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Abstract 
 
   Restructuring of power system changed the mechanism of reliability management in solving the unit commitment problem 
(UCP). In general, operating reserve capacity is predetermined either by dispatch rules or predefined by reliability index. This 
paper considers that the operating reserve capacity in a power system is bendable, which is based on the cost-reliability issues. In 
UCP, these two competing objectives such as fuel cost and reliability level of the system were optimized simultaneously, as a 
multi-objective unit commitment problem (MOUCP), using the proposed fuzzy integrated binary real coded cuckoo search 
Lagrangian (BCSL) algorithm. The ON/OFF status of the thermal power units is obtained by binary coded cuckoo search 
algorithm (CSA), where as the economic dispatch is obtained by Lagrangian multiplier method. The fuzzy set theory is used to 
pick up the best compromise solution. The proposed methodology is tested and validated for both the single and multi-objective 
UCP. The effectiveness of the proposed technique is demonstrated on IEEE RTS 24 bus system by comparing its performance 
with other methods reported in the literature. 
 
Keywords: binary coded cuckoo search algorithm, fuzzy set theory, reliability index, reserve scheduling, unit commitment 
problem. 
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1. Introduction 
 

Unit commitment is a nonlinear mixed integer optimization problem to schedule the operation of the thermal power units at minimum 
operating cost, satisfying the demand and other equality and inequality constraints. UCP is to find the commitment schedule (ON/OFF 
status of generators) and thereby the power output level of each committed thermal power unit. This scheduling has to be done 
daily for the time interval planned (hourly) for dispatch, in order to minimize the total fuel cost. Minimization of total cost which 
includes the fuel cost, start up, and shut down cost is carried out by satisfying load demand, spinning reserve, physical and 
operational constraints, of the individual thermal power unit. 

Power system operators have to keep a certain amount of generation capacity as spinning reserve. Thereby, it ensures that the 
power system is able to withstand the sudden outage of some thermal power units/ transmission lines or an unforeseen increase in 
load without having to resort to load shedding. The traditional criterion for setting the minimum amount of spinning reserve is that 
it should be at least equal to the capacity of the largest thermal power unit, or to a specific percentage of the hourly system load. 
While deterministic criterion is easy to implement, since they do not match the stochastic nature of the problem and do not take 
into consideration of the intrinsic reliability of each scheduled generator. They lead to inconsistent decision and variable operating 
risk levels.  

During the last 40 years, numerous techniques and methods have been developed to incorporate probabilistic reserve criteria in 
the formulation of the reserve constrained UCP (Dillon et. al., 1978; Gooi et al., 1999; Chattopadhyay. and Baldick, 2002; 
Bouffard and Galiana, 2004; Simopoulos, 2006; Wu, 2008). Later, methods provide promising result in the evaluation of spinning 
reserve by including various system risks. The choice of appropriate values for setting probabilistic reserve criterion depends on 
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the global preference information of the system operator or decision-maker. Hence, an analysis is carried out in this article to 
demonstrate the effect of reserve criteria on unit commitment solution and the results are presented in section 7.2. From the result 
it is clear, that setting of reserve criterion by the decision makers will affect the solution of UCP and system reliability. Hence this 
method is more suitable only when the entire global preference information of the decision-maker is available. Therefore, 
maximizing the reliability level has to be handled as another objective function simultaneously, in addition to the cost. Hence the 
system becomes highly non-smooth in nature. 

Many solution strategies are available to solve the highly non-smooth problem. A literary review of UCP and the solution 
techniques are given in (Sheble and Fahd, 1994; Padhy, 2004). Techniques like priority list method (Burns and Gibson, 1975), 
dynamic programming (Synder, 1987), mixed integer programming (Muchkstadt and Wilson, 1968), branch and bound (Chen and 
Wang, 1993; Cohen and Yoshimura 1983) and Lagrangian Relaxation (Zhuang and Galiana, 1988) are the widely used 
conventional techniques. The priority list method is simple and fast. However, it produces sub-optimal solution with higher 
operation cost. Dynamic programming method has dimensionality problem. That is with increase in problem size, the solution time 
increases rapidly with the number of thermal power units to be committed. Though LR method provides a fast solution, it suffers 
from numerical convergence and the solution quality due to the dual nature of the algorithm, is poor. In branch-and-bound method, 
the computational time increases enormously for a large-scale power system. So, artificial intelligence techniques like, neural 
networks (Ouyang and Shahidehpour, 1992), expert systems (Wang. and Shahidehpour, 1992), genetic algorithm (GA) (Dasgupta 
and McGregor, 1994; Kazarlis et al., 1996; Pavez-Lazo and Soto-Cartes, 2011), simulated annealing (SA) (Mantaway. et. al., 
1998a), evolutionary programming (EP) (Juste et al., 1999), tabu search (Mantaway et al., 1998b), fuzzy logic (Saneifard, 1997), 
particle swarm optimization (PSO) (Ting et al., 2006; Saber et al. 2007; Yuan et al., 2009;), ant colony optimization (ACO) 
(Simon et al. 2006) and hybrid algorithm (Lin et. al., 2011; Patra et al. 2009;) are used. These are population based search 
techniques and can search for the global or near global optimal solution for any large-scale system incorporating all system 
constraints, with ease. In expert system, interaction with the plant operators are required making it inconvenient for a realistic 
system. Though GA and PSO has an immense potential for applications in the field of power systems and it has been successfully 
applied to solve various problems in electric power systems such as economic dispatch, unit commitment, reactive power control, 
hydrothermal scheduling, and distribution system planning etc. 

GA searches multiple solutions simultaneously in contrast to conventional optimal algorithms. Therefore, the possibility of 
finding global optimal solution is increased. The main advantage of GA is that it finds near optimal solution in relatively short time 
compared with other random search methods. Despite the aforementioned success, GA is only capable of identifying the high 
performance region at an affordable time and displays inherent difficulties in performing local search for numerical applications. 
Also the characteristics of GA exhibit premature convergence and settles to near-global optima. In general, the PSO contains 
parallel search techniques. However, similar to the GA, the main adversity of the PSO is premature convergence, which might 
occur when the particle and group best solutions are trapped into local minimums during the search process. Localization occurs 
because particles have the tendency to fly to local, or near local, optimums, therefore, particles will concentrate to a small region 
and the global exploration ability will be weakened. Also many techniques are developed to solve UCP, no technique has been 
accepted as the best so far. In this context, an attempt is made to solve single and multi-objective UCP using a newly developed 
bio inspired algorithm (Gandomi and Alavi, 2012) such as cuckoo search algorithm (CSA) to demonstrate the significant important 
of proposed method on solving large scale optimization problems.  

 
2. Proposed Work 
 

The main interest of this paper is to show the efficiency of the cuckoo search algorithm (Yang and Deb, 2009; Yang and Deb, 
2010; Rajabioun, 2011) in solving UCP and to propose a novel MOUCP to eliminate the role of the decision maker (system 
operator) in setting the spinning reserve (either by deterministically or probabilistically) in UCP. In MOUCP problem, similar to 
other evolutionary methods, cuckoo search algorithm starts with an initial fixed number of cuckoo nests. At the end of every 
generation of CSA, the size of cuckoo nests increases when compared to the initial number of nests. Hence the fuzzy set theory 
(Cai. et. al., 2010; Wang and Singh, 2007; Vinothkumar and Selvan, 2011) is used to select the best compromise solution (which is 
equal to the initial number of nests) that would be alive for the coming generations. Inclusion of fuzzy set theory will thrown away 
or abandon the solution (nest) which is a far away from the best solution.  

Hence in this article, the binary coded CSA is used to obtain the unit commitment scheduling for the 24 hour and Lagrangian 
multiplier method (Hemamalini and Simon, 2012) is used to obtain the economic dispatch for the 24 hour. 
 
3. Problem formulation 

 
Modeling of two objective functions fuel cost and reliability function is presented below. 

 
3.1 Objective function 1: Fuel Cost Function, Fc 

The fuel cost minimization problem is formulated as:  
Minimize 
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3.2 Objective function 2: Reliability Function, LOLP 

In UCP the system reliability level is dependent on the allocation of spinning reserve. Hence, to minimize LOLP, enough 
spinning reserve has to be scheduled for each hour. Reliability level of the power system at each hour is calculated using (2) 
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3.3 Problem Constraints 
3.3.1. Power balance constraints 
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3.3.2. Spinning reserve constraints: 
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3.3.3. Capacity limits of thermal power unit    
 

max),(),(min),( iPkiPiP ≤≤                                                                                (5) 
3.3.4. Thermal power unit minimum ON/OFF durations 
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3.3.5. Thermal power unit ramp constraints 
 

)()1,(),( iRUkiPkiP ≤−−                                (8) 
 

)(),()1,( iRDkiPkiP ≤−−                                  (9) 
 
4. Implementation of multi-objective function 

 
Real time optimization problems involve simultaneous optimization of different conflicting objectives. Hence a multi-objective 

optimization problem consists of multiple objectives to be optimized simultaneously with the various equality and inequality 
constraints. This can be generally formulated as 
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where fi is the ith objective function, x is a decision vector that represents a solution, NO is the number of objective functions, M 
and K are the number of equality and inequality constraints, respectively. Multi-objective optimization problems with such 
conflicting objectives, give raise to a set of optimal solution, rather than a single optimal solution, since, no solution can be 
considered to be better than other solutions, without adequate information. These set of optimal solutions are called as Pareto-
optimal solutions (Zitzler, E. and Thiele L., 1999). For practical applications, however, we need to select one solution, which will 
satisfy the different goals to some extent. Such a solution is called best compromise solution. One of the challenging factors of the 
tradeoff decision is the imprecise nature of the decision maker’s judgment.  

In the proposed methodology, fuzzy set theory has been integrated with BCSL method to extract a Pareto optimal solution as the 
best compromise solution. In the fuzzy set theory, it is required to formulate a fuzzy membership function for each objective 
function, i.e. the corresponding membership function value should indicate the associated degree of satisfaction for that objective. 
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Therefore fuzzy membership function should be framed in such a manner that it aids BCSL in maximizing the fitness function. 
The fuzzy memberships function for each objective functions are defined below. 

4.1 Fuzzy Membership Function for Fc  
The design of the membership function implies that for any solution, if the objective function, Fc in the fuzzy domain is more 

than Fcmax, then the associated fuzzy membership function value is assigned to be zero. Such solutions (corresponding nest 
positions) do not maximize the fitness function and won’t take part in the optimal solution set. On the other hand, if the objective 
function is less than Fcmin, then the associated fuzzy membership function value is assigned to be unity. Such solutions do 
participate and maximize the fitness function. If the objective function in the fuzzy domain is between Fcmin and Fcmax, then the 
associated fuzzy membership function value is computed using equation (12), and such solutions will participate in the 
optimization process depending on the fitness value. 
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where Fc is the degree of the objective function Fc in the fuzzy domain. 

4.2 Fuzzy Membership Function for LOLP 
The design of the membership function implies that, for an objective function of LOLP in the fuzzy domain which is less than 

Frmin, the system cost is increased proportionally. Hence the fuzzy membership function value is assigned to be zero. Such 
solutions (corresponding firefly positions) do not participate in the optimal solution set. On the other hand, when the objective 
function of LOLP in fuzzy domain is greater than Frmax, it will affect the system reliability and hence won’t take part in the optimal 
solution set. If the value of the objective function in the fuzzy domain is between Frmin and Frmax, then the associated fuzzy 
membership function value is computed using equation (13) and such solutions will participate in the optimization process 
depending on the fitness value. 
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where Fr is the degree of the objective function LOLP in the fuzzy domain. 
 
5. Overview of Cuckoo Search Algorithm 
 

In this section, the breeding behavior of cuckoos and the characteristics of cuckoos in reaching best habitat societies are 
discussed. Cuckoo search algorithm (CSA) is one of the most recently defined algorithms (Yang, X.S. and Deb S., 2009; Yang, 
X.S. and Deb S., 2010) by Xin-She Yang and Suash Deb in 2009. It has been developed by simulating the intelligent breeding 
behavior of cuckoos. It is a population-based search procedure that is used as an optimization tool, in solving complex, nonlinear 
and non-convex optimization problems.  

The cuckoo bird searches the most suitable nest to lay eggs (solution) in order to maximize their eggs survival rate. Each cuckoo 
lays one egg at a time. The eggs (high quality of eggs i.e. near to optimal value) which are more similar to the host bird’s eggs 
have the opportunity to develop (next generations) and become a mature cuckoo. Alien eggs (away from optimal value) are 
detected by host birds with a probability Pa ε [0, 1] and these eggs are thrown away or the nest is abandoned, and a completely 
new nest is built, in a new location. The mature cuckoo form societies and each society have its habitat region to live in. The best 
habitat from all of the societies will be the destination for the cuckoos in other societies. Then they immigrate towards this best 
habitat.  

A randomly distributed initial population of host nest is generated and then the population of solutions is subjected to repeated 
cycles of the search process of the cuckoo birds. The cuckoo randomly chooses the nest position to lay egg using equations (14-
15).  
 

αλ ××+=+ )('1 evyLsVV pq
gen
pq

gen
pq

                                                         (14) 
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where λ  is a constant ( 31 ≤< λ ) and α  is a random number generated between [-1, 1]. Also s > 0 is the step size which should be 
related to the scales of the problem of interests. If s is too large, then the new solution generated will be too far away from the old 
solution (or even jump out of the bounds). Then, such a move is unlikely to be accepted. If it is too small, the change is too small 
to be significant, and consequently such search is not efficient. So a proper step size is important to maintain the search as 
efficiently as possible. Hence the step size is calculated using equation (16).  
 

gen
fq

gen
pqpq VVs −=                                             (16) 

 
where p,f ∈{1, 2,…, m} and q ∈{1, 2…D} are randomly chosen indexes. Although f is determined randomly, it has to be different 
from p. D is the number of parameters to be optimized and m is the total population of nest position.  

Using equation (14) the cuckoo chooses the nest, and the egg which is laid by a cuckoo, is evaluated. The host birds identified 
the alien egg (solution away from the optimal value) and chose the high quality of egg with the probability value associated with 
that quality of egg, using equation (17). 
 

1.0))max(/*9.0(Pr += FitpFitpo                                                        (17) 

 
where Fitp is the fitness value of the solution p which is proportional to the quality of egg in the nest position p. The egg is 
discovered by the host bird by comparing randomly (i.e. probability Pa ∈  [0, 1]) with Prop. If the host bird discovers the alien egg, 
the host bird can either throw the egg away or abandon the nest, and build a completely new nest using equation (18). Otherwise, 
the egg grows up and is alive for the next generation.  
 

)()1,0( minmaxmin pppp VVrandVV −×+=                                                         (18) 
 
where Vpmin and Vpmax are the minimum and maximum limits of the parameter to be optimized. 
 
6. Implementation of Binary CSA 
 

In MOUCP, binary numbers 1 and 0 are used to indicate the thermal power unit status ON/OFF. The CSA used in (Yang, X.S. 
and Deb S., 2009; Yang, X.S. and Deb S., 2010) is essentially a real-coded algorithm, thus, some modifications are needed to deal 
with binary-coded optimization problem. In the proposed binary CSA, the relevant variables are interpreted in terms of changes of 
probabilities. Now cuckoo randomly chooses the nest position, to lay egg, using equation (14). In (14), the step size is calculated 
using equation (16). When λ  is varied between the limits, the corresponding variation in (15) is between 0 and 1. From these 
values, it is observed that the equation (14) is varied between -1 and 2. The threshold level can be fixed within (0, 1). Generally to 
accomplish this, sigmoid (Wang and Singh., 2009) function is used as in equation (19). 
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However, to improve the performance of binary CSA, another function called tanh is used as given in (20). 
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Both the functions, scales the Vpq value within [0, 1] as shown in Fig. 1. A random number is generated between 0 and 1, to 

decide the thermal power unit status as 0 or 1. If f (Vpq) is greater than rand (0, 1) then, the unit status is 1 otherwise 0. The chances 
of bit flipping are found to be more in the case of the tanh function than in the sigmoid function. From the number of trails, it is 
observed that the performance of the tanh function on reaching quality solution is faster when compared to the sigmoid function. 
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Fig. 1 Variation of Vpq values and the function of Vpq values. 
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Fig. 2. Flowchart on the repair strategy. 

 

6.1 Repair Strategy for Constraint Management in Binary Coded CSA 
Whenever the commitment status for each time interval is generated randomly or by the modification of nest position, violation 

of minimum up/ down time constraints (6-7) and spinning reserve constraint(4) have to be checked as follows: 
Step 1: If the spinning reserve (4) is met, then go to step 3. Otherwise, go to the next step.  
Step 2: The less expensive thermal power units which are in the OFF state are identified and turned ON. Then go to     step 1.  
Step 3:  If the spinning reserve constraint is satisfied, then the minimum up and down time constraints (6-7) are checked for each 
thermal power unit. If there is any violation in the minimum up or down time constraint then a repair scheme is performed to 
overcome the violation. For instance, let us assume that the Ton and Toff for a hypothetical thermal power unit is 4 and 5. For a 
scheduling interval of 12 hours, if the actual OFF time for that thermal power unit is 3 hours (5th -7th hour), then it violates the Toff 

constraint. In this case, the thermal power unit status before 5th hour or after 7th hour should be made OFF. By doing this change, if 
it violates the Ton constraint, then the status of the thermal power units are made ON corresponding to the thermal power unit 
status. 
Step 4: The repair scheme in step 3 may affect the spinning reserve constraint of the system. If the reliability level is met, then 
accept the feasible solution. Otherwise go to step 1.  
A minimum number of trials should be set for the repair mechanism. These steps are carried out for the entire hourly load.  This is 
represented in Fig. 2. 

6.2 Binary Coded CSA for UCP 
Step: 1 Initialize the CSA parameters such as the nest size, lambda value and maximum generation number. 
Step: 2 Initial Generation of Binary String Population (Binary Coded CSA) 
Randomly generate a population of M initial solutions represented by a binary string. Initialize randomly an initial population 

];.......;;;[ 321 mXXXXM = of m solutions or host nest positions in the multi dimensional solution space where m represents the 
population of host nest. Each solution of X is represented by the D-dimensional vector.  Here D is equal to N*H. A population of 
M initial solution with D dimensional vector is shown in Fig. 3.  
Step: 3 Generation=1 
Step: 4 Modification of host nest position  
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The host nest produces a modification on the current position using (14). The modified position is then checked for constraints in 
(4) and (6-7).  
Step: 5 Repair and Evaluate EDP 
The randomly generated commitment status for each time interval is checked for spinning reserve constraint (4) and minimum 
up/down time (6-7) constraint violation. In case of any violation, the binary strings are repaired as in section 6.1. Then, economic 
load dispatch is done for the feasible positions and constraints (3) and (5) are satisfied. Here, ED problem is solved using 
Lagrangian multiplier method (Hemamalini and Simon, 2012).  
Step: 6 Fuzzy Fitness Evaluations 

A fuzzification mechanism and fitness sharing are introduced in this CSA to pick out the best compromise solution. For each 
non dominated solution, the normalized membership fuzzy fitness function (Fit) is calculated using equation (21)  
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where m is the total number of solutions (nest position). The best compromise solution is one having high quality of egg compared 
to the other nest’s.  
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Fig. 3 Initialization of binary string 

 
Step: 7 Identification of Alien Egg 
Each nest position host bird discovered the alien egg with probability Prop using equation (17) related to its fitness value. New nest 
position is generated using (18) and added into the existing nest population.  
Step: 8 Fitness Evaluation for newly added nest position  
For the new nest position, constraints (4) and (6-7) are checked for spinning reserve and minimum up time and down time 
constraints violations. If there is any violation in the constraints then they undergo the repair mechanism as mentioned in step 2. 
Then EDP is performed and the fitness is evaluated 
Step: 9 Abandon sources exploited by the cuckoos  
Arrange fitness function in descending order and pick up the first m number of nest position and abandoned the remaining nest 
position.  
Step: 10 Memorize the best solution achieved so far. Increment the generation count.  
Step: 11 Stop the process if the termination criterion is satisfied. Termination criteria used in this work is the specified maximum 
number of generation. Otherwise, go to step 4. The best fitness and the corresponding position of the host nest position is retained 
in the memory at the end of the termination criteria is selected as the optimum commitment schedule of thermal power units 
involved in the power generation process for the scheduling time interval. The step-by-step procedure for the proposed method is 
given as a flowchart in Fig.4.  
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Fig. 4 Flowchart for MOUCP using fuzzy integrated CSA 

7. Results and Discussions 
 
   All the programs are developed using MATLAB 7.01.The system configuration is Pentium IV processor with 3.2GHz speed and 
1GB RAM. Three case studies are considered to demonstrate the proposed methodology. In case 1, to validate the binary CSA, 
UCP is solved and the results are compared with existing literature. In case 2, to demonstrate the necessity of MOUCP, reliability 
constrained UCP is solved and the results are compared with existing literature. In case 3, to validate fuzzy integrated binary CSA, 
two objective functions (i.e. fuel cost and reliability function) for MOUCP are considered.  
7.1 Case 1 

In this case, unit commitment problem is solved as single objective with cost minimization problem.  The applicability and 
validity of the CSA for practical applications have been tested on IEEE RTS 26- thermal power unit system (Wong et. al., 1999; 
Wang and Shaidehpour, 1993). The generation cost coefficient and the load profile is adapted from the (Wang and Shaidehpour, 
1993). To validate the efficiency in exploring the global or near-global optima the power balance, power generation limits, and 
ramp rate limit constraints alone are included for the sake of comparison with other techniques reported in literature. To validate 
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the computational efficiency of the proposed CSA method, the same problem is solved using simple real coded GA 
(Chandrasekaran, 2010) and standard PSO algorithm (Chandrasekaran, 2009). The optimal parameters obtained by trial and error 
for PSO and GA are as follows: 

 
PSO parameters  GA parameters 
Population size=100  
Acceleration coefficients, 
c1=0.2, c2=0.2 
Inertia weight: Wmax=0.9, Wmin=0.2 

Population size=100 
Mutation rate=0.01  
Crossover rate=0.7 
 

 
The test system given in ref. (Wang et. al., 1999; Wang. and Shaidehpour, 1993) is considered and the system spinning reserve is 

deterministically set to the maximum capacity of the largest committed thermal power unit (i.e 400 MW) as in (Wang. and 
Shaidehpour (1993); Ongsakul and Petcharaks, 2004; Dieu and Ongsakul, 2008). Here UC problem is solved using the proposed 
binary coded CSA and Lagrangian multiplier method is used to solve the economic dispatch problem.  
 

Table 1 Comparison of results - Case 1 
Solution Techniques Minimum value ($) Mean value ($) Maximum value ($) 

ANN-DP (Wang, and Shaidehpour, 1993) 729326.50 - - 

ILR (Ongsakul W and Petcharaks N. 2004) 725996.90 - - 

IPL-ALH (Dieu and Ongsakul., 2008) 721352.90 - - 

GA 721322.53 721635.14 721796.21 

PSO 721214.32 721482.33 721666.21 

Binary CSA 721186.20 721286.69 721577.39 

 
Table 2 Generation schedule - Case 1 

Unit no. Thermal power unit status Operating cost ($) 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19121.90 

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19371.00 

3 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18789.00 

4 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 18966.00 

5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19684.33 

6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21317.50 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 23830.60 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 33691.00 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34726.00 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 36050.00 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 38370.80 

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 35816.00 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 35816.00 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 36582.00 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 37680.59 

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34534.00 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 33963.00 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 36050.00 

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 33584.00 

23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 27426.00 

24 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21066.00 

Total operating cost ($) 721186.20 
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Table 1 gives the comparison of the minimum total operating cost obtained by CSA with respect to other techniques reported in 
the literature. It is clearly seen that the proposed method yields better results than other techniques, so far proposed in the 
literature. The minimum cost so far reported in literature is $ 721352.9 (Vo Ngoc Dieu and Weerakorn Ongsakul., 2008) which is 
$ 166.7 higher than that obtained from cuckoo search. The details of the power dispatch for case 1 is given in Table 2.  

7.1.1 Solution Quality and Computation efficiency 
Fig. 5 shows the convergence graph of minimum operating cost obtained from 30 trial runs for case 1 using GA, PSO, and CSA. 

It is inferred from Fig. 5 that the characteristics of binary coded CSA algorithm steadily reaches the minimum value after few 
iterations when compared to other two methods (GA and PSO). This shows that the proposed CSA method has better quality of 
solution. However, in PSO and GA the characteristics exhibit premature convergence and settles to near-global optima. In all the 
three methods, the maximum number of iteration is fixed as 300. 
   To compare the computation time of the proposed algorithm, the UCP is solved using GA and PSO. Although real coded GA has 
better computation time than PSO, GA struck to local optima that degrades its performance. In all the three methods, the maximum 
number of iteration is fixed as 300 generation and population size as 100. Comparison of computation time for the three cases is 
shown in   Table 3. It can be seen that the time taken by the CSA is lesser than that of GA and PSO.  
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Fig.5 Convergence graph for 26 thermal power unit system- Case 1 

7.1.2 Effect of Variation of CSA Parameters.  
Good converge behavior can be obtained if the three control parameters namely cuckoo nest population size, maximum generation 
and λ , can be optimally tuned. Setting of these cuckoo parameters optimally would also yield better solution and lesser 
computational time. In order to avoid misleading results due to the breeding behavior of cuckoos of the CSA, several test runs are 
carried out to set the cuckoo nest population size. 10 trial runs are carried out for the test case 1. The nest population size is then 
varied between 25 and 300 for the maximum generation of 500 and λ  is set as 1.  

Table 3 Comparison of execution time-Case 1 
Solution Techniques Mean time(s) Best time(s) 

GA 138.77 130.47 
PSO 149.36 142.69 

Binary CSA 124.56 119.21 
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Fig. 6 Average of total operating cost for different cuckoo nest sizes-Case1 
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Fig. 6 shows the average value of total operating cost out of 10 trials for different values of nest size. With increase in nest size, 
a steady improvement in average cost is noticed. When the nest size is greater than 100, there is no significant improvement in the 
average of total operating cost. Also, in general when there is an increase in the nest size, the number of generation required by the 
CSA to converge to the optimum solution decreases. On the other hand, the CPU time required for the evaluation of generation 
increases almost linearly with the nest size which is shown in Fig. 6. Thereby, an intermediate value of 100 is chosen for the nest 
size, which gives an increase in efficiency and helps in finding global best solution. Thus, the best possible setting for the 
population size is chosen as 100.  

Also for the population size 100 and λ  =1, the maximum generation is varied from 50 to 400. From the Fig. 7, it is observed 
with increase in maximum generation limit a steady improvement in average cost is noticed. When the maximum generation is 
greater than 250, there is no significant improvement in the total operating cost. Thus, the best possible setting for the maximum 
number of generation is set as 300 for the nest population size 100.   

Finally λ  is varied for the nest population size of 100 and maximum generation is set as 300. The    Table 4 gives the average 
cost values obtained in ten trails for the different values of λ . From the Table 4 it is concluded the best λ  value chosen is 1 for 
case 1. Hence the nest population size as 100, maximum generation limit as 300 and 1=λ is chosen as best parameter for this 
system.  
7.2 Case 2 
 In case 2, for the same IEEE RTS 26 thermal power unit system, the system spinning reserve is calculated by predefining the 

system reliability level as a constraint and the reliability constrained UCP with cost minimization is solved using binary coded 
CSA.  Here UCP is solved using the proposed binary coded CSA and Lagrangian multiplier is used to solve the EDP. Here the 
reliability level of the system is considered as constraint in the UCP. In (Simopoulos D, 2006), loss of load probability (LOLP) 
index is used to evaluate the reliability of the system. Also LOLP index is expressed in % and the lead time of the system is fixed 
for 4 hours.  
Table 5 gives the comparison of the minimum total operating cost obtained by CSA with respect to other techniques reported in 

the literature for the LOLPspec=1 % and 0.5%. It can be inferred from the results that the solution obtained from the proposed 
method is better than the SA, GA and PSO algorithm for the different value of LOLPspec.  CSA finds a solution which is $ 147 and 
$ 474 lesser when LOLPspec is 1 % and 0.5 % respectively, and is found to be promising. The details of the power dispatch for each 
thermal power unit of the 24 bus system for LOLPspec = 0.5 % is given in Table 6.  
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Fig. 7 Variation of average operating cost with maximum generation-Case 1 

 
 

Table 4 Variation of operating cost with λ -Case 1 

λ  Average 
Cost ($) 

0.5 721197.3 
1 721196.2 

1.5 721211.9 
2 721210.1 

2.5 721197.3 
3 721206.6 
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Table 5 Comparison of results - Case 2 

Solution techniques 
LOLP=1 % LOLP=0.5 % 

Minimum
value 

Mean 
value 

Maximum
value 

Minimum 
value 

Mean 
value 

Maximum 
value 

SA(Simopoulos D, 2006) 717938 718039 718135 722401 722622 723180 

GA 717967 718643 719035 722466 722790 723274 
PSO 717826 718061 718667 722358 722715 723154 

Binary CSA 717791 718143 718921 721927 722126 722497 

 
It is observed from Table 5, that the cost of operation is well correlated with predefined reliability level i.e the operating cost is 

found to increase as the LOLP criterion (LOLPspec) is restricted. Also when the LOLPspec is 0.05 %, the UCP solution (cost) is        
$ 724391 and further decrement of LOLPspec has no effect on the operating cost. Since this LOLPspec is the maximum reliability 
level supplied by the generation system. Similarly, LOLPspec=5.5 % is the minimum reliability level supplied by the generation 
system. However, increase or decrease in the reliability level depends on the choice of defining LOLPspec by the system operator. 
Here low value of LOLPspec means a system maintaining high reliability and vice versa. Therefore the system operator will set the 
reliability level based on the trade of between the cost and reliability level.  

If defined the reliability index of the system should be between 4 % (minimum) and 1 % (maximum) in the entire scheduling 
period.  In this case, any algorithm will fail to give the solution, since in the 9th hour (for the load 2540 MW) it is not possible to 
bring the reliability level within the specified range. This is because when committing additional thermal power unit to increase 
reliability level (i.e to reduce the LOLP index), the evaluated reliability level is less than 1 % and violate the minimum limit. Also 
for all other combination of committing the thermal power unit, it is unable to bring the reliability level within the minimum and 
maximum range. Similarly for any other limit of reliability constraints, the system failed to satisfy the reliability level within the 
range in any one or more than one hour.  

From the case 1 and case 2, it is clearly observed that the above nature setting of spinning reserve by deterministic and 
probabilistic method does not give a satisfactory UCP solution.   Therefore it stresses the need for the formulation of MOUCP to 
obtain a best compromise solution between the cost and the reliability level.  

Table 6 Generation schedule for reliability level LOLPspec=0.5 % - Case 2 
Unit no. Thermal power unit status Operating cost ($) 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19121.90 

2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19371.00 

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18896.00 

4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19015.00 

5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19610.00 

6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21317.50 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 24451.70 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 33139.90 

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34861.50 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 36050.00 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 38402.80 

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 35816.00 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 35816.00 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 36582.00 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 37710.59 

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34534.00 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 33963.00 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 34917.00 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 36050.00 

22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 33584.00 

23 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 27819.00 

24 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21066.00 

Total operating cost ($) 721928.90 
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7.3 Case 3  
In case 3, for the same IEEE RTS 26 thermal power unit system, a proposed MOUCP is solved using fuzzy integrated BCSL. 

As there are 2 objective functions, three possible combinations of objection function are obtained. The UCP solution for case 3 is 
given in Table 7. When UCP is solely solved for the minimization of Fc, minimum cost of $ 704160 is obtained by neglecting 
other objectives. When fuel cost is alone considered, a downward trend is seen in the reliability level of the system. Since the 
thermal power units are committed solely based on the cost, the reliability of the system is very low due to the shortage of spinning 
reserve availability for the committed thermal power units.  

When reliability is alone minimized, neglecting other objectives, the resultant reliability index LOLP is 0. The maximum 
reliability level of the system is obtained with a higher fuel cost. This is because, commission of more number of thermal power 
units will increase the fuel cost, proportionally.  

The above nature of conflicting objectives does not give a satisfactory UCP solution. Therefore it stresses the need for the 
formulation of MOUCP to obtain a best compromise solution. 

 
Table 7 MOUCP solution using BCSL- Case 3 

Objective function Minimization of  Fc Minimization of LOLP Compromise solution 
Operating cost ($) 704160 724391 711981.27 

LOLP maintained 
at each hour 5.5 % 0.05 % 

20 %-50 % 
of the available reliability 

level at each hour. 
 

Table 8 MOUCP solution using BCSL- Case 3 

Hour Unit Status 1….26 Operating 
cost $ 

Membership 
value for 

cost 

Maintained 
LOLP 

Membership 
value for 

LOLP 

Committed 
Spinning 
reserve, 

MW 
1 11111111100000000000000000 18429.00 1 0.0108641 0.0622 222 

2 11111111100000000000000000 18789.00 1 0.0108641 0.0622 192 

3 11111111100000000000000000 18310.00 1 0.0107979 0.0374 232 

4 11111111110000000000000000 18615.60 1 0.0107978 0.0374 298 

5 11111111111000000000000000 19323.82 0.5948 0.0106966 1 324 

6 11111111111100000000000000 20947.53 0.4658 0.0106961 1 324 

7 11111111111110000000000000 23346.62 1 0.0107972 1 274 

8 11111111111111110000000000 32904.12 0.5325 0.0108531 1 338 

9 11111111111111110000000000 34298.00 1 0.0113877 0.3987 228 

10 11111111111111111000000000 36320.62 0.0125 0.0074675 0.101 365 

11 11111111111111111000000000 37608.00 1 0.0111764 0.5671 295 

12 11111111111111111000000000 35726.00 0.6798 0.0074666 0.1004 375 

13 11111111111111111000000000 35726.00 0.6798 0.0074666 0.1004 375 

14 11111111111111111000000000 34917.00 0 0.0005373 0 415 

15 11111111111111111000000000 36430.00 1 0.0109564 1 345 

16 11111111111111111000000000 37136.00 1 0.0109577 1 315 

17 11111111111111110000000000 34533.00 1 0.0113877 0.3987 218 

18 11111111111111110000000000 34063.00 1 0.0112584 0.3714 238 

19 11111111111111110000000000 33410.00 1 0.0110996 0.338 268 

20 11111111111111110000000000 34533.00 1 0.0113877 0.3987 218 

21 11111111111111110000000000 35712.00 1 0.0194979 0 168 

22 11111111111110110000000000 33141.00 0.4296 0.0193444 0.8723 188 

23 11111111110110100000000000 27248.00 0.6504 0.0151701 1 195 

24 11111111100100000000000000 20514.00 0.0405 0.0109168 1 182 

 
In the section a novel method of scheduling the spinning reserve is proposed, based on the available generation to satisfy the 

reliability level in each hour of the dispatch period. Based on the availability of the generation system, the fuzzy system made the 
decision to commit the spinning reserve at each hour.  Since the load of system is varied at each hour, correspondingly the 
maximum reliability level of the system will be varied. Therefore with the assist of fuzzy system, the reliability level of the system 
will be maintained between some percentages of the available reliability level at each of the hours with respect to the cost.  
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Here UCP is solved using the proposed binary coded CSA and Lagrangian multiplier is used to solve the EDP. The initial 
population of nest and maximum generation for binary coded CSA is set as 100 and 300, respectively. Out of 30 trails the best 
compromise solution of MOUCP solution is given in   Table 7. The detailed dispatch for 24 hour time horizon is given in Table 8.  

From the thermal power unit status it is clearly understood that fuzzy set theory intelligently made the decision to schedule the 
compromise solution between the operating cost and the reliability level of the system. It is to be noted, in the 14th hour the 
calculated reliability level is less than the 20 % (maximum reliability) of LOLPmin. Hence the membership value of LOLP at 14th 
hour is 0. Increased reliability level will increase the operating cost thereby the corresponding membership value of cost is zero. 
Similarly in the 21st hour, the reliability level is greater than the 50 % (minimum reliability level) of LOLPmin. Here the reliability 
level of that hour is compromised in supplying less operating cost, hence the cost is well within the design variable and 
membership value is set as 1. This intelligent decision of MOUCP to schedule spinning reserve and to minimize the operating cost 
will eliminate the trade off between the cost and reliability level of the system. 

The Fitness convergence graph for the case 3 is given in Fig. 8. From the figures, it is clear that the binary coded CSA is 
efficient for finding thermal power unit scheduling such that intelligent decision is made by the fuzzy set theory for the efficient 
trade off between the cost and reliability level of the system. 
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Fig. 8 Fitness convergence graph-Case 3 

 
8. Conclusion 

 
This paper has employed the special characteristic of cuckoos in searching the nest to lay eggs is developed and motivated for 

solving the single and multi-objective unit commitment problem.   
• The BCSL algorithm when applied to practical UCP outperforms with the other techniques reported in the literature in 

obtaining minimum cost solution in less computational time.  
• The significance of reliability level of the system is studied, and the novel MOUCP is formulated.  
• Finally, the proposed fuzzy integrated BCSL algorithm has been presented for solving MOUCP. The problem has been 

formulated as a MOOP with competing fuel cost and reliability objective functions. The limitation (i.e. trade of between 
the cost and reliability level of the system) in selecting a feasible solution from a set of population solutions are 
circumvented by integrating fuzzy set theory and Binary CSA (heuristic approach).  

The comparison of the results with other methods reported in the literature shows the superiority of the proposed methodology 
and its potential for solving conflicting objective function in a power system. The method is promising, simple, easy to implement 
and applicable for any large-scale power systems. 
 
Nomenclature 

cF  Fuel cost function ($). 
a(i), b(i), c(i) Cost coefficient of ith thermal power unit.  
H  Total number of hours considered. 
I(i,k) Status of thermal power unit i at kth hour. (i.e.) 1 for ON and 0 for OFF. 
LOLP(k) Reliability function (loss of load probability). 
Load(k) Total system demand at kth hour. 
N Total number of thermal power units. 
P(i,k) Generation power output of thermal power unit i at kth hour.  
p(j) Probability for state i.  
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P(i,max) Maximum power output of thermal power unit i. 
P(i,min) Minimum power output of thermal power unit i. 

)(iRU  Ramp up rate limit of thermal power unit i.  
)(iRD  Ramp down rate limit of thermal power unit i. 

ST(k) Startup cost at kth hour. 
)(iT on  Minimum ON time for thermal power unit i. 
)(iT off  Minimum OFF time for thermal power unit i. 

),( kiX on  Time duration for which thermal power unit i is ON at kth hour. 

),( kiX off  Time duration for which thermal power  unit i is OFF at kth hour. 
Indices 
i  Thermal power unit index. 
J jth state of capacity outage probability table. 
k  Time index. 
Abbreviations 
LC Total number of contingencies leading to load curtailment. 
ANN-DP Artificial neural network-Dynamic programming. 
ILR Improved Lagrangian relaxation. 
IPL-ALH  Improved priority list and augmented Lagrange Hopfield network. 
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