N1 71.4 69.2 145.0 152.5 223.8 218.7 8.8 8.4 19.0 13.8 26.2 24.1 1.5 2.1 3.8 4.4 6.9 4.2
17

N2 77.0 70.5 158.4 154.0 218.4 224.1 9.2 9.0 16.7 17.4 27.1 26.2 1.6 1.8 3.7 4.4 4.6 4.2

N1 82.8 67.8 183.7 175.5 276.1 254.4 10.7 9.2 19.8 20.1 27.3 31.0 2.5 2.2 3.1 3.4 7.7 7.4
18

N2 85.2 92.0 154.4 157.6 249.3 286.1 11.3 7.7 19.3 22.6 29.4 24.6 1.6 1.8 3.9 4.7 6.0 7.3
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5.1 Optimization using PMMWMRDSN as the objective function

The values of slope (  ) and variance ( 2
 ) around slope for each response variable in each experimental run are computed first

from the experimental data using equations (2) and (3) respectively. These computed ̂ and 2ˆ  values for the three response

variables corresponding to the 18 experimental runs are shown in Table 5.

Table 5. Computed ̂  and 2ˆ  values for the three response variables in 18 runs

Expt. No.
1

ˆ
y 2

1
ˆ

y
2

ˆ
y 2

2
ˆ

y
3

ˆ
y 2

3
ˆ

y

1 76.920 642.9 8.518 5.64 1.884 0.861
2 85.562 477.9 10.368 3.15 1.829 0.724
3 81.336 43.6 10.614 1.12 2.138 2.187
4 79.555 600.1 7.384 0.15 2.141 0.415
5 73.396 607.0 12.268 2.79 1.798 0.223
6 85.625 297.3 10.702 2.83 1.736 0.870
7 80.366 93.2 11.271 0.35 2.027 0.541
8 92.602 995.9 8.675 4.97 1.971 1.552
9 78.061 966.3 9.880 2.58 2.250 0.269

10 85.045 389.4 7.829 0.96 2.186 1.350
11 82.543 156.1 10.761 9.93 1.869 0.808
12 76.620 278.7 11.548 2.92 1.898 1.725
13 74.245 580.7 9.384 2.95 2.307 0.115
14 75.632 180.2 11.304 7.3 1.811 0.505
15 92.000 757.9 8.186 5.26 1.893 1.121
16 78.730 299.3 10.566 1.26 1.866 0.842
17 74.338 22.7 8.571 1.87 1.773 0.662
18 86.927 200.2 9.632 4.15 2.205 0.576

Now using the models shown in Eqns. (5) and (6), the most appropriate multiple regression equations for prediction of slope (  )

and variance ( 2
 ) around slope for the three response variables are established, as given below:
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The existing setting combination of control factors 222222 FEDCBA  is chosen and slope and variance around the slope values

for all the three response variables under the chosen setting combination are predicted using Eqns. (18-23). Then,

PMMWMRDSN value under the chosen setting combination is computed using Eqn. (15). All these computations are carried out

in Excel worksheet, and using ‘Solver’ tool of Microsoft Excel package PMMWMRDSN is maximized. It is found that the value

of PMMWMRDSN is maximum under the following setting combination of control factors: 1 1 3 3 1 3A B C D E F . Therefore, the

optimal solution under the proposed procedure with PMM approach is chosen as 1 1 3 3 1 3A B C D E F . The expected slope and

variance values, and the MRDSN values for each response variable at this optimal combination are shown in Table 6.

Table 6: Expected slope, variance and MRDSN at the PMM-based optimal condition
Response Variable Slope Variance MRDSN

1Y  (DLTB) 73.368 25.930 23.172

2Y  (DNTB) 9.893 0.037 34.219

3Y  (DSTB) 2.397 0.394 11.638

WMRDSN 23.009

5.2 Optimization using RFMWMRDSN as the objective function

The values slope (  ) and variance ( 2
 ) around slope in each noise level under all the experimental run for p response variables

are computed. These computed values for the three response variables are recorded in the format shown in Table 7.

Table 7. Computed ̂  and 2ˆ  values for the responses in different noise levels of the runs

Expt. No. Noise level
ky1

̂ 2

1
ˆ

ky
ky2

̂ 2

2
ˆ

ky
ky3

̂ 2

3
ˆ

ky

1N 70.725 426.61 7.779 1.61 2.036 0.99
1

2N 83.114 557.99 9.257 4.68 1.732 0.65

1N 92.425 234.56 10.379 3.20 1.618 0.94
2

2N 78.70 289.27 10.357 3.718 2.039 0.16

1N 79.036 4.703 10.439 0.49 2.436 0.83
3

2N 83.636 31.935 10.789 1.639 1.839 2.99

1N 73.275 342.968 7.468 0.058 2.057 0.174
4

2N 85.836 535.581 7.30 0.20 2.225 0.66

1N 78.454 326.596 12.289 0.811 1.746 0.284
5

2N 68.339 722.379 12.246 5.338 1.85 0.176

1N 86.075 285.870 10.921 1.015 1.718 0.336
6

2N 85.175 366.018 10.482 4.662 1.754 1.574

1N 80.357 34.700 11.271 0.671 2.136 0.631
7

2N 80.375 170.342 11.271 0.109 1.918 0.426

1N 80.886 187.811 9.061 0.701 1.70 0.884
8

2N 104.318 465.830 8.289 8.557 2.243 1.706

1N 81.011 538.779 9.889 2.923 2.318 0.204
9

2N 75.111 1489.73 9.871 2.759 2.182 0.336
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Table 7 (cont’d). Computed ̂  and 2ˆ  values for the responses in different noise levels of the runs

Expt. No. Noise level
ky1

̂ 2

1
ˆ

ky
ky2

̂ 2

2
ˆ

ky
ky3

̂ 2

3
ˆ

ky

1N 84.657 100.460 7.829 1.319 2.271 1.553
10

2N 85.432 754.592 7.829 0.801 2.10 1.334

1N 82.732 244.166 11.557 8.86 1.693 0.606
11

2N 82.354 98.92 9.964 5.889 2.043 0.830

1N 76.246 324.928 12.179 1.533 2.150 0.296
12

2N 76.993 286.58 10.918 0.45 1.646 2.788

1N 75.043 138.092 9.607 2.866 2.346 0.08
13

2N 73.446 1132.33 9.161 3.059 2.268 0.156

1N 77.954 136.142 10.768 8.022 1.939 0.635
14

2N 73.311 200.041 11.839 4.815 1.682 0.290

1N 82.343 169.944 8.057 9.268 2.114 0.973
15

2N 101.657 452.844 8.314 2.117 1.671 0.943

1N 74.186 225.805 10.714 2.185 1.646 0.96
16

2N 83.275 201.30 10.418 0.33 2.086 0.357

1N 73.682 14.07 8.346 3.226 1.904 0.85
17

2N 74.993 31.036 8.796 0.32 1.643 0.416

1N 87.875 146.55 9.807 1.686 2.250 0.912
18

2N 85.979 283.81 9.457 7.10 2.161 0.333

Now using the models shown in Eqns. (9) and (10), the most appropriate multiple regression equations for prediction of slope (  )

and variance around slope ( 2
 ) for the three response variables are established, as given below:

1

2 2

2

2 2

52.9 2.36 8.30 18.74 4.13 20.6 1.34 1.53 2.13 4.86

                     4.76 2.62 1.74 2.93 2.44

             0.642   and adjusted   0.404

y A B C D E F N B C

E DF EF EN FN

R R

          

    

   

(24)

1

2 2
10

2 2

log ( ) 2.534 1.791 0.016 1.896 1.125 1.78 2.027 0.437 0.18

                0.174 1.155 0.074 0.696 0.0585 0.1 .231 0.105

             0.803    and adjusted   0.595

y
A B C D E F N D

AB AE BC CF AN BN CN EN

R R

         

       

   

(25)

2

2 2 2

2 2 2

2

3.71 3.651 4.976 2.789 1.414 1.586 2.16 0.89 0.698 1.248 0.624

       0.647 0.506 0.564 0.256 0.237 0.272 0.184 0.169 0.326

                  0.949   and adjusted

y A B C D E F N A B C

D E F AB AD AE AF AN EN

R

           

        

 2   0.889R  

(26)

2

2 2 2
10

2

2 2

log ( ) 0.37 2.407 0.436 0.827 0.022 0.046 0.162 0.117 0.48 0.2

           -0.217 -0.273 -0.094 0.467 0.118 0.156 0.148 0.245 0.3

           0.803   and adjusted

y
A B C D E F N A C

F AB BE BF AN BN DN EN FN

R R

           

     

   0.595  

(27)

3

2

2 2

2 2

1.848 0.649 0.178 0.278 0.913 0.782 0.147 0.265 0.206

       0.165 0.133 0.099 0.113 0.131 0.0795 0.109

            0.631   and adjusted   0.355

y A B C D E F N A

D E AE CD AN EN FN

R R

         

      

   

(28)
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3

2 2 2 2
10

2

log ( ) 1.91 1.857 1.344 0.916 0.949 1.485 1.195 0.522 0.154 0.256 0.177

               0.669 0.087 0.55 0.313 0.095 0.162 0.154 0.115 0.16

             0.735

y
A B C D E F N A B F

AD BD CE DE EF AN DN EN FN

R

           

        

 2and adjusted   0.42R  

(29)

An arbitrary setting combination of control factors is chosen as 222222 FEDCBA and slope and variance around the slope values

for all the three response variables in both the noise levels under the chosen setting combination are predicted using Eqns. (24-29).
Then, RFMWMRDSN values under the chosen setting combination are computed using Eqn. (16). All these computations are

carried out in Excel worksheet, and using ‘Solver’ tool of Microsoft Excel package RFMWMRDSN is maximized. It is found that

the optimal setting combination of control factors is 3 1 1 3 2 3A B C D E F .The expected slope and variance values, and the MRDSN

values for each response variable at this optimal combination under different noise levels are estimated and given in Table 8.

Table 8: Expected slope, variance and MRDSN at the RFM-based optimal condition
Response
Variable

Noise
level

Slope Variance MRDSN Average
Slope

Average
Variance

Average
MRDSN

1N 86.14 6.252 30.744
1Y  (DLTB)

2N 86.21 5.317 31.454 86.175 5.785 31.085

1N 10.171 0.589 22.447
2Y  (DNTB)

2N 9.902 0.201 26.884 10.036 0.395 24.067

1N 2.080 0.069 18.000
3Y  (DSTB)

2N 1.785 0.112 14.552 1.932 0.090 16.173

WMRDSN 23.775

5.3 Optimization using RMWMRDSN as the objective function
Using the model shown in Eqn. (13), the most appropriate multiple regression equations for prediction of values of the three

response variables corresponding to different control factor settings, noise levels and signal levels are established, as given below:

 938.0adjustedand943.0

01.00126.00068.0

008.00097.00098.00249.00243.00253.00562.0

5084.00021.00958.00042.01216.00450.001338.01489.10)(log

22

222

110








RR

NFNENC         -

NBMCMBECNM         -

MFEDCBAy

(30)

 965.0adjustedand967.0

0137.00323.0

0259.00388.00324.00651.00266.00273.00771.0

5486.01531.01074.01315.01459.02846.01258.02784.0)(log

22

2

222222

210







RR

NE -F         -

EDCBANM         -

MFEDCBAy

(31)

 804.0adjustedand822.0

0242.00194.00152.00154.003334.0

0085.00077.00176.00207.00274.00689.00905.0

5667.00304.01014.00626.00191.00038.00729.02005.0)(log

22

2222

310








RR

NFNENDNCNA -         -

MEMCEDANM         -

MFEDCBAy

(32)

An arbitrary setting combination of control factor is chosen as 222222 FEDCBA . For this setting combination, the predicted values

of the three response variables at each of three signal levels and two noise levels are obtained using Eqns. (30)-(32). Then,

RMWMRDSN value under the chosen setting combination is obtained using Eqn. (17). Using ‘Solver’ tool in Excel worksheet,

RMWMRDSN value is maximized by changing values of input controllable variables. The optimal setting combination is found

to be 223312 FEDCBA . The expected values of each response variable at the optimal combination and the corresponding slope,

variance and MRDSN values are shown in Table 9.
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Table 9. Expected slope, variance and MRDSN values at RM-based optimal solution
Expected values of the responses ExpectedResponse

variable
Noise
level Signal M1 Signal M2 Signal M3 Slope Variance MRDSN
N1 77.797 155.546 240.082

1Y  (DLTB)
N2 78.174 156.300 241.246

79.416 6.745 29.709

N1 9.749 20.241 29.467
2Y  (DNTB)

N2 9.747 20.239 29.463
9.902 0.109 29.551

N1 1.799 3.894 5.555
3Y  (DSTB)

N2 1.767 3.824 5.455
1.858 0.014 23.947

WMRDSN 27.736

5.4 Comparison of Optimization Performance of the Proposed Method under different modelling approaches for Dynamic
System:

The overall optimization performance of the proposed method under the three modelling approaches for dynamic system is
summarized in Table 10. Table 10 reveals that the optimal solution derived by the proposed method depends on the choice of the
modelling approach for the dynamic system. Here, the proposed method under the three modelling approaches results in three
different optimal solutions. Comparison of WMRDSN values in Table 10, the optimal solution derived by the proposed approach
with RM approach, i.e. 223312 FEDCBA  results in the maximum WMRDSN value. Moreover, it is observed from Eqns. (30-32)

that R2 values of all these fitted models are very high, implying that derived optimal solutions based on these fitted models would
be highly reliable. This implies that the proposed method with RM approach leads to the best optimization performance. On the
other hand, proposed method with PMM and RFM approaches lead to poor WMRDSN values. However, in our opinion, the
proposed method with RFM approach is more undesirable than the proposed method with PMM approach. This is because
regression models (Eqns. 24-29) fitted in RFM approach have lower R2 values, and hence, they are less reliable for predictive
purpose. We could not explain the reasons for lower R2 values for the regression models fitted in RFM approach.

Table 10. Optimization performance of the proposed method under different modelling approaches
Expected MRDSN values forModelling

approach
Optimal solution

1Y  (DLTB) 2Y  (DNTB) 3Y  (DSTB)
WMRDSN

PMM
1 1 3 3 1 3A B C D E F 23.172 34.219 11.638 23.009

RFM
3 1 1 3 2 3A B C D E F 31.085 24.067 16.173 23.775

RM
223312 FEDCBA 29.709 29.551 23.947 27.736

It is important to mention that examining R2 values of the fitted models under different modelling approaches may not be the only
criterion for choosing the most appropriate modelling approach. The choice of the modelling approach to be followed often
depends on the experimental data. For example, if there is a single observation (i.e. absence of noise factors) for each response
variable in an experimental trial, the RFM approach cannot be applied. If the effect of noise variables on any response is relatively
high, which can be easily identified from high variation of observations within a signal level, the PMM approach may lead to
erroneous result. However, if it is possible to develop response models with very good fit (i.e. adjusted R2> 0.9) and the fitted
models can reproduce the experimental data with minimum variation, then such response models would always be the best choice
for finding the optimal combination. However, as mentioned earlier, response models must include few control × signal and
control × noise interaction terms apart from the main effects of control, signal and noise variables. Diagnostic tests related to
regression model fitting must be carried out and validated. If model assumptions are violated, the corresponding models should not
be used for optimization purpose.

5.5 Comparison of optimization performance of the proposed method with response modelling approach and some
reported methods

Chang (2006) and Chang (2008) have used the same experimental data to illustrate the usefulness of back propagation neural
network-based multi-response optimization method and data mining approach-based multi-response optimization method
respectively. Chang (2006) derived the optimal combination of factor levels as 123133 FEDCBA , whereas Chang (2008) obtained

the optimal process condition as 123131 FEDCBA . On the other hand, according to the proposed WMRDSN method with response

modelling the optimal process condition is derived as 223312 FEDCBA . Expected total DSN values under these three optimal

conditions are obtained. These values are presented in Table 11. It is observed from Table 11 that the expected total DSN value at
the optimal condition derived by the proposed WMRDSN method with response modelling is much higher than the expected total
DSN values at the optimal conditions derived by the existing neural network approach (2006) and data mining approach (2008).
This is indicative that the proposed WMRDSN method with response modelling results in better optimization performance than
the back propagation neural network-based approach and data mining-based approach.
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Table 11. Expected total DSN values at the optimal conditions derived by the proposed method and some existing methods
DSN (in dB)

Optimization Method Optimal Solution
Y1 Y2 Y3

Total
DSN

Proposed WMRDSN method
with response modelling

A2B1C3D3E2F2 29.709 29.551 23.947 83.207

Back propagation neural
network approach (2006)

A3B3C1D3E2F1 27.707 29.551 20.057 77.315

Data Mining Approach (2008) A1B3C1D3E2F1 27.707 29.551 12.500 69.758

6. Conclusions

In a multi-response dynamic system, the target values of the response variables depend on the setting of the signal factor. The
majority of the contemporary mechanized processes utilise more than a few response variables and industries demand for
developing procedures for optimizing multi-response dynamic system. To deal with the requirements of the contemporary
industries, more than a few procedures for optimizing a multi-response dynamic system have been developed by the past
researchers. But the optimization performances of these procedures are not very satisfactory. In this paper, a novel procedure for
optimizing a multi-response dynamic system is proposed. The proposed procedure integrates multiple regression (MR) technique
and Taguchi’s dynamic signal-to-noise ratio (DSN) concept. The performance of the proposed method is evaluated with respect to
three commonly used modelling approaches for the dynamic systems, e.g. performance measure modelling (PMM), response
measure modelling (RFM) and response modelling (RM). It is observed that the proposed integrated method with RM approach
results in the best optimization performance. It also results in better optimization performance than back propagation neural
network-based approach and data mining-based approach reported by the past researchers.
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