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Abstract 
 
   The problem of radial vibrations of an infinitely long poroelastic composite hollow circular cylinder is solved by employing 
Biot’s theory of wave propagation in poroelastic media. A poroelastic composite hollow cylinder consists of two concentric 
poroelastic cylindrical layers both of which are made of different poroelastic materials with each poroelastic material as 
homogeneous and isotropic. The boundaries of composite hollow poroelastic cylinder are free from stress. The frequency 
equations of radial vibrations of poroelastic composite hollow cylinder with rigid core, poroelastic composite solid cylinder, 
poroelastic composite solid cylinder with rigid casing and of rigid core and poroelastic composite bore are derived as particular 
cases.  Non-dimensional frequency is computed as a function of ratio of thickness to inner radius of core. The results are 
presented graphically for two types of poroelastic composite cylinders and then discussed. 
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1. Introduction 
 
   McFadden (1954) studied the radial vibrations of thick-walled hollow elastic cylinders of infinite extent. Baltrukonis (1961) et 
al. discussed axial-shear vibrations of a composite circular cylinder. A study on radial vibrations of a poroelastic sphere was made 
by Paul (1974). Cui et al. (1997) and Abousleiman and Cui (1998) presented poroelastic solutions in an inclined borehole and 
transversely isotropic well bore cylinders. An analysis on free vibrations of multi-layered isotropic hollow spheres was made by 
Chen and Ding (2001).  Stavsky and Greenberg (2003) studied radial vibrations of orthotropic laminated hollow spheres. Ahmed 
shah and Tajuddin (2009, 2011) discussed axial symmetric vibrations in finite composite poroelastic cylinders and torsional 
vibrations in thick-walled hollow poroelastic spheres. Malla Reddy and Tajuddin (2010) studied axially symmetric vibrations of 
composite poroelastic cylinders. Flexural wave propagation in coated poroelastic cylinders is presented by Ahmed shah (2011). 
Tajuddin and Ahmed shah (2010) studied the radial vibrations in thick-walled poroelastic cylinders. Tajuddin (2011) et al. 
discussed axial shear vibrations in poroelastic composite cylinders. 
   In the present analysis, radial vibrations in poroelastic composite hollow cylinder are investigated employing Biot’s (1956) 
theory of wave propagation in porous materials. Biot’s model consists of an elastic matrix permeated by a network of 
interconnected spaces saturated with liquid.  The considered problem has wide applications in many branches of physical sciences. 
Fretting is essentially a contact fatigue phenomenon wherein the failure is predominantly localized near the surface. This is the 
case at least during the initial stages until the bulk stresses dominate and fatigue damage penetrates into the bulk material.  The 
nature of contact between engineering components determines the near-surface state of stress, which in turn controls the severity 
of fretting.  There are cases where the engineering components are made of materials with good mechanical properties but poor 
tribological properties. Fretting fatigue commonly occurs when the materials under contact are subjected to vibrations.  In such 
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vibrations, frequency and phase velocity are significant parameters to determine rate of energy dissipation, which in turn 
determines fretting fatigue. If the coating bonds strongly with the core then the coating delays crack initiation and retards crack 
propagation. Thus, coatings enhance the fretting fatigue strength of a component. Also when materials have good mechanical 
properties but poor fretting resistance, it is advantageous to provide a layer of material with good fretting resistance instead of 
changing entire material by means of coating. This extra layer of material can be provided by coating or by any other surface-
treatment method. The frequency equations  of radial vibrations are obtained for poroelastic composite hollow cylinder and as well 
for some particular cases i.e., poroelastic composite hollow cylinder with rigid casing, poroelastic composite solid cylinder, 
poroelastic composite solid cylinder with rigid casing, poroelastic composite bore and poroelastic composite bore with rigid casing 
each for pervious and impervious surfaces. Non-dimensional frequency as a function of ratio of thickness to the inner radius of 
core is computed in each case. The results are presented graphically for two types of poroelastic composite cylinders and then 
discussed.    
 
2. Basic equations, Formulation and solution of the Problem 
 
The equations of motion of a homogeneous, istoropic poroelastic solid (Biot 1956) in the presence of dissipation b are: 
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where 2∇  is the Laplacian operator u ( , , )u v w and U ( , , )U V W are solid and liquid displacements, respectively, while  e and ε  are 
dilatations of the solid and liquid respectively; A,N,Q,R are poroelastic constants and ρ11, ρ12,ρ22 are the mass coefficients 
following Biot (1956) such that the sums 

11 12
( )ρ ρ+ and 12 22( )ρ ρ+  are masses of solid and liquid, respectively.  The poroelastic 

constants A and N correspond to familiar Lame′constants in a purely elastic solid.  The coefficient N represents the shear modulus 
of the solid.  The coefficient R is a measure of the pressure required on the liquid to force a certain amount of the liquid into the 
aggregate while the total volume remains constant.  The coefficient Q represents the coupling between the volume changes of solid 
to that of liquid. 

The stresses  klσ  and the liquid pressure s of the poroelastic solid are   
    2 ( ) ,kl kl klNe Ae Qσ ε δ= + +      (k, l = 1,2,3)   

    ,s Qe Rε= +                        (2)
  
where klδ is the well-known Kronecker delta function.  

Let (r,θ, z ) be cylindrical polar co-ordinates. Consider a poroelastic composite hollow cylinder with two poroelastic shells bonded 
at the interface made of different isotropic poroelastic materials.  The inner poroelastic shell is referred as core and the outer 
poroelastic shell is referred as casing.  The prefixes j =1, 2 are used to denote two shells related to poroelastic composite cylinder. 
The quantities with prefix(1) refer to the core while (2) referto the casing. The inner radius of core is ‘r1’, outer radius of casing is 
‘r2’,whereas interface radius is ‘a’. 
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                         Fig. 1 Geometry of the problem - Poroelastic composite cylinder 
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For radial shear vibrations, the displacement of the solid ( ,0,0)j j uu  and liquid ( ,0,0)j jUU are    

   ( ) exp( )  ( ) exp( )j j j ju f r i t and U F r i tω ω= =                     (3) 

where ω is the circular frequency of wave and t is the time. 

Equation (1) in cylindrical polar co-ordinates when the solid and liquid displacement components j u  and jU are independent of 
θ  and z reduces to: 

2
2

11 122 2

1 ( )   (   ) ( )j j j j j j j j j j j
eN u A N Q u U b u U
r r tr t
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where e and ε are the dilatations of solid and liquid respectively. The solid and liquid displacement functions can readily be 
evaluated from equation (4) representing plane harmonic waves, the displacements of solid and liquid j u  and jU in the radial 
direction are: 
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where 1 2 3 4, , &j j j jc c c c  are the constants,  
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              (6) 
 
In equation (6) 1V  and 2V  are the dilatational wave velocities of 1st and 2nd kind, respectively, following Gardner (1962) and 

11 12,  j jK K  and 22j K  are given by 

11 11 12 12 22 22,    ,    j j j j j j
ib ib ibK K Kρ ρ ρ
ω ω ω

= − = + = − .        (7)  

 
The dilatations of solid and liquid media following Biot (1956) are  

 
1 1    exp( ),          exp( )j j j je f f i t F F i t
r r

ω ε ω⎛ ⎞ ⎛ ⎞′ ′= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

          (8) 

 
where a dash over a quantity denotes differentiation with respect to ‘ r ’, From equation (2), the relevant stress rrσ  and the liquid 
pressure s are 
 

( ) ( ) ( ) ( )1 11 2 12 3 13 4 14( )      exp( )[ ] j rr j j j js c M r c M r c M r c M r i tσ ω+ = + + +                             (9) 

( ) ( ) ( ) ( )1 21 2 22 3 23 4 24      exp( )[ ] j j j j js c M r c M r c M r c M r i tω= + + +             (10) 

( ) ( ) ( ) ( )1 21 2 22 3 23 4 24     exp( )( ) [ ]j j j j j
s c N r c N r c N r c N r i t
r

ω∂
= + + +

∂
                        (11) 

 
where ( ) ( )ij ijM r and N r  are given  by  
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3. Boundary conditions 
 
   We assume that the outer surface of casing and inner surface of core are free from stress and there is a perfect bounding at the 
interface, thus the boundary conditions for stress-free vibrations of a poroelastic composite hollow cylinder in case of a pervious 
surface are  
 
 1 1 1 ;    ( ) 0,    0rrat r r s sσ= + = =  
 2 2 2 ;    ( ) 0,    0rrat r r s sσ= + = =     
 ( ) ( )2 1 2 1 2 1 ;    0,    0 ,    0.rr rrat r a s s s s u uσ σ= + − + = = = − =        (13) 
 
 while the boundary conditions for stress-free vibrations of a poroelastic composite hollow cylinder in case of an 
impervious surface are   

1 1
1

 ;    ( ) 0,    0rr
sat r r s
r

σ ∂⎛ ⎞= + = =⎜ ⎟∂⎝ ⎠
,    

2 2
2

 ;    ( ) 0,    0rr
sat r r s
r

σ ∂⎛ ⎞= + = =⎜ ⎟∂⎝ ⎠
,  

 ( ) ( ) 2 12 1
2 1

 ;  0,  0,   0rr rr
s sat r a s s u u
r r

σ σ ∂ ∂⎛ ⎞ ⎛ ⎞= + − + = = = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
.                        (14) 

Substitution of equations (9) and (10) into equation (13) results in system of eight homogeneous equations in constants 
1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4, , , , , , ,c c c c c c c c  such a homogeneous system can have non-trivial solutions only if the determinant of the 
coefficients of the unknowns vanishes identically. Thus by eliminating the constants, the frequency equation of radial shear 
vibrations for poroelastic composite hollow cylinder for pervious surface is obtained as  
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where j mnM (m = 1,2,3 ; n = 1,2,3 and 4) are defined in equations (6) and (12).   

In a similar way, substitution of equations (9) and (11) into equation (14) the frequency equation of radial shear 
vibrations for poroelastic composite hollow cylinder for impervious surface is obtained as 
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where ,   1,3 ;  1, 2,3 and 4j mn j mnN M for m n= = =                           (17) 

and 2j nN  for n=1,2,3,4 are defined in eq. (12). 
 

 
4. Particular Cases 
 
   Under suitable conditions the poroelastic composite hollow cylinder reduces to the following particular cases 
4.1 Poroelastic composite hollow cylinder with rigid casing, 
4.2 Poroelastic composite solid cylinder, 
      4.2.1 Poroelastic composite solid cylinder with rigid casing, 
4.3 Poroelastic hollow cylinder, 
      4.3.1 Poroelastic solid cylinder, 
4.4 Poroelastic composite bore, 
      4.4.1 Poroelastic composite bore with rigid casing, 
      4.4.2 Poroelastic bore. 
 
4.1Poroelastic composite hollow cylinder with rigid casing 
   When shear modulus of casing is very much larger than that of core, we can assume that casing is perfectly rigid. Letting the 
shear modulus of the casing approaches to infinity i.e., 2 N →∞, then the frequency equation (15) of radial vibrations of 
poroelastic composite hollow cylinder reduces to 
     A1A2 = 0,           (18) 
 

              with 
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= =
2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

) ( ) ( )
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A r A r
A r A r A r A r

              (19) 

where 
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Where  
2

2 2 2
2

2 2 12 2 2 22

2   
   

     
i

i
V R

R K Q K
α

−−
=

−
  for i =1,2 and 1 mnM (m = 1,2 ; n = 1,2,3 and 4) are defined in equation (12).   

 From eq. (19) it is clear that the physical parameters in the determinants A1, A2 are, respectively, related to core and casing. 

Hence from eq. (18) it is clear that the vibrations of poroelastic composite hollow cylinder related to core and casing for pervious 

surface are uncoupled when the solid in casing is rigid, in addition we obtain A1= 0 or A2= 0. The equation    

   A1= 0,         (21) 

 represents the frequency equation of vibrations ofporoelastic core for pervious surface when it is clamped along its outer surface, 
whereas the equation   
     A2 = 0,         (22)  
represents the frequency equation of  hollow rigid casing for pervious surface when the boundaries are free from stress.  
       
In a similar way, when the solid in core is rigid, the frequency eq. (16) of vibrations of poroelastic composite hollow cylinder for 
an impervious surface reduces to 
     B1B2 = 0,       (23) 
 

         with  

1 11 1 1 12 1 1 13 1 1 14 1 2 11 2 12 2 13 2 14

1 21 1 1 22 1 1 23 1 1 24 1 2 21 2 22 2 23 2 24
1 2

1 21 1 22 1 23 1 24 2 11 2 2 12

1 31 1 32 1 33 1 34

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( )

B r B r B r B r B a B a B a B a
B r B r B r B r B a B a B a B a

B B
B a B a B a B a B r B r
B a B a B a B a

= =
2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

) ( ) ( )
( ) ( ) ( ) ( )

B r B r
B r B r B r B r    

(24) 

where    

( ) ( ), 1,2; 1,3; 1,2,3,4j mn j mnB r A r j m n= = = =  

( ) ( )1 2 1 2 , 1, 2,3, 4n nB r N r n= =
 

( ) ( )( )2 2
2 21 2 1 1 2 1 2 2 1 2  B r J r R Qξ ξ α= −  
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( ) ( )( )2 2
2 22 2 1 1 2 1 2 2 1 2  B r Y r R Qξ ξ α= −  

( ) ( )( )2 2
2 23 2 2 1 2 2 2 2 2 2  B r J r R Qξ ξ α= −  

( ) ( )( )2 2
2 24 2 2 1 2 2 2 2 2 2  B r Y r R Qξ ξ α= −                (25) 

2j nN  for n=1,2,3,4 are defined in eq. (12) and j mnA are defined in eq. (20). 
   From eq. (23) it is clear that the vibrations of poroelastic composite hollow cylinder related to core and casing for impervious 
surface are uncoupled when the solid in casing is rigid, in addition we obtain B1= 0 or B2= 0. The equation  

    B1= 0,                (26) 
 represents the frequency equation of vibrations ofporoelastic core for impervious surface when it is clamped along its outer 
surface, whereas the equation   
     B2 = 0,                (27)  
represents the frequency equation of  hollow rigid casing for impervious surface when the boundaries are free from stress.  
 
4.2 Poroelastic composite solid cylinder 
   When the inner radius r1of core tends to zero, the poroelastic composite hollow cylinder reduces to poroelastic composite solid 
cylinder and the frequency equation (15) of vibrations of poroelastic composite hollow cylinder for pervious surface reduces to 

  

1 11 1 13 2 11 2 12 2 13 2 14

1 21 1 23

2 21 2 22 2 23 2 24

1 31 1 33 2 31 2 32 2 33 2 34

2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 0 0 0

0 0 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0 ( ) ( ) ( ) ( )
0 0 ( ) ( ) ( ) ( )

M a M a M a M a M a M a
M a M a

M a M a M a M a
M a M a M a M a M a M a

M r M r M r M r
M r M r M r M r

0=                  (28) 

where the elements j mnM  are defined in equations (6) and (12). 
This is the frequency equation of radial vibrations of poroelastic composite solid cylinder for pervious surface.  
In a similar way, using the eq. (17), the frequency equation of radial vibrations of poroelastic composite solid cylinder for an 
impervious surface is obtained as 
 

  

1 11 1 13 2 11 2 12 2 13 2 14

1 21 1 23

2 21 2 22 2 23 2 24

1 31 1 33 2 31 2 32 2 33 2 34

2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 0 0 0 0

0 0 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0 ( ) ( ) ( ) ( )
0 0 ( ) ( ) ( ) ( )

N a N a N a N a N a N a
N a N a

N a N a N a N a
N a N a N a N a N a N a

N r N r N r N r
N r N r N r N r

0=                     (29) 

 
where the elements j mnN  are defined in equations (12) and (17). 
 
4.2.1 Poroelastic composite solid cylinder with rigid casing 

When shear modulus of the casing approaches to infinity i.e., 2 N →∞, then the casing becomes perfectly rigid and the 
frequency equation (28 ) for radial vibrations of poroelastic composite solid cylinder reduces to 

     C1C2 = 0,               (30)
   

with        

2 11 2 12 2 13 2 14

1 21 1 23 2 21 2 22 2 23 2 24
1 2

1 31 1 33 2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,     
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

C a C a C a C a
C a C a C a C a C a C a

C C
C a C a C r C r C r C r

C r C r C r C r

= =                 (31) 
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where ( ) ( ), 1,2; 1,2,3; 1,2,3,4j mn j mnC r A r j m n= = = =  and the elements ( )j mnA r are defined in equation (20).     

From eq.(28), it is clear that, when the solid in casing is rigid, the vibrations of poroelastic composite solid cylinder related to core 
and casing for pervious surface are uncoupled.   From eq. (30) we obtain C1=0 or C2=0. The equation  

      C1=0,            (32)  
represents the frequency equation of radial vibrations of poroelastic solid core for pervious surface when it is clamped along its 
outer surface, whereas the equation  
     C2=0,                                   (33)  
represents the frequency equation of radial vibrations of hollow rigid casing for pervious surface when boundaries are free from 
stress. 
 In a similar way, when the solid in casing is rigid, the frequency eq.(29) of radial vibrations of poroelastic composite solid 
cylinder for impervious surface reduces to  
     D1D2 = 0,                                                (34) 

with    

2 11 2 12 2 13 2 14

1 21 1 23 2 21 2 22 2 23 2 24
1 2

1 31 1 33 2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,      
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

D a D a D a D a
D a D a D a D a D a D a

D D
D a D a D r D r D r D r

D r D r D r D r

= =                                              (35) 

where ( ) ( ), 1,2; 1,2,3; 1,2,3,4j mn j mnD r B r j m n= = = =  and the elements ( )j mnB r are defined in equation (25).     

From Eq. (34), it is clear that, when the solid in casing is rigid, the vibrations of poroelastic composite solid cylinder related to 
core and casing for impervious surface are uncoupled, also we obtain D1=0 or D2=0. The equation  

      D1=0,                                            (36)  
represents the frequency equation of radial vibrations of poroelastic solid core for impervious surface when it is clamped along its 
outer surface, whereas the equation  
     D2=0,                                                                   (37)  
represents the frequency equation of radial vibrations of hollow rigid casing for pervious surface when boundaries are free from 
stress. 
4.3 Poroelastic hollow cylinder 
 When poroelastic constants of casing vanishes i.e. 2 2 2 2 0N A Q R= = = = , then poroelastic composite hollow cylinder 
reduces to poroelastic hollow cylinder of inner radius r1 and outer radius a and the frequency equation (15) of radial vibrations of 
poroelastic composite hollow cylinder reduces to  

  

2 11 2 12 2 13 2 14

2 21 2 22 2 23 2 24

2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0,
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

M a M a M a M a
M a M a M a M a
M r M r M r M r
M r M r M r M r

=                       (38) 

where the elements j mnM  are defined in equation (12). 
Eq. (38) is the frequency equation of poroelastic hollow cylinder for pervious surface. 
 
 In a similar way, using the eq. (17), the frequency equation of radial vibrations of poroelastic hollow cylinder for an 
impervious surface is obtained as 

  

   

2 11 2 12 2 13 2 14

2 21 2 22 2 23 2 24

2 11 2 2 12 2 2 13 2 2 14 2

2 21 2 2 22 2 2 23 2 2 24 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0,
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

N a N a N a N a
N a N a N a N a
N r N r N r N r
N r N r N r N r

=

                                                                    

(39) 

where the elements j mnN  are defined in equations (12) and (17). 
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4.3.1Poroelastic Solid cylinder 

 When the inner radius r1of core tends to zero, the poroelastic hollow cylinder reduces to poroelastic solid cylinder and the 

frequency equation (38) of radial vibration of poroelastic hollow cylinder for pervious surface reduces to 

                      

2 11 2 2 13 2

2 21 2 2 23 2

( ) ( )
0,

( ) ( )
M r M r
M r M r

=
  

                                        (40) 

where the elements j mnM  are defined in equation (12). 

This is the frequency equation of radial vibrations of poroelastic solid cylinder for pervious surface. 

 In a similar way,the frequency equation of radial vibrations of poroelastic solid cylinder for impervious surface can be 

obtained as 

    

2 11 2 2 13 2

2 21 2 2 23 2

( ) ( )
0,

( ) ( )
N r N r
N r N r

=                               (41) 

where the elements j mnN  are defined in equations (12) and (17). 

4.4Poroelastic Composite Bore 
  When the outer radius 2r of casing tends to∞ , the frequency equation (15) of poroelastic composite hollow cylinder for 

pervious surface reduces    

            

1 11 1 1 12 1 1 13 1 1 14 1

1 21 1 1 22 1 1 23 1 1 24 1

1 11 1 12 1 13 1 14 2 12 2 14

1 21 1 22 1 23 1 24

2 22 2 24

1 31 1 32 1 33 1 34 2 32 2 34

( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0 0

0 0 0 0 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

M r M r M r M r
M r M r M r M r
M a M a M a M a M a M a
M a M a M a M a

M a M a
M a M a M a M a M a M a

0=                     (42) 

where the elements j mnM  are defined in equation (12). 
Eq. (42) is the frequency equation of radial vibrations of poroelastic composite bore for pervious surface. 
 Similarly, the frequency equation of radial vibrations of poroelastic composite bore for impervious surface is obtained as 

    

1 11 1 1 12 1 1 13 1 1 14 1

1 21 1 1 22 1 1 23 1 1 24 1

1 11 1 12 1 13 1 14 2 12 2 14

1 21 1 22 1 23 1 24

2 22 2 24

1 31 1 32 1 33 1 34 2 32 2 34

( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) 0 0
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0 0

0 0 0 0 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

N r N r N r N r
N r N r N r N r
N a N a N a N a N a N a
N a N a N a N a

N a N a
N a N a N a N a N a N a

0=         (43) 

where the elements j mnN  are defined in equations (12) and (17). 

4.4.1.Poroelastic Composite Bore with rigid casing 

When the solid in casing of poroelastic composite bore is rigid i.e., 2 N →∞ , the frequency (42) of radial vibrations of poroelastic 
composite bore for pervious surface reduces to   

     E1E2 = 0,             (44)
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with   

1 11 1 1 12 1 1 13 1 1 14 1

1 21 1 1 22 1 1 23 1 1 24 1 2 22 2 24
1 2

1 11 1 12 1 13 1 14 2 32 2 34

1 21 1 22 1 23 1 24

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,     
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

E r E r E r E r
E r E r E r E r E a E a

E E
E a E a E a E a E a E a
E a E a E a E a

= =            (45) 

where ( ) ( ),  1,2;  1,2,3;  1,2,3,4j mn j mnE r A r j m n= = = =  and the elements ( )j mnA r are defined in equation (20).     

From eq.(44), it is clear that, when the solid in casing is rigid, the vibrations of poroelastic composite bore related to core and 
casing for pervious surface are uncoupled.  Also, we obtain E1=0 or E2=0. The equation  

      E1=0,           (46)  
is the frequency equation of Radial vibrations of poroelastic hollow core for pervious surface when it is clamped along its outer 
surface, whereas the equation  
     E2=0,                      (47)  
represents the frequency equation of radial vibrations of  poroelastic bore with rigid solid for pervious surface when boundaries are 
free from stress. 

 Similarly, the frequency (43) of radial vibrations of poroelastic composite bore for impervious surface reduces to  
     F1F2 = 0,             (48)
   

with      

1 11 1 1 12 1 1 13 1 1 14 1

1 21 1 1 22 1 1 23 1 1 24 1 2 22 2 24
1 2

1 11 1 12 1 13 1 14 2 32 2 34

1 21 1 22 1 23 1 24

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

,     
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

F r F r F r F r
F r F r F r F r F a F a

F F
F a F a F a F a F a F a
F a F a F a F a

= =             (49) 

where ( ) ( ),  1,2;  1,2,3;  1,2,3,4j mn j mnF r B r j m n= = = =  and the elements ( )j mnB r are defined in equation (25).     

From eq.(48), it is clear that, when the solid in casing is rigid, the vibrations of poroelastic composite bore related to core and 
casing for impervious surface are uncoupled.  Also, we obtain F1=0 or F2=0. The equation  

                    F1=0,            (50)  
is the frequency equation of radial vibrations of poroelastic hollow core for impervious surface when it is clamped along its outer 
surface, whereas the equation  
     F2=0,                        (51)  
is the frequency equation of radial vibrations of  poroelastic bore with rigid solid for impervious surface when boundaries are free 
from stress. 
 
4.4.2 Poroelastic Bore 
 
 When the poroelastic constants of core and casing of poroelastic composite bore same i.e., 

2 1 2 1 2 1 2 1, ,N N A A Q Q and R R= = = = , then the poroelastic composite bore reduces to a poroelastic bore of radius 1r  and the 
frequency equation (42) of poroelastic composite bore reduces to  

      1 12 1 1 14 1

1 22 1 1 24 1

( ) ( )
0,

( ) ( )
M r M r
M r M r

=            (52) 

where the elements j mnM  are defined in equation (12). 
Eq. (52) is the frequency equation of radial vibrations of poroelastic bore for pervious surface. 
 
 
 Similarly, the frequency equation of radial vibrations of poroelastic bore for impervious surface is obtained as 

     1 12 1 1 14 1

1 22 1 1 24 1

( ) ( )
0,

( ) ( )
N r N r
N r N r

=              (53) 

where the elements j mnN  are defined in equation  (17). 
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5. Non-dimensionalization of frequency equation   
 
   The natural frequency will be real when the dissipation coefficient is zero i.e. b = 0. For the sake of numerical work the 
dissipation coefficient ‘b’ is taken as zero and hence we obtained only real frequency. To analyze the frequency equations of radial 
vibrations of poroelastic composite cylinders, it is convenient to introduce the following non-dimensional parameters: 

2 2 2 2 2 11 2 12 2 22
1 2 3 4 1 2 3

1 1 1 1 1 1 1
,   ,   ,   ,   ,   ,   ,

P Q R N
a a a a d d d

H H H H
ρ ρ ρ
ρ ρ ρ

= = = = = = =

1 1 1 1 1 11 1 12 1 22
1 2 3 4 1 2 3

1 1 1 1 1 1 1
,   ,   ,   ,   ,   ,   ,

P Q R N
b b b b g g g

H H H H
ρ ρ ρ
ρ ρ ρ

= = = = = = =  

2 2 2 2
1 0 1 0 1 0 1 0

1 1 2 2
1 1 1 2 2 1 2 2

,   ,   ,   ,
V V V V

x y x y
V V V V

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 1 0

,h
C
ω

Ω =             (54) 

 
whereΩ  is non-dimensional frequency and  

2 21 1
1 1 1 1 1 1 11 1 12 1 22 1 0 1 0

1 1
2 ,   2 ,    ,    .

N H
H P Q R C Vρ ρ ρ ρ

ρ ρ
= + + = + + = =           (55) 

 
 Non-dimensional frequency (Ω ) is calculated for two types of composite cylinders, namely composite cylinder-I and 
composite cylinder-II for each pervious and impervious surface.Composite cylinder-I consists of core made up of sandstone 
saturated with water (Yew and Jogi, 1976) and casing is made up of sandstone saturated with kerosene (Fatt, 1959), where as in 
composite cylinder-II, the core is sandstone saturated with kerosene and casing is sandstone saturated with water. The physical 
parameters of these poroelastic composite materials following equation (54) are given in Table 1.      
  

Table – 1. Non-dimensional parameters of poroelastic composite cylinders 

                   
Material 

Parameters 
a1 a2 a3 a4 d1 d2 d3 x2 y2 z2 

Composite 
Cylinder-I 0.445 0.034 0.015 0.123 0.887 -0.001 0.099 1.863 8.884 7.183 

Composite 
Cylinder–II 1.819 0.011 0.054 0.780 0.891 0 0.125 0.489 2.330 1.142 

 

b1 b2 b3 b4 g1 g2 g3 x1 y1 z1 

0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

 
6. Results and Discussion 
 
   For a given poroelastic parameters, frequency equations when non-dimensionalized using equation (54), constitute a relation 
between non-dimensional frequency  Ω and ratio of thickness of core to inner radius of core h/r1.  Different values ofr2/a, viz., 1.1, 
1.5 and 3 are taken for numerical computation.  These values of r2/a, respectively, represent thin poroelastic casing, moderately 
thick poroelastic casing and thick poroelastic casing.   
   The frequency of radial vibrations of poroelastic composite cylinders I and II each for pervious and impervious surfaces for thin 
casing is presented in Fig.2.  The frequency is same for pervious and impervious surfaces for both the poroelastic cylinders.  The 
frequency of poroelastic cylinder-I is less than that of poroelastic cylinder-II for h/r1 ≥ 0.1. There is sudden decrease in frequency 
for poroelastic cylinder-I for h/r1≤1 after that it increasing gradually, whereas for the poroelastic cylinder-II the frequency is 
increasing gradually over the complete range. Fig.3 depicts the frequency of radial vibrations of poroelastic composite cylinders I 
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and II each for pervious and impervious surfaces for moderately thick casing. .  The frequency is same for pervious and 
impervious surfaces for the poroelastic cylinder-II when h/r1≥ 0.3, whereas for the poroelastic cylinder-I, the frequency is same for 
pervious and impervious surfaces when h/r1≤ 0.3 and h/r1≥ 0.6. For poroelastic cylinder-I, the frequency is steadily increasing 
above the point h/r1= 0.6, while for the poroelastic cylinder-II it is true when h/r1≥ 0.3.  The frequency of radial vibrations of 
poroelastic composite cylinders I and II each for pervious and impervious surfaces for thick casing is presented in Fig.4. The 
variation of frequency is more in thick casing compared to thin and moderately thick casings. The frequency of radial vibrations is 
nearly same for pervious and impervious surfaces for poroelastic cylinder-II.    
   The variation of frequency of radial vibrations for poroelastic composite solid cylinder is shown in the Fig. 5. The frequency of 
radial vibrations for impervious surface is less than that of  pervious surface in 0.3 ≤ h/r1 ≤ 0.6 in case of poroelastic cylinder-I, 
while in the case of poroelastic cylinder-II the frequency for impervious surface is greater than that of pervious surface  when h/r1 

≥  0.18. Fig.6 shows the frequency of radial vibrations of poroelastic core when it is clamped along its outer surface. The 
frequency is same for pervious and impervious surfaces in case of poroelastic cylinder-I, in addition the frequency is steady when 
h/r1 ≤  0.7 and there is a sudden decrease in 0.8≤  h/r1 ≤  0.9. In case of poroelastic cylinder-II, the frequency is steady and the 
frequency for impervious surface is higher than that of pervious surface. In particular the frequency of radial vibrations 
forporoelastic core when it is clamped along its outer surface is linear.  The variation of frequency forporoelastic casing when the 
solid is rigid is depicted in Fig.7. The frequency is same and steady for both the poroelastic cylinders in case of pervious surface. 
There is a sudden decrease in frequency for poroelastic cylinder-I incase of impervious surface when h/r1 ≤  0.1. The frequency for 
impervious surface is steady and higher than that of pervious surface in case of poroelastic cylinder-II. Fig. 8 depicts the variation 
of frequency of radial vibrations for poroelastic composite bore. It is observed that, the frequency for impervious surface is higher 
than that of pervious surface when h/r1 ≥  0.27 in case of poroelastic bore-II. In general, the frequency of poroelastic bore-I is 
higher than that of poroelastic bore-I. 
 

 
 Fig.2 Variation of frequency with the ratio of thickness of core to inner radius of core for                                                  

poroelastic composite hollow cylinder (Thin casing) 
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Fig.3 Variation of frequency with the ratio of thickness of core to inner radius of core for 

poroelastic composite hollow cylinder (Moderatedly thick casing) 
 

 
Fig.4 Variation of frequency with the ratio of thickness of core to inner radius of core for 

poroelastic composite hollow cylinder (Thick casing) 
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Fig.5 Variation of frequency with the ratio of thickness of casing to inner radius of casing for 

poroelastic composite solid cylinder 
 

 

 
Fig.6 Variation of frequency with the ratio of thickness of core to inner radius of core for                                                   

poroelastic core when it is clamped along its outer surface 
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Fig.7 Variation of frequency with the ratio of thickness of casing to inner radius of casing for                                               

poroelastic casing when the solid is rigid 

 
Fig.8 Variation of frequency with the ratio of thickness of core to inner radius of core for                                                    

poroelastic composite bore 
 
7. Conclusion 
 
 The study of radial vibrations in poroelastic composite hollow cylinders has lead to the following conclusions: 

(i) The frequency of radial vibrations for poroelastic composite hollow cylinder is independent of the nature of surface in 
case of thin casing. 

(ii) In general, the frequency of radial vibrations for poroelastic composite hollow cylinder-II is higher than that of 
poroelastic composite hollow cylinder-I in case of thin casing. 
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(iii) The frequency of radial vibrations is steadily increasing above the point h/r1=0.2   for both the poroelastic composite 
hollow cylinders I and II in case of thin casing.. 

(iv) The frequency of radial vibrations is nearly same for pervious and impervious surfaces for both the poroelastic composite 
cylinders I and II in case of moderately thick casing. 

(v) The variation of frequency is more in case of thick casing compared to thin and moderately thick casings. 
(vi) The frequency of poroelastic core when it is clamped along its outer surface is independent of nature of surface in case of 

poroelastic composite cylinder-I. 
(vii) The frequency of poroelastic core when it is clamped along its outer surface is linear in case of poroelastic composite 

cylinder-II. 
(viii) The frequency of poroelastic casing when the solid is rigid is linear above the point h/r1=0.1. 
(ix) The variation of frequency for poroelastic bore-I is higher than that of poroelastic bore-II. 

 

Nomenclature 
1 1 1 1

2 2 2 2

, , ,
, , ,

A N Q R
A N Q R

⎫
⎬
⎭

– Poroelastic constants         

  a – iterface radius 
b – dissipation coefficient 
e – dilatation of solid 
  Jn – Bessel function of first kind of order n 
  r1 – inner radius of core 
r2 – outer radius of casing 
s – liquid pressure 
t – time 
  U– liquid displacement 
  u – solid displacement 
 1 1, 2 1V V – dilatational wave velocities of first kind 
  1 2, 2 2V V – dilatational wave velocities of second kind 
Yn– Bessel function of second kind of order n 

1 11 1 12 1 22

2 11 2 12 2 22

, ,
, ,

ρ ρ ρ
ρ ρ ρ

⎫
⎬
⎭

– mass coefficients 

 1 ,2ij ijσ σ  – stresses 

ε – dilatation of liquid  
  ω – circular frequency 
Ω – non-dimensional frequency 
  2∇ – Laplacian operator        
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