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Abstract

This paper presents the results of a comprehensive numerical study to analyze free convective heat transfer in a vertical
rectangular duct filled with porous matrix and saturated with nanofluid for temperature dependent viscosity. Using the Darcy-
Forchhiemer model, the momentum in the porous medium was simulated. While insulating two opposing wall ducts, the
temperatures remained varied for the other two walls. Solutions to the transport equations for a Newtonian fluid were provided
numerically through the finite difference approach to second order accuracy. The impact of the overriding parameters, for
instance, the parameters of variable viscosity as well as inertial, the Grashof number, Darcy number, Brinkman number, solid
volume index as well as the aspect ratio having a water-Copper nanofluid on the flow characteristics of natural convection is
investigated. The flow nature using different nanoparticles is aso studied. The values of volumetric flow rate, skin friction
and Nusselt number are tabulated for pertinent parameters. It is found that for negative values of viscosity variation
parameter the flow is enhanced in the lower part of the duct and positive values will enhance the flow in the upper part of the
duct. Silver nanoparticle attains the maximum heat transfer rate when compared to other nanoparticles.
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1. Introduction

A broadly publicised research domain in the fluid mechanics literature, which concerns natural phenomena, is the
phenomenon relating to convective motion, which is propelled through the buoyancy force. In this research interest area, the
phenomenon of buoyancy for situations in porous media has been a major aspect of theoretical formulations and dimensions.
Of particular interest, the influences of non-Dancy on natural convection in porous media became almost routine discussions
among scholars. Of course, the motivation for these regular discussions is the usefulness of the techniques in awide array of
technical applications, including the flow of fluids in reservoirs (geothermal), in chemica manufacturing for separation
processes, in soil water application where the dispersion 09f contaminants (chemical) by the way of water-saturated soil, in
casting where solidification is required as well as in grain storage schemes where moisture immigrates, etc. A broad survey
of literature relative to this discussion could be obtained in Kaviany (1995), Ipp and Ingham (2001) as well as Bejan et al.
(2004).

The specific attention to the Brinkman-broadened Darcy representation was documented by Tony and Subramanian (1985)
as well as Lauriat and Prasad (1987) to analyse the impacts of buoyancy on free convection for a vertical cavity. This
representation was at just introduced in 1947 by Brinkman in an attempt to take care of the transaction of flow to highly
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viscous flow (devoid of porous matrix) arising from Darcy flow, within the restriction of outstandingly elevated permeability.
Nevertheless, the contribution of Brinkman (i.e. Brinkman’s model) fails to completely treat the idea of transition from
porous-medium flow to pure fluid flow in situations of increases in the porous-medium’s permeability. A representation that
bridges the complete gap arising between the Darcy and Navier-Stokes equation is the model by Dancy-Forchheimer that was
built up through Vafai aswell as Tien (1981).

As the velocity of the fluid becomes elevated while the heat transfer is contemplated in the near-wall region, the
observation is that the inertial and boundary impacts glow substantially (Chen and Lin, 1985). Furthermore, the Darcy-
Forchheimer model showcases the impact of inertial and viscous forces in porous media, which was employed by Poulikakos
(1985) as well as Lauriat and Prasad (1989) to analyse the natural convection occurring in a vertical enclosure that is filled
with a porous medium. Umavathi et al. (2005, 2012a, 2012b, 20133, 2013b, 2013c, 2013d) studied the heat transfer as well as
flow in vertical channels and ducts, employing Darcy- Forchheimer model. At present, despite intensive scholarly activities
aimed at improving outcomes of industrial heat transfer through fluid mechanics, the restricted capability associated with
conventional fluids, for instance, oil, ethylene-glycol and water, to transfer heat has remained a strong confrontation in the
science of heat transfer. Fortunately, the replacement of conventional fluids by superior fluids having elevated thermal
conductivity has been an approach to getting rid of this challenge. These advanced fluids were meant to be just fluids in
theory in along period of time, pending the emergence of the quick build-up of the nanotechnology movement.

Surprisingly, nanotechnology restores the hope and confidence of building up competent heat exchangers through the
emergence of a novel aspect of fluids, referred to as nanofluids. The creation of nanofluids is often achieved through the
dispense of little amounts of metal or semi-metal particulates, having dimensions to the tune of 100 mm into a standard base
fluid, for instance, oil or water. Over the past ten years, substantial improvements in thermal conductivity modeling and the
use of convective heat transfer concerning nanofluids that are superior to predictions are at present available in microscopic
models (Li and Xuan, 2002; Wang et al; 1999; He at al., 2007). In an instance, He et a. (2007) asserted the respective 6%
and 12% increase over water compared with the thermal; conductivity as well as the convective heat transfer coefficient of
1.2% T;0,-water nanofluids. The nanoparticles in nanofluids are capable of flowing through media that are permeable while
these flows could enhance the recovery of oil. The stability analysis using nanofluids was discussed by Umavathi and Monica
(20144, 2014b, 2016) and Umavathi (2015). The employment of nanoparticlesis as well common to determine the changesin
the saturation of fluids as well as the reservation properties in the course of production of oil and gas. In attempt to enhance
viscous oil recovery, afluid, for instance, water, is injected into the porous medium for a displacement of the oil since water
has viscosity lower than that of oil. Nevertheless, a growth in the injected fluid’s viscosity (e.g. through the employment of
nanofluids) would substantially enhance the efficiency of recovery.

Hady et a. (2011a, 2011b, 2014) published series of papers using nanofluid to analyse the influence of yield stress past a
vertical plane that is saturated through porous medium. A model based on non-homogeneous equilibrium, consisting of two
components and four equations was credited to Buongiomo (2006) and the use was for mass, momentum as well as heat
transfer in nanofluids. By employing Buongiomo’s (2006) model, Kwang et. al. (2009), Nield and Kuznestsov (2009),
Umavathi (2013a, b), Umavathi and Shekar (2015), Umavathi et al. (2015) analysed the effects of the presence of
nanoparticles in nanofluids. Recently, Ed et al. (2015) discussed about the effectiveness of a chemical reaction on the viscous
flow of anon-Darcy nanofluid over a non-nearly stretching sleet in a porous medium. Further, Ed (2016) extended his studies
in Ed et al. (2015) including the impact of heat generation for an electrically conducting fluid.

A major part of currently available analytical investigations regarding this problem are rooted in uniform physical
properties for the fluid (ambient). Nevertheless, it is clear (consider Herwing and Gresten 1986) that these physical properties
are subjected to changes in temperature, particularly fluid viscosity. Thus, in order to predict the flow as well as the heat
transfer rates from an accurate perspective, it becomes essential to account for this variation regarding viscosity in the
analysis of the problem. Sedeek (2002) considered the impact of magnetic field as well as variable viscosity on the forced
non-Darcy flow concerning a flat plate having variable wall temperature in porous media considering suction as well as
blowing. Furthermore, Umavathi and her group (2015a, b, ¢, d, 2016a, b, c) analyzed the natural convection having
temperature-dependent viscosity and thermal conductivity in a duct and square cavity.

The immense application of nanofluidsin the field of technology and to understand the flow nature close to the more real
prediction of the flow nature by considering the variable properties, motivated to take this problem under investigation. This
problem is an extension of Umavathi and Odelu (2015d) replacing the clear fluid by a nanofluid saturated with the porous
medium.

2. Mathematical Formulation
Consider a steady fully developed laminar flow of a nanofluid saturated with porous matrix in a long vertical

rectangular duct. The geometry of the problem is shown in Fig. 1, where the cartesian  co-ordinate system (X VY, Z) is
located as shown in the physical configuration. @ and b are length and breadth of the duct in Z and Y directions
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respectively. Since the flow is fully developed, the velocity components in the X and Y directions are zero, and
consequently, the velocity vector of the fluid is given as W :W(X,Y). The duct walls are assumed to be rigid and

impermeable. The porous medium is homogeneous and isotropic. The non-Darcian model including the effect of inertial
forces and taking into account the effect of viscous and Darcy dissipations isincorporated in defining the model. Thefluid is
assumed to be incompressible and the effective viscosity is equal to the viscosity of the fluid. The physical properties
characterizing the fluid except density and viscosity are assumed to be constant. As customary, the Boussinesq

approximation and the equation of state I' =T (1—b (T—TO)) will be adopted. The two sides of the duct are

maintained at constant different temperatures T, &t Y=0and T, a Y=b, where T, >T, and 0T/0X =0 a X=0and a
X=a.
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Figure 1: Physical configuration

Water is used as a base fluid and spherical nanoparticles such as Copper, Titanium Oxide Diamond, and Silicon Oxide are
considered for the study. The base fluid and the nanoparticles are assumed to be in thermal equilibrium. Fluid rises in the
duct driven by buoyancy forces. The flow isfully developed and the following relations apply here
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The continuity equation gives OW/0Z = 0 and therefore W :W( X ,Y) . Under these assumptions, equations governing

the fluid flow and heat transfer are as follows (Umavathi, 2015b)
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The relevant boundary conditions for the problem under study are as follows
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W=0, T=T, a Y=0 for 0<X<a
W=0, T=T, a Y=b for 0<X<a
oT

W=0, —=0 a X=0 for 0<Y<b 4
oX

W =0, 2—;:0 a X=a for 0<Y<b

The effective density of the nanofluid is given as

Py =(1-fF)r +fry (5)

where f is the solid volume fraction of the nanoparticles. The thermal diffusivity, heat capacitance and thermal expansion
coefficients of the nanofluid respectively are given by

a _ an (6)
" (r Cp )nf
(GC)nf :(1_f )(GC)f +f (GC)s ()
(rb)nf :(1_f )(rb)f +f (rb)s (8)
The effective dynamic viscosity of the nanofluid given by Brinkman (1952) is
m

- 9

™y ©

In equation (6), K, isthe thermal conductivity of the nanofluid. For spherical nanoparticle, according to Maxwell
(1904), this can be written as

Ko +2K, -2 (K, -K,)
K, +2K, +f (K, -K,)

Here the subscripts nf, f and s respectively are the thermo physical properties of the nanofluid, base fluid and the solid
nanoparticles.

The fluid viscosity M, is assumed to vary with temperature as m, =m exp{—c(T —TO)} where the subscript 0

denotes the reference state and “c” is an empirical constant. The parameter “c” may take positive values for liquids such as
water, benzene or crude oil. In some gases like air, helium or methane “c” may be negative, i.e., the coefficient of viscosity
increases with temperature. This type of model can find applications in many processes where preheating of the fuel is used
as a means to enhance heat transfer effects. In addition, for many fluids such as lubricants, polymers, and coal slurries where

viscous dissipation is substantial, an appropriate congtitutive relation where viscosity is a function of temperature should be
used.

K

+ =K (10)

Equations (1) to (4) are non-dimensionalised using the following dimensionless parameters
(Buongiorno, 2006)

x=X/b, y=Y/b, W=(Wr fb)/m)’ q I(T_To)/(Tz_Tl)' To:(T1+T2)/2’

(11)
Gr=(gb, ATbr )/ng, Br=nj/(K, ATr ?b%), Da=k/b*, 1=(C.b)/vk, BV=caAT,
The dimensionless momentum and energy equations become
owoexp(-BVg) o*w owoexp(-BVg) a*w
- —BV — -BV
OX OX W% ep(-Bva)+ oy oy ’ oy’ ep(-Bva)+
(12)

+Gr (1 )24 (1 ) +f % q _exp(_BVq)Dﬂa_ | (11 )2-5{(14 )+f :s}wzz 0
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oq +an . Br exp(—BVq)[ K, +2K, +f (K, =K,) J{(awjz J{GWTI

ooy (-t [ Ko+2k, -2 (K, -K,) J|Lax) Loy

(13)
Brexp(—BVq) K, +2K, +f (Kf —KS) W0
+ =
Da (1-f )™ | K +2K, -2 (K, —K)
The non-dimensional boundary conditions used to solve the Egs. (12) and (13) are
w=0,0=-05 a y=0 for 0O< x<A
w=0,0=05 a y=1 for 0< x<A (14

w=0, Z—qzo a x=0 and x=A for 0<y<1
X

3. Solution M ethod

The governing equations (12) and (13) defining the model along with boundary conditions (14) are coupled and
nonlinear and hence closed form solutions are out of reach. Therefore we find the approximate solutions using the numerical
methods. The finite difference technique is opted for the numerical method. In this method the computational domain is
divided into a uniform grid system. The second-derivative and the squared first-derivative terms are discretized using the

central difference of second-order accuracy. The finite difference form of 9°W/x® and OW/OX, for example, were
W W —2W W 2 ow Wi —Wy;

=— ’ L+ O(AX?) and — = —=L =L L O(AX?), respectively. Substituting
ox° AX® ( ) ( )
the above differencesin Egs. (12) and (13) reducesto the following difference equations.

oX 2AX
[Vviﬂ,j —W_y; ](—BV exp(—Bti’j )){qiﬂ,j —0Oiy; }Lexp(—Bti‘j )(\NHLJ —2Wi,]- Wy j

discretized as

2AX 2AX AX?
\Ni,j+l_\Ni,j—1 Qi,j+1_qu71 \Ni,j+l_2\Ni,j +\Ni,j—1
+(Tj(—BV exp(-BVq, | ))[Ty +exp(-BVg, ;) Ay (15)

+Gr (1-f )2'5{(14 )+f (rb), }q” ~ exp(-BVq) —+ — | (1-f )2'5{(14 )+f —S}wi,jz -=0

(rb), a

qi+1,j _Zqi,j +qi—l,j qi,j+1_2qi,j +qi,j—l
2 + 2 +
AX Ay

K_+2K. +f (K, - K o—w Y Co—w L)Y
Br exp(—BVq,j){ s f ( f s) }[(Wu,] W|1,J) +[VVI,J+1 WJl]:l (16)

(1-f)*° K, +2K, -2 (K, —K,) 2AX 20y

LB exp(BVq){ K, +2K, +f (K, - K,) J"" ,

2.5 iz 0
Da (1-f)*° | K +2K, -2 (K, -K,)
The corresponding discretized boundary conditions are
Wo=—W,, 0 ,=-1-q,,

Wi Ny = ~Winy s iyt :1_qi,Ny’

Wo,j = Wijs Qoj =0 j»

(17)

WNx+1,j :_WNx,j’ qu+l,j :qu,j
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where i and j range from 1 to Nx and 1 to Ny, respectively. Nx and Ny denote the number of grids inside the computational
domain in the respective x and y directions. The values of W, j and g after setting the boundary conditions (17), are

iterated until all the values of W, j and q; j in the grid system are less than a prescribed tolerance.

3.1. Validation of the numerical code using grid independence study:

A grid independence study is conducted using five different grid sizesof 11x11 , 51x51, 101x101, 151x151
and 201x 201 and the values of the average Nusdet number on the boundary Y=0 is shown in Table-Al with
BV =-0.5, Gr=10, Br=1.0, ,Da=0.0001, | =2.0,f =0.02, A=1 suing copper as nanoparticle and water as
base fluid. Regular grid is used for all cases. It is observed from Table-1 that 101x101 grid compared with 151x151
and 201x 201 does not have any significant effect on the results in terms of average Nusselt number. Therefore according

to this observation, a uniform grid size of 101x101 isenough for this study.
Table-Al: Grid independent study

Gridsize | Average Nusselt number
11x11 0.530690080307085

51x51 0.530681577489642

101x101 0.530679728993398

151x151 0.530679504025806

201x 201 0.530679458520223

4, Resultsand discussion

The problem of heat transfer in a vertical rectangular duct filled with a nanofluid saturated with porous matrix is analysed
for the viscosity dependent on the temperature. The governing equations which are coupled, nonlinear partial differential
equations are solved using finite difference method of second order accuracy. The exponential dependence of the viscosity
on the temperature is assumed and thermal conductivity is assumed to be constant. The Darcy-Brinkman-Forchhmier model
is used to model the flow of the porous matrix. The effect of pertinent parameters such as nanoparticles, viscosity variation

parameter BV , Darcy number Da, inertial parameter | , Grashof number Gr , Brinkman number Br , solid volume
fraction f and aspect ratio A on the velocity and temperature fields are shown pictorially. To understand the flow pattern
in a more distinguishable form the pictures are shown in 3D (three dimension), 2D (two dimension) and 1D (one dimension)
for all the parameters. The 1D graphs are drawn fixing thevalueof Yy at 0.1 andvarying X fromOto 1.

The effect on the flow using different nanoparticle is shown in Figs. 2a and 2b for different values of BV . It is seen from
3D graph as BV increases flow gets enhanced in the upward direction (yzl) for al the nanoparticles (Copper, Diamond
and Titanium Oxide is taken in this study). This can also be justified by 2D graphs that the number of contours are dense in
the lower region of the duct (0 <y< 0.5) for negative valuesof BV and in the upper region of the duct (0.5 <y< 1)

for positive values of the duct. The temperature field does not show any significant difference for different nanoparticles as
seen in Fig. 2a. However Fig. 2b tells that the optimum temperature is attained for Copper nanoparticle, and the minimum is
obtained for Diamond nanoparticles for negative and positive values of BV . The velocity profiles are not much distorted
for different nanoparticles for any of BV . The effect of using different nanaoparticles on the flow was the similar results
obtained by Umavathi et a. (2015) for constant properties. The 1D graphs in Umavathi et al. (2015) are drawn at y=0.5
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and hence the velocity profiles are in the upward direction whereas in this paper the velocity profiles are in the downward
direction because the profilesaredrawvna  y=0.1.

The pictures from Figure 2 onwards are drawn using Copper nanoparticle cindering water as the base fluid. The effect of
variable viscosity parameter BV are shown in Figs. 3a and 3b. It is clear that as BV increases flow increases in the
upward direction (3D graphs). The velocity contours (2D graph) also show that the number of contours are dense in the

lower region of the duct (0 <y< 0.5) for negative values of BV , symmetric for BV =0 and dense in the upper region
(0.5 <y< 1) of the duct for positive value of BV (Fig. 3a). The temperature filed is not much varied for the variations

of BV . To understand the flow behavior in a more wider form, the 1D graphs are drawn choosing different points of Yy
varying X . The values of Yy are chosen near the left wall, in the centre and near the right wall of the duct. One can
visualize that the velocity profiles change their direction as Y moves from left to right of the duct. Near the left wall the

profiles are in the downward direction, symmetric in the middle of the duct and in the upward direction of the duct. As BV

increases, flow increases in the downward direction for valuesof BV < O and in the upward directionfor BV >0 . The
profile for BV =0 lie above BV <0 and below BV >0. The temperature profiles show different nature when
compared to velocity profiles. It is seen that the nature of BV at y=0.1 andat y=0.5 are contradictory. That isto say

that flow increases in the downward direction for BV >0 and in the upward direction for BV <0 a y=0.1 but its

nature is converse a Y=0.5 (Fig. 3b). Umavathi and Odelu (2015€) also observed the similar effect of BV on the flow
for regular, viscousfluid .

The effect of Darcy number Da and BV on the flow is shown in Figs. 4a and 4b. For fixed value of BV , the velocity
curves are flat for small values of Da and becomes narrow for large values of Da and the contours are also flat for
Da=0.0001 and becomes circular in nature for Da=1.0 whereas the temperature curves and contours does not show

much variations as Da increases (Fig. 4a). Here aso the number of contours are dense in lower half of the duct for
BV < 0 and dense in the upper half region of the duct for BV > 0. From Fig. 4b it is clear that the velocity increasesin
the downward direction as Da increases and temperature also increases as Da increases. The nature of increasein Da is
to increase the flow is quite obvious because physically increasein Da implies that porous matrix becomes more sparse.
The effect of inertial parameter | on the flow is depicted in Figs. 5a and 5b. It is observed that the inertial parameter does
not show much variations in the flow filed. But the effect of BV  show the similar nature asin Figs. 4aand 4b. That isto
say that the contours are dense in the lower half region for BV <0 and dense in the upper region for BV > 0 (Fig. 5b)
and the profilesfor BV =0 lieabove BV < 0 and below BV > 0.

The effects of Grashof number, and Brinkman number along with BV on the velocity and temperature fields are shown in
Figs. 6a, 6b and 7a, 7b. As Grashof number and Brinkman number increases flow increases. Similar result was obtained by
Umavathi and Odelu (20115b) for regular fluid in the absence of porous matrix and hence not more explanation is required.

The effect of solid volume fraction f and BV on the flow field is shown in Figs 8a and 8b. Here also it is seen that as
BV increases flow increases in the upward direction for both regular and also for nanofluid. The number of contours are
dense in the lower half region for values of BV < 0 and in the upper half region of the duct for valuesof BV > 0. Here
also the temperature contours are almost linear for any value of f and BV (Fig. 8a). However from 1D graph (Fig. 8b) one

caninfer that as f increases velocity increases whereas temperature decreases for any value of BV .

The effect of aspect ratio A on the flow is again the similar nature as obtained by Umavathi and Odelu (2015€). As the

aspect ratio A increases the profiles become wider. The effect of BV remains the same as explained above for any value
of A.
To understand the physical significance of the problem under study, the volumetric flow rate, skin friction and rate of heat

transfer are evaluated and tabulated in Tables 1a, 1b and 1c for the variations of the viscosity variation parameter BV . It
is seen that the volumetric flow rate Q increases as BV increases for al the parameters. The volumetric flow rate is
maximum for Silver nanoparticle and decreases for other nanoparticles. As Darcy number, Grashof number, Brinkman
number and aspect ratio A increases the volumetric flow rate increases whereas it decreases as inertial parameter and solid



57 Umavathi et al./ International Journal of Engineering, Science and Technology, Vol. 10, No. 1, 2018, pp. 50-75

dw
volume fraction increases. The shear stress d_ increases as BV decreasesin magnitude at y=0 and increasesat y=1

y

for all the nanoparticles and the maximum is attained for Silver nanoparticle both at y=0 and a y=1. The shear stress

dw W
— a y=0 anda y=1 increases as Da, Gr and A increases. Asf and Br increases the shear stress —

dy dy

dw
decreasesat Y=0 and increases at Y=1 (Table 1a). The shear stress ™ a X=0 anda X=1 dsoincreases as BV
X

increases. It decreases at X=0 and at X=1 for al the nanoparticles when compared with Silver nanoparticle. As
dw
Da, Gr,Br and A increases — at X=0 and at X=1 also increases, but decreases with | and f (Table 1b) The
dx
d
rate of heat transfer d_q a y=0 and a y=1 decreases dightly as BV increases for al the governing parameters. The
y
rate of heat transfer decreases a Y=0 and increases a¢ y=1 for al the nanoparticles when compared with Silver
nanoparticle. As Da, Gr,Br and A increases, the rate of heat transfer increases at Y=0 and decreases at y=1
whereas reversal effect is observed for the inertial parameter | . The rate of heat transfer increases both at y=0 and at
y=1 assolid volume fraction f increases.
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Figure 2a: Velocity and temperature contours for Copper, Diamond and Titanium Oxide nanoparticles from left to right
respectively with Da=0.01, | =2, Gr=10, Br=1, f =0.02, A=1for BV =+0.5
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Figure 2b: Velocity and temperature profiles for Copper, Diamond and Titanium Oxide nanoparticles with

Da=0.01, =2, Gr=10, Br=1, f =0.02, A=1a y=0.1for BV=105
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Figure  3b: Velocity and  temperature  profiles  for  different  values  of BV with
Da=0.01, =2, Gr=10, Br=1, f =0.02, A=1a y=0.1,0.50.9
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Figure 4a: Velocity and temperature contours for different values of BV and Da with
| =2, Gr=10, Br=1, f =0.02, A=1
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Table 1a. Values of volumetric flow rateand  skin friction with Da=0.01, | =2, Gr =10, Br=1, f =0.02, A=1

BV | Q dw dw Q dw dw
dy y=0 dy y=1 dy y=0 dy y=1
Cu TiO,
-0.5 | -1.690E-3 | -0.222558 | -0.147861 | -1.668E-3 | -0.219296 | -0.145679
0.0 1.397E-4 | -0.176508 | -0.186592 | 1.350E-4 | -0.173919 | -0.183837
0.5 1.981E-3 | -0.139953 | -0.235456 | 1.949E-3 | -0.137900 | -0.231979
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Table 1a (cont’d). Values of volumetric flow rate and skin friction with

Da=0.01, I =2, Gr=10, Br=1 f =0.02, A=1

BV | Q dw dw Q dw dw
dy y=0 dy y=1 dy y=0 dy y=1
Cu TiO,
Silver Diamond
-0.5 | -1.695E-3 | -0.223358 | -0.148398 | -1.670E-3 | -0.219363 | -0.145716
0.0 1.412E-4 | -0.177143 | -0.187270 | 1.337E-4 | -0.173972 | -0.183884
0.5 1.989E-3 | -0.140457 | -0.236312 | 1.948E-3 | -0.137941 | -0.232037
Da = 0.0001 Da=1
-0.5 | -3.689E-5 | -2.748E-2 | -1.765E-2 | -4.465E-3 | -0.389199 | -0.266593
0.0 3.339E-8 | -2.147E-2 | -2.258E-2 | 1.939E-3 | -0.309393 | -0.336435
0.5 3.696E-5 | -1.678E-2 | -2.890E-2 | 8.449E-3 | -0.245045 | -0.423479
| =00 | =10.0
-0.5 | -1.691E-3 | -0.222564 | -0.147863 | -1.690E-3 | -0.222536 | -0.147854
0.0 1.397E-4 | -0.176511 | -0.186595 | 1.396E-4 | -0.176496 | -0.186578
0.5 1.981E-3 | -0.139955 | -0.235462 | 1.980E-3 | -0.139947 | -0.235431
Gr=1 Gr=25
-0.5 | -1.833E-4 | -2.232E-2 | -1.475E-2 | -2.384E-3 | -0.548420 | -0.374106
0 1.396E-7 | -1.769E-2 | -1.861E-2 | 2.204E-3 | -0.435648 | -0.473024
0.5 1.836E-4 | -1.402E-2 | -2.347E-2 | 6.980E-3 | -0.345835 | -0.598446
Br =0.01 Br=2
-0.5 | -1.833E-3 | -0.223195 | -0.147535 | -1.548E-3 | -0.221928 | -0.148194
0.0 1.396E-6 | -0.176947 | -0.186123 | 2.796E-4 | -0.176071 | -0.187073
0.5 1.836E-3 | -0.140262 | -0.234771 | 2.130E-3 | -0.139644 | -0.236164
f=0 f =0.05
-0.5 | -1.768E-3 | -0.223664 | -0.141368 | -1.573E-3 | -0.220883 | -0.158478
0.0 1.666E-4 | -0.177393 | -0.178406 | 1.070E-4 | -0.175171 | -0.199978
0.5 2.115E-3 | -0.140659 | -0.225140 | 1.796E-3 | -0.138887 | -0.252328
A=0.5 A=20
-0.5 | -1.383E-3 | -0.195880 | -0.129577 | -1.841E-3 | -0.235964 | -0.157072
0 8.620E-5 | -0.155109 | -0.163740 | 1.715E-4 | -0.187263 | -0.198105
0.5 1.562E-3 | -0.122804 | -0.206906 | 2.198E-3 | -0.148573 | -0.249841
Table 1b. Values of skin friction with Da=0.01, 1 =2, Gr=10, Br=1, f =0.02, A=1.
BV | dw dw dw dw dw dw dw dw
dX x=0 dX x=1 dX x=0 dX x=1 dX x=0 dX x=1 dX x=0 dX x=1
Cu TiO, Silver Diamond
-0.5 | -1.357E-2 | 1.357E-2 | -1.339E-2 | 1.339E-2 | -1.361E-2 | 1.361E-2 | -1.340E-2 | 1.340E-2
00 [9116E-4 [ -9.116E-4 | 8.810E-4 | -8.810E-4 | 9.215E-4 | -9.215E-4 | 8.725E-4 | -8.725E-4
05 [ 1547E-2 [ -1547E-2 | 1.523E-2 | -1.523E-2 | 1.553E-2 | -1.553E-2 | 1.522E-2 | -1.522E-2
Da = 0.00001 Da=1.0 =00 | =10.0
-05 | -1.795E-3 | 1.795E-3 | -2.201E-2 | 2.201E-2 | -1.357E-2 | 1.357E-2 | -1.357E-2 | 1.357E-2
0.0 1574E-6 | -1.574E-6 | 7.140E-3 | -7.140E-3 | 9.117E-4 | -9.117E-4 | 9.112E-4 | -9.112E-4
0.5 1.798E-3 | -1.798E-3 | 3.676E-2 | -3.676E-2 | 1.547E-2 | -1.547E-2 | 1.547E-2 | -1.547E-2
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Table 1b (cont’d). Values of skin friction with Da=0.01, | =2, Gr=10, Br=1, f =0.02, A=1.

BV | dw dw dw dw dw dw dw dw
dX x=0 dX x=1 dX x=0 dX x=1 dX x=0 dX x=1 dX x=0 dX x=1
Cu TiO, Silver Diamond
G=1 G=25 Br =0.01 Br=2
-0.5 | -1.451E-3 | 1.451E-3 | -2.188E-2 | 2.188E-2 | -1.451E-2 | 1.451E-2 | -1.264E-2 | 1.264E-2
0.0 9.114E-7 | -9.114E-7 | 1.438E-2 | -1.438E-2 | 9.113E-6 | -9.113E-6 | 1.824E-3 | -1.824E-3
0.5 1452E-3 | -1.452E-3 | 5.193E-2 | -5.193E-2 | 1.452E-2 | -1.452E-2 | 1.644E-2 | -1.644E-2
f =0 f =05 A=05 A=20
-0.5 | -1.352E-2 | 1.352E-2 | -1.362E-2 | 1.362E-2 | -1.365E-2 | 1.365E-2 | -1.354E-2 | 1.354E-2
0.0 1.033E-3 | -1.033E-3 | 7.548E-4 | -7.548E-4 | 7.540E-4 | -7.540E-4 | 9.425E-4 | -9.425E-4
0.5 1568E-2 | -1.568E-2 | 1.5194E-2 | -1.519E-2 | 1.522E-2 | -1.522E-2 | 1.550E-2 | -1.550E-2
Table 1c. Values of rate of heat transfer with Da=0.01, | =2, Gr =10, Br=1, f =0.02, A=1.
BV | dg dq dq dg dg dq dq dg
dy y=0 dy y=1 dy y=0 dy y=1 dy y=0 dy y=1 dy y=0 dy y=1
Cu TiO, Silver Diamond
-0.5 | 0.540037 | 0.522735 | 0.534280 | 0.517483 | 0.540115 | 0.522689 | 0.539851 | 0.523044
0.0 0.538962 | 0.521844 | 0.533236 | 0.516617 | 0.539033 | 0.521790 | 0.538806 | 0.522178
0.5 0.538127 | 0.520699 | 0.532425 | 0.515506 | 0.538192 | 0.520637 | 0.537995 | 0.521067
Da = 0.00001 Da=1.0 1=0.0 | =10.0
-0.5 | 0.530679 | 0.530311 | 0.554696 | 0.509874 | 0.540038 | 0.522735 | 0.540034 | 0.522737
0.0 0.530650 | 0.530288 | 0.552175 | 0.507447 | 0.538963 | 0.521843 | 0.538960 | 0.521846
0.5 0.530627 | 0.530258 | 0.550214 | 0.504380 | 0.538128 | 0.520698 | 0.538126 | 0.520702
G=1 G=25 Br =0.01 Br=2
-0.5 | 0.530565 | 0.530392 | 0.587442 | 0.480615 | 0.530565 | 0.530392 | 0.549417 | 0.514920
0.0 0.530554 | 0.530383 | 0.581745 | 0.474007 | 0.530554 | 0.530383 | 0.547334 | 0.513078
0.5 0.530546 | 0.530372 | 0.577420 | 0.465475 | 0.530546 | 0.530372 | 0.545720 | 0.510712
f=0 f =05 A=05 A=20
-0.5 | 0510159 | 0.491773 | 0.587292 | 0.571531 | 0.538267 | 0.524214 | 0.540928 | 0.521987
0.0 0.509021 | 0.490821 | 0.586309 | 0.570724 | 0.537372 | 0.523482 | 0.539764 | 0.521014
0.5 0.508137 | 0.489599 | 0.585544 | 0.569687 | 0.536676 | 0.522542 | 0.538859 | 0.519765

5. Conclusions
The problem of fully developed laminar flow in a duct filled with porous matrix and saturated with nanofluid was studied.
The effect of al the pertinent parameters on the flow were observed along with the analysis of the physical characteristics
such as volumetric flow rate, skin friction and heat transfer rate and the following conclusions were drawn.

1.
2.
3
4,

5.

The flow was enhanced as the viscosity variation parameter was increased immaterial of any of the nanoparticles.
The temperature contours were not distorted influentially with any of the governing parameters.

The flow was enhanced with the Darcy number, Grashof number, Brinkman number and aspect ratio whereas it was
suppressed by theinertial and solid volume fraction parameters.

The volumetric flow rate was promoted with viscosity variation parameter, Darcy number, Grashof number,
Brinkman number, aspect ratio but was demoted with the inertial parameter and solid volume fraction parameter.
The rate of heat transfer was increased at Y=0 and decreased at y=1 with the increase in the values of Darcy

number, Grashof number, Brinkman number, aspect ratio and reversal effect was observed with the inertial
parameter for any value of the viscosity variation parameter. The heat transfer rate was pronounced at y=0 and
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also at y=1 with the solid volume fraction parameter. Optimum heat transfer was observed for Silver nanoparticle

when compared with other nanoparticles.

6. The effects of viscosity variation parameter, Grashof number, Brinkman number and aspect ratio on the flow were
the similar results observed by Umavathi and Odelu (2015d) in the absence of porous matrix for regular fluid. The
effect of different nanoparticles and solid volume fraction agree with the results obtained by Umavathi and Sheremet
(20164) for nanofluids in the absence porous matrix. The effects of Darcy number and inertial parameter were in
agreement with Umavathi (2013a) in the absence of nanoparticles.
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Nomenclature

A aspect ratio (b/a)

a horizontal distance

b vertical distance

c empirical constant

Br Brinkman number (nf/(KfAT re bz))
BV variable viscosity parameter (CAT )
Da Darcy number (k/bz)

Gr Grashof number (gbfAT b’r fz/r‘rf)
I inertial parameter (CF b/x/E)

K conductivity of the fluid

Nx, Ny grid number in computational domain
T temperature

To reference temperature

U, V, W velocity components

u, v, w dimensionless velocity components
XY, Z space coordinates

XY, Z dimensionless space coordinates

Greek symbols

8 dimensionless temperature

p viscosity

p density

k permeability of the porous medium

f solid volume fraction

Subscripts

nf thermo-physical properties of the nanofluids
f base fluid

S solid nanoparticles
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