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Abstract 
 
This paper presents Simulated Annealing (SA) algorithm for optimization inspired by the process of annealing in 

thermodynamics to solve economic load dispatch (ELD) problems. The proposed approach is found to provide optimal results 
while working with operating constraints in the ELD and valve point loadings effects. In order to prove the robustness of the 
algorithm it is investigated on four different standard test cases consisting of 3, 13, 40 generating unit system with valve point 
effect and a Crete Island system of 18 thermal generating units having convex fuel cost characteristics. The proposed method has 
been compared with other existing relevant approaches available in literatures. Experimental results support to justify superiority 
of the approach over other reported techniques in terms of fast convergence, robustness and most significantly its optimal search 
behavior.  
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1. Introduction  

 
Economic operation is very important for a power system to get profits on the capital invested (Song et al., 1996). Operational 

economics involving power generation and delivery can be sub divided into two parts:1) minimization of power production cost, 
called economic load dispatch 2) minimization of transmission losses. Functionally Optimum Power Flow (OPF) combines the 
power flow with Economic Load Dispatch (ELD) problem (Sun et al. 1984; Yuryevich et al. 1999; AlRashidi et al.2007). The 
objective of OPF is to find the optimal settings of a given power system network that optimize a certain objective function (based 
on losses, reactive power, voltage or power flow violations etc.) while system security, and all operating constraints are satisfied. 
The most commonly used objective is the minimization of the overall fuel cost function along with minimization of active power 
loss, bus voltage variation, emission of power generating units, and power shedding. On the other hand, ELD is one of the most 
crucial issues of present energy management system. The objective of ELD   in a power system is to discover the best possible 
combination of power output for all generating units which will minimize the total fuel cost as well as satisfying load and 
operational constraints. The ELD problem is extremely complex to work out because of its large dimension, a non-linear objective 
function, and various constraints. several analysis on the ELD have been carried out till now, suitable improvements in the unit 
outputs scheduling can contribute to significant cost savings (Choudhary et al. 1990; Happ et al. 1971) and also information in 
forming market clearing prices is provided by it.  
    Various classical optimization techniques were used to solve the ELD problem, for example: lambda iteration approach, 
gradient method, linear programming method and Newton’s method (Wood et al.1996). Lambda iteration method, the most 
common one has been applied to solve ELD problems. But for its effective implementation, the formulations have to be 
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continuous. Linear programming methods is fast and reliable but the main weakness is they are associated with the piecewise 
linear cost approximation (Park et al.1993). 
   In order to get the qualitative solution for problem related to ELD, Artificial Neural Network (ANN) techniques such as Hopfield 
Neural Network (HNN) (Park et al.1993) have been used. The objective function of the ELD problem is transformed into a 
Hopfield energy function and arithmetical iterations are utilized to minimize the energy function. To solve the ELD problems for 
power generating units associated with continuous or piecewise quadratic fuel cost functions and for units with prohibited zone 
constraints Hopfield model has been employed. In the conventional HNN, the input-output correlation for its neurons can be 
depicted by sigmoid function. Hopfield model takes more iteration to present the solution and large computational time due to use 
of the sigmoid function to solve the ED problems. 
   Recently, various other nature inspired optimization techniques have proved their potential in handling various problems. The 
prominent among them are genetic algorithm (GA) (Walter et al., 1993), evolutionary programming (EP) (Yang et al., 1996), 
particle swarm optimization (PSO) (Park et al., 2005), differential evolution (DE) (Coelho et al., 2006) , Artificial Bee Colony 
Algorithm (ABC) (Hemamalini et al., 2008), Biogeography-Based optimization(BBO) (Bhattacharya et al., 2010), Bacterial 
foraging-based optimization (BFBO) (Padmanabhan et al.,2011) ,Firefly Algorithm (FA) (Yang et al.2012) etc. Improved fast 
evolutionary programming algorithm has been successfully applied for solving the ELD problem (Choudhary et al. 1990; Lee et 
al. 1984). Other algorithms like Hybrid genetic/simulated-annealing approach (GA/SA)(Wong et al. 1994), Hybrid particle swarm 
optimization sequential quadratic programming (PSO-SQP) (Aruldoss et al., 2004), Chaotic particle swarm optimization (CPSO) 
(Jiejin et al., 2007), new particle swarm with local random search (NPSO-LRS) (Selvakumar et al., 2007), Improved particle 
swarm optimization (Ning et al. 2007), Self-Organizing Hierarchical particle swarm optimization (SOH-PSO) (Chaturvedi et al. 
2008), Bacterial foraging optimization nelder mead hybrid algorithm (BFONM) (Panigrahi et al., 2008), improved coordination 
aggregated based PSO (ICA_PSO)(John et al., 2009), quantum-inspired PSO (QPSO)(Meng et al., 2010), and modified group 
search optimizer algorithm (MGSO) (Zare et al., 2012) have been applied to solve the ELD problem. 
      Simulated Annealing (SA) is a stochastic optimization approach inspired by the natural process of annealing related to 
thermodynamics proposed by (Kirkpatrick et al., 1983). SA approach has been previously applied to solve ELD problem (Wong et 
al.1993), dynamic economic dispatch problem (Panigrahi et al., 2007) for small large dimensional ELD problems with convex cost 
characteristics (Vishwakarma et al., 2012) .In this paper the potential of simulated annealing approach has been tested for large 
dimensional ELD problem with nonconvex cost characteristics. One of the test systems used is known be particularly difficult to 
optimize as it has multiple local minima (Sinha et al., 2003). 
   In order to validate robustness and effectiveness of SA algorithm, this paper considers four standard ELD problems, namely, 3 
13 and 40 generating unit system with valve-point loading effects and an 18 generating unit systems with quadratic cost function 
with varying percentage of the maximum power as demand. 

The paper is organized as follows: brief description and mathematical formulation of ELD problems presented in Section 2. The 
concept behind the simulated annealing (SA) optimization is discussed in Section 3. Section 4 depicts realization process of the 
algorithm used for the test system. Section 5 related to discussion in contest of parameter settings for the used test cases to analyze 
performance of SA. Concluding remarks are presented in Section 6. 
 
2. Economic Load Dispatch Formulation  

 
The objective of ELD problem is to minimize the fuel cost of generating units for a specific period of operation so as to 

accomplish optimal generation dispatch among operating units while the system load demand, generator operational constraints, 
ramp rate limit and prohibited operating zones are satisfied. Two models for ELD are considered here, one with smooth cost 
function and other with non smooth cost function as below.   
   The objective function analogous to the generation cost can be approximated to be a quadratic function. Symbolically, it is 
represented as  

Minimize ∑
=

=
GN
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                                                                                                (2)  
is the expression for cost function of ith  generating unit and ai, bi and ci are its cost coefficients. Pi is the real power output (MW) of 
ith generator corresponding to time period t. NG is the number of generating units. 
The sequential valve opening process for multi-valve steam is responsible for ripple in heat rate curve. These effects are included in 
cost function using sinusoidal component as  
 

( )( )iiiiiiiiiii PPfecPbPaPf −+++= min2 sin)(
                                                                                (3) 
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Where ei and fi are the cost coefficients corresponding to valve point loading effect.  

 The ELD problem consists of minimizing Ft
Cost subjected to following constraints. 

 
2. A) Power Balance Constraints: The total generation must fulfill the total demand plus losses. If total system load is PD and losses 
are represented by PL, then, 
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Where transmission loss PL is expressed using B- coefficients (wood et al, 1996), given by   
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 2. B) Generator Capacity Constraints:  For stable operation, real power generated by each generator restricted by their  lower limit 
Pi

min and upper limit Pi
max as follows: 

max
ii

min
i PPP ≤≤

                                                                                                                                                           (6) 
 
3. Optimization using Simulated Annealing  

 
   Simulated Annealing is basically a stochastic optimization technique inspired by the natural process of crystallization i.e. gradual 

cooling of metal. Annealing (in metallurgy & material science) is a process involving heating and controlled cooling of a material 
to get perfect crystal with minimum defects. There is a significant correlation between the terminology of thermodynamic 
annealing process (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and 
combinatorial optimization (finding global minimum of a given function based on many parameters).A detailed analogy of 
annealing in solids provides frame work for optimization. Table 1 depicts the key terms which are related with thermodynamic 
annealing and its association with optimization process. 

 
Table 1: Association among thermodynamic simulation and Combinatorial Optimization 

Thermodynamic annealing Simulated annealing 
System state Feasible Solutions 
Energy Cost 
Change of state Neighboring Solutions 
Temperature Control Parameter 
Frozen state Heuristic Solution 

 
The main advantage of SA approach is that it does not need large computer memory. Whenever a large number of local minima 

are available, then the search for global minima for a multidimensional function becomes quite a complex task.  The main purpose 
of the optimization is to achieve fast convergence as well as better exploration capability. The SA method has ability to escape 
from local minima by incorporating a probability function in accepting and rejecting new solutions.  

 
3. A) Annealing Process in Thermodynamics: Molecules of a metal become unstuck from their initial positions and wander 
randomly at high temperature. By gradual cooling thermal mobility is lost and atoms start to get arranged in the form of a crystal. 
If the reduction of temperature is done at a very fast rate, a meta-stable state (i.e. crystalline state transforms to an amorphous 
structure) is obtained which corresponds to a local minima of energy level (Kolahan et al. 2010). 

For a thermal equilibrium state of a system for temperature T, afterward the probability P
T
(s) with its pattern s depends on energy 

level of corresponding pattern E(s), and is depending on Boltzmann distribution 
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−
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Where, k is   known as Boltzmann constant and the sum Σ
W 

consists of all promising states of W. 
Metropolis et al. (1953) were the first to suggest a method for calculating a distribution of a system of elementary particles 
(molecules) at the thermal balance state.  

 Let the system have a configuration g, which corresponds to energy E(g). If one of the molecules of the system is 
displaced from its initial position, then a new state σ corresponding to energy E(σ) occurs. If E(σ)≤  E(g) , then the new state is 
accepted. If E(σ)>E(g), then the new state is accepted with probability : 

KTgEEe /))()(( −− σ                                                                                                                                                                              (8) 
 

3. B) Critical parameters of SA algorithm: For the successful application of the SA algorithm, the annealing schedule is vital. 
There are four control parameters that are directly associated with its convergence (to an optimized solution) and its efficiency 
(Kolahan et al, 2010). They are,  

  I)  Initial Temperature 

 II)  Final Temperature  

III)  Rate of Temperature Decrement and 

IV)  Iteration at each Temperature  

I) Initial Temperature 
At beginning, Initial temperature must be set at a higher value, in order to get more probability of acceptance for non optimized 

solutions during the first stages of the algorithm. Too much higher selection of initial temperature makes an algorithm slow and 
computationally inefficient. On the other hand, very low initial temperature may not be capable of searching a minimum especially 
for multi model function. There is no particular way to find out proper initial temperature which is suitable for whole range of 
problems. According to Dowsland et al. (1995), if the temperature of the system is raised quickly up to the initial value, where a 
certain percentage of the worst solutions is acceptable. After this, a gradual decrement of temperature is proposed. 

II) Final Temperature  
   While working with SA algorithm generally the final temperature fall is set to zero degree Celsius. SA algorithm can take much 
longer time to execute the operation, if the decrement in the temperature is exponential in nature.  Finally, the stopping criterion is 
selected, which can be either a appropriate low temperature or the value where the system get freeze at that temperature. 
 
III) Temperature Decrement  

As initial and final temperatures have predefined values, it is essential to find the approach of transition from starting to its final 
temperature as the success of algorithm depends on it. According to Aarts et al,(1988) decrement of temperature at time “t” is: 

)log()( t
dtT =                                                                                                                                                                                 (9) 

Where d is a positive constant.   

The temperature decrement can also be implemented using  )()1( taTtT =+                                                                   (10) 

Where a, is a constant close to 1. Its effective range is 0.8≤ a≤0.99. 

IV) Iterations at each Temperature   
To enhance efficiency of the algorithm, selection of proper number of iterations is another important factor. Lundy et al. (1985) 
suggests the realization of only one iteration for each temperature and the fall in temperature should take place at a really slow rate 
which can be expressed as: 

                                         ).1()( t
ttT β+=                                                                                                     (11) 

Generally, β have very small value. 

 

4.  SA Algorithm Implementation of ELD Problems  

Step1: For initialization, choose temperature T, parameter α and maximum number of iterations ‘max tries’,  to generate an initial 
feasible solution by random process and store it as current solution Si. Then performs ELD in order to evaluate the total cost, Fcost, 
while satisfying   power balance as well as generator constraints as in eq. (4) and eq. (6) respectively.  

Step2: Set the iteration counter to μ=1  
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Step3: Create an adjacent solution S
j 
through the rand operator and compute the new total cost, F

cost
.  

Step4: If the new solution is found to be better, accept it; otherwise find the deviation of cost ΔS=S
j
-S

i 
and generate a random 

number Ω ∈(0, 1) out of a uniform distribution using the following logic:  
If     )1,0(/ ∈Ω≥Δ− tSe                                                                                                                                                                  (12) 

Accept the new solution Sj to replace Si. 

Step5: Reduce temperature by parameter α, until the stopping criterion is not satisfied  

T (t) =α. T,   and go back to Step 2. 

5. Results and Discussion 

The proposed SA-based approach has been developed and implemented using the MATLAB software. In order to investigate the 
robustness of the proposed method we experimented with four standard test cases. They are 3 unit system, 13 unit system, 18 unit 
systems with a varying percentage of the maximum power as demand and a large system consisting of 40 generating unit. The 
programs were developed using MATLAB 7.1 and the system configuration is Pentium IV processor with 2.4 GHz speed and 512 
MB RAM. 

 
5.1 Selection of control Parameters 

 
   As in other evolutionary optimization approach, SA algorithm also needs appropriate selection control parameter before 
implementation. Because optimum parameter selection finally responsible for smooth fitness convergence. The following process 
has been applied to determine optimal values of parameters such as initial temperature, final temperature, consecutive rejection 
and maximum number of iterations, which is used here as a stopping criteria. A standard test system with 3 generating units 
[Walter et al. (1993)] having valve point loading effects is used to locate the best control parameters. Load demand of the system 
is set at 850MW. For conducting the test, the initial temperature is fixed at 3000 C, alpha is increased from 0.5 to 0.99 in suitable 
steps and max tries is varied from 1000 to 10000 as shown in Table 2 and further initial temperature is increased from 1000C to 
4000C as given in Table 3. 
 

Table 2: Influence of parameters on SA performance 
Initial Temperature=3000 C 

Max. Tries alpha 
0.5 0.6 0.7 0.8 0.9 0.99 

1000 8424.69608 8369.93635 8343.93784 8241.18305 8234.07179 8234.07180 
4000 8424.69608 8241.17563 8294.33710 8241.58756 8250.20597 8234.07173 
7000 8424.69608 8241.17678 8241.18786 8234.07181 8241.58753 8234.07174 
10000 8424.69608 8241.17981 8241.17469 8241.17537 8234.07175 8234.07162

 
Table 3:  Effect of initial temperature on 3 unit non convex system (PD=850MW) with alpha=0.99, max. tries =1000 
Initial  

Temperature 
( 0C ) 

Pg1 Pg2 Pg3 Minimum 
Cost ($/hr) 

Mean Cost 
($/hr) 

Max. 
Cost ($/hr) 

Std. 
Deviation 

100 600.00 174.80 50.00 8369.93466 8446.23 8446.23 67.79 
200 498.93 251.18 99.89 8241.20354 8288.51 8288.51 81.60 
300 300.27 400.00 149.73 8234.07162 8234.07 8234.07 00.00 
400 300.27 400.00 149.73 8234.07176 8234.07 8234.07 00.00 

Over 20 repeated trials, the SA algorithm was successful in achieving a minimum cost $8234.07162/hr and standard deviation 
0.00000  with the tuning parameters value: initial temperature=3000C,alpha = 0.99; and max. tries = 10000, which is used for 
analysis of other problems.  
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Figure 1: Convergence of 3 Generators system PD=850MW 

 
Test Case 1: Three Unit System 
The test system consists of 3 generating units with valve point loading effect with total load demand of 850 MW. Because of the 
small dimension of the problem, the global best cost of this example is known and the main target is to show that the global best 
output can also be obtained by the SA approach.Result obtained using SA method is and compared with genetic algorithm (GA), 
evolutionary programming (EP), Hybrid particle swarm optimization sequential quadratic programming (PSO-SQP), Artificial Bee 
Colony Algorithm (ABC) and modified group search optimizer algorithm (MGSO) in Table 4. The minimum cost attained by the 
SA method is 8234.07 $/hr which indicates that the SA approach is capable of producing the global best results. 

 
Table 4: Comparison of Results for 3 unit system 

Algorithm Pg1(MW) Pg2(MW) Pg3(MW) PD (MW) Min cost ($/hr)   Ave cost ($/hr)    
GA (Walter et al. 1993) 299.100 399.000 150.800 850 8239.20 ---- 
EP  (Yang H.T et al. 1996) 300.264 400.000 149.736 850 8234.07 8234.16 
PSO-SQP (Aruldoss et al. 2004) 300.267 400.000 149.733 850 8234.07 8234.07 
ABC (Hemamalini et al . 2008) 300.260 400.000 149.740 850 8234.07 ---- 
MGSO (Zare et al. 2012) 300.2669 400.000 149.7331 850 8234.07 8234.07 
SA 300.2667 400.000 149.7333 850 8234.07 8234.07 

 
 

Test Case 2: Thirteen Unit System (PD=2520 MW) 
The system contains thirteen thermal generating units having non convex fuel cost characteristics. This system has more 
complexity and has multiple minima. For simulation purpose load demand on the system set at 2520 MW. The fuel cost 
coefficients are provided in (Sinha N. et al., 2003). The best cost obtained using the SA method is $24169.91769418 per hour. 
Table 5 compares the numerical results with those of other approach. Results shows that the SA algorithm is capable of finding 
better cost than genetic algorithm (GA), Hybrid genetic/simulated-annealing approach (GA-SA), Hybridization of EP with 
sequential quadratic programming( EP_SQP), Hybrid particle swarm optimization sequential quadratic programming (PSO_SQP) 
(Aruldoss et al. 2004), improved coordination aggregated based PSO (ICA-PSO) (Vlachogiannis et. al. 2009), and modified group 
search optimizer algorithm (MGSO) ( Zare et al. 2012) and well comparable with differential evolution (DE) (Noman N et al.  
2008). The convergence behavior is shown in Figure 2. 

 
Test Case 3: 40 unit system 

The test case consists of 40 generators with valve point loading and has a total load demand of 10,500 MW. The input data are 
given in [Sinha N et. al. (2003)]. This test case has larger and more complex than previous test cases. It has several local minima, 
and hence global minimum is very difficult to locate. The dispatched power generation results achieved using the proposed SA 
approach and other recently reported heuristic optimization approaches are given in Table 7. The optimum fuel cost achieved by 
the proposed SA algorithm is $121412.55369757, which is better than the value reported by all other heuristic methods. The 
comparison of minimum cost, average cost and maximum cost   by the proposed approach with the other recently reported results 
obtained using firefly algorithm (FA), modified group search optimizer (MGSO), hybrid swarm intelligence based harmony search 
algorithm (HHS), biogeography-based optimization (BBO), improved coordinated aggregation-based PSO (ICAPSO) ,bacterial 
foraging with nelder-mead (ABF_NM) local search, self-organizing hierarchical PSO (SOH_PSO) ,artificial bee colony(ABC) and 
other methods is depicted in Table 6. The minimum cost obtained by SA algorithm is better than all reported methods and the 
convergence characteristic is presented in Figure 3. 
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Table 5: Results for13 unit system for a demand of 2520 MW 
Generator Power 

O/P(MW) GA GA-SA EP-SQP PSO-SQP 
 
        DE 

 
MGSO* ICA-PSO** Proposed  SA 

Pg1 628.32 628.23 628.3136 628.3205 628.3185 628.3185 628.32 628.3185 

Pg2 356.49 299.22 299.1715 299.0524 299.1993 299.1993 299.19 299.1993 

Pg3 359.43 299.17 299.0474 298.9681 299.1993 294.4839 294.51 299.1993 

Pg4 159.73 159.12 159.6399 159.4680 159.7331 159.7331 159.73 159.7331 

Pg5 109.86 159.95 159.6560 159.1429 159.7331 159.7331     159.73 159.7331 

Pg6 159.73 158.85 158.4831 159.2724 159.7331 159.7331 159.73 159.7331 

Pg7 159.63 157.26 159.6749 159.5371 159.7331 159.7331 159.73 159.7331 

Pg8 159.73 159.93 159.7265 158.8522 159.7331 159.7331 159.73 159.7331 

Pg9 159.73 159.86 159.6653 159.7845 159.7331 159.7331 159.73 159.7331 

Pg10 77.31 110.78 114.0334 110.9618 77.3999 77.3999 114.8 77.3999 

Pg11 75.00 75.00 75.0000 75.0000 77.3999 77.3999   77.4 77.3999 

Pg12 60.00 60.00 60.0000 60.0000 92.3999 92.3999   55 87.6845 

Pg13 55.00 92.62 87.5884 91.6401 87.6845 92.3999   92.4 92.3999 
Total Power 

Generation(MW) 2519.96 2519.99 2520 2520 2520 2520 2520 2520 

Total Power 
Generation(MW) 2520 2520 2520 2520 2520 2520 2520 2520 

Power 
Mismatch(MW) 0.0399 0.0100 0.0000 0.0000  

0.0000 
 
0.0000 

 
0.0000 

 
0.0000 

Minimum Cost 
($/hr) 24398.23 24275.71 24266.44 24261.05  

24169.9177 
24173.88 

855357 
24178.69 
823123 

24169.91 
769418

*Reported generation Cost: $/hr 24,164.0508;** Reported generation Cost: $/hr24168.91 
   

 
Figure 2: Convergence of 13 Generators system with PD=2520MW 

 
Table 6: Comparison of Results for 40 unit system 

Solution technique Production cost ($/hr) 
Min cost Avg cost Max cost 

IFEP  (Sinha et al. 2003) 122624.3500 123382.0000 125740.6300 
NPSO_LRS (Selvakumar et al . 2007) 121664.4308 122209.3185 122981.5913 
ABC (Hemamalini et al .2008) 121432.3900 121995.82 122123.77 
SOH_PSO (Chaturvedi et al. 2008) 121501.1400 121853.57 122426.3000 
ABF_NM (Panigrahi et al.  2008) 121423.6379 121814.9465 ------- 
DE (Noman N et al.  2008) 121416.29 121422.72 121431.47 
ICA_PSO (Vlachogiannis et. al. 2009) 121413.20 121428.14 121453.56 
BBO  (Bhattacharya et al. 2010) 121426.9530 121508.0325 121688.6634 
HHS (Pandi et al . 2011) 121415.5922 121615.8544 ------- 
FA (Yang et al. 2012) 121415.0522 121416.57 121424.56 
MGSO ( Zare et al. 2012) 121,412.5693 ------- ------- 
SA 121412.55369757 121418.05 121425.27579 
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Table 7: Comparison of Results for 40 unit system (MD=10500 MW) 
 

 
 
 

Power O/P  
(MW) 

 
SA 

 
MGSO 

 
FA 

 
HHS 

 
BBO 

 
SOH_PSO 

 
NPSO_LRS 

    P1 110.8003 110.7999 110.8099 110.9030 110.8158 110.80 113.9761 
P2 110.7998 110.8003 110.8059 110.8642 111.0896 110.80 113.9986 
P3   97.3999 97.4003 97.40230 97.4039 97.40261 97.40 97.4241 
P4 179.7331 179.7336 179.7332 179.7339 179.7549 179.73 179.7327 
P5 87.7999 87.7999 92.7070 91.4353 88.20832 87.80 89.6511 
P6 140 140 140.0000 139.9999 139.9886 140.00 105.4044 
P7 259.5994 259.5996 259.6004 259.6181 259.5935 259.60 259.7502 
P8 284.5997 284.5997 284.6004 284.6035     284.6174 284.60 288.4534 
P9 284.5997 284.6 284.6004 284.6164 284.6479 284.60 284.6460 
P10 130 130 130.0028 130.0000 130.0298 130.00 204.8120 
P11  94 94 168.8008 168.8046 94.01459 94.00 168.8311 
P12  94 94 168.8008 168.7989 94.26367 94.00 94.0000 
P13 214.76 214.7595 214.7606 214.7624 304.5153 304.52 214.7663 
P14 394.2794 394.2794 304.5204 394.2790 394.264 304.52 394.2852 
P15 394.2794 394.2794 394.2801 304.5197 304.5057 394.28 304.5187 
P16 394.2794 394.2794 394.2801 394.2787 394.2472 394.28 394.2811 
P17 489.2794 489.2794 489.2801 489.2876 489.3273 489.28 489.2807 
P18  489.2794 489.2794 489.2801 489.2806 489.3047 489.28 489.2832 
P19 511.2794 511.2794 511.2817 511.2844 511.3087 511.28 511.2845 
P20 511.2794 511.2794 511.2817 511.2829 511.2495 511.27 511.3049 
P21 523.2794 523.2794 523.2793 523.2794 523.3217 523.28 523.2916 
P22 523.2794 523.2794 523.2793 523.2783 523.3144 523.28 523.2853 
P23 523.2794 523.2794 523.2832 523.2812 523.3629 523.28 523.2797 
P24 523.2794 523.2794 523.2832 523.2810 523.2883 523.28 523.2994 
P25   523.2794 523.2794 523.2793 523.2815 523.2989 523.28 523.2865 
P26   523.2794 523.2794 523.2793 523.2828 523.2802 523.28 523.2936 
P27 10 10 10 10.0003 10.02817 10.00 10.0000 
P28 10 10 10 10.0000 10.00321 10.00 10.0001 
P29 10 10 10 10.0000 10.0288 10.00 10.0000 
P30 87.7999 87.7999 87.8008 88.7063 88.14595 97.00 89.0139 
P31 190 190 189.9989 189.9999 189.9913 190.00 190.0000 
P32 190 190 189.9989 190.0000 189.9888 190.00 190.0000 
P33 190 190 189.9989 190.0000 189.9998 190.00 190.0000 
P34 164.7998 164.8025 164.8036 164.8519 164.8452 185.20 199.9998 
P35  200 194.3935 164.8036 164.8967 192.9876 164.80 165.1397 
P36 194.3973 200 164.8036 164.8205 199.9876 200.00 172.0275 
P37 110 110 110 110.0000 109.9941 110.00 110.0000 
P38 110 110 110 109.9997 109.9992 110.00 110.0000 
P39 110 110 110 110.0000 109.9833 110.00 93.0962 
P40 511.2794 511.2794 511.2794 511.2836 511.2794 511.28 511.2996 

Total Cost 
($/h) 121412.5536975  121,412.5693 121415.0522 121415.5922 121426.593 121501.14 121664.4308 
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Figure 3: Convergence of 40 generators system with PD=10500MW 

 
Test Case4: Eighteen Unit System (PD=433.22 MW) 
 

The fourth test case considers the Greek island of Crete consisting of 18 thermal units system. The technical limits and the 
quadratic cost coefficients for the above system is adopted from (Ioannis et al. 2003).The maximum power output of the 
generators set is 433.22MW. Various tests were made with a varying percentage of the maximum power as demand. Table 8 
summarizes the test results in terms of optimum power generation dispatch, and it is evidently seen from Table 9 that the proposed 
technique provided better results compared to other reported evolutionary algorithm techniques. Hence it is clear that the SA 
performs very well for finding the optimum solution of the ELD problems, while it takes relatively low computational time per 
iteration. Figure 4 shows the convergence behavior of test case 4 with a varying percentage of the maximum power as demand. 

 
 Table 8: Comparison of Results for 18 unit system (MD=433.22 MW) 

 
Unit power 

output(MW) 0.70*MD 0.80*MD 0.90*MD 0.95*MD 

Pg1    15.0000    15.0000 15.0000 15.0000 
Pg2    45.0000    45.0000 45.0000 45.0000 
Pg3    25.0000    25.0000 25.0000 25.0000 
Pg4    25.0000    25.0000 25.0000 25.0000 
Pg5    25.0000    25.0000 25.0000 25.0000 
Pg6     3.0000     3.0485 8.2379 13.7063 
Pg7     3.0000     3.1334 8.2379 13.7063 
Pg8    12.2800    12.2800 12.2800 12.2800 
Pg9    12.2800    12.2800 12.2800 12.2800 

Pg10    12.2800    12.2800 12.2800 12.2800 
Pg11    12.2800    12.2800 12.2800 12.2800 
Pg12    14.8322    20.9144 24.0000 24.0000 
Pg13     3.0000     3.0000 3.1636 6.4132 
Pg14    21.0494    30.2892 36.2000 36.2000 
Pg15    23.1610    32.5145 42.5270 45.0000 
Pg16    24.0457    32.7503 37.0000 37.0000 
Pg17    24.0457    33.8056 43.4116 45.0000 
Pg18     3.0000     3.0001 3.0000 6.4132 

Total power output 
(MW) 303.254 346.576 389.898 411.559 

Minimum Cost ($/hr) 20386.30950 23855.85595   27653.78063 29731.06662 
Average cost($/h) 20389.0000 23856.4600 27655.5700 29731.6500 

Standard 
deviation($/hr) 2.39 0.88 2.94 0.85 

CPU 
time/iteration(sec) 0.037 0.030 0.042 0.043 
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Figure 4: Convergence Characteristics of Eighteen Unit System with various loads 

 
Table 9: Comparison of Results for 18 unit system 

 
Solution technique 0.95*MD 0.90*MD 0.80*MD 0.70*MD

λ-iteration 
(Ioannis G. et al.,2003) 29731.05 27652.47 23861.58 20393.43 

Binary  GA 
(Ioannis G. et al.,2003) 

29733.42 27681.05 23980.24 20444.68 

Real-coded GA 
(Ioannis G. et al.,2003) 

29731.05 27655.53 23861.58 20396.39 

ABC 
(Dixit G. et al.,2011) 

29730.80 27653.30 23859.40 20391.60 

SA 29731.066620 27653.780630 23855.855950    20386.309503 
 

Table 9 shows that the minimum fuel cost obtained by the SA algorithm in case of varying percentage of the maximum power 
demand is better than all other reported results.So it can be concluded that the SA method is computationally more efficient as 
compared to previously reported methods. 
 
6. Conclusion 
 
   This paper has proposed the SA algorithm for ELD problems, a stochastic optimization technique based on the process of 
annealing in thermodynamics is presented. In this work we have investigated the potential of the SA algorithm in solving 
particularly non-smooth cost functions. The ELD problem has become a very important issue with the depleting reserves of  coal 
and the increase in fuel prices. An appropriate planning and scheduling of available generating units may save millions of dollars 
per year in production cost. First a study was carried out to determine the optimal values of tuning parameters of the SA and then  
the best set of parameters were fixed for the rest of the studies.  Selection of optimum combination of parameters for SA algorithm 
is an essential task, since the success of the algorithm depends on it. The feasibility of the proposed method for solving ELD 
problems is verified by using 3, 13, 40 and 18 generator test systems, out of which the first three test cases are with valve-point 
loading effects. The outcome of the analysis supports the claim that the proposed method was found to provide better solutions 
than solutions of other methods reported so far. Test case four considers the Greek island of Crete consisting of 18 thermal units 
system, in which the robustness of the SA method was verified by the change in load demands of the problem. The obtained SA 
results for this problem were not the best, but very close to previously mentioned methods. Considering all the results of ELD 
problems with different characteristics, dimensions, demands and constraints, it can be concluded that SA is powerful optimization 
technique for constrained optimization. The results obtained are either better or are matching in accuracy with previously proposed 
methods. Therefore, SA based optimization is a promising alternative approach for solving complicated problems in power system. 
The findings of this paper confirm that the proposed SA algorithm can be applied for solving other power system problems with 
different levels of complexity. 
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Nomenclature 
 

Ft
cost  : Total power production cost 

fi(Pi)  : Fuel cost corresponding to ith generator for output power Pi  
ai,  bi  , ci : Cost coefficients of ith generator 
Pi  : Real power output (MW) of ith generator corresponding to time period t 

ie , if                : Cost coefficients to effectively model the valve point loading effect 
Bij, Bi0, B00 : Loss coefficients 
PD                         : Power demand  
PL  : Power loss  
Pi

max  : Upper bound for power outputs of the ith generating unit 
Pi

min  : Lower bound for power outputs of the ith generating unit 
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