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Abstract 
 
   In the history of space, for the first time an operational US communications satellite Iridium 33, in low-Earth orbit was struck 
and destroyed by the collision of a long defunct Russian communications satellite COSMOS 2251 on 10th February 2010. It is 
necessary to understand the circumstances of this collision for avoiding similar incidents in the future. In this direction a detailed 
conjunction analysis of all space objects is essential. Since a large number of objects are orbiting in space, it is very difficult to 
find out the close approach for all objects with simulations. Hence, a study related to the prefiltering of close approaches 
between space objects using analytical techniques is carried out in this paper. It is found that the presented methodology with 
prefiltering techniques is effective in reducing the number of objects for simulations.  
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1. Introduction 
 
   Due to a high increase in the number of objects in space, like satellites, pay loads, mission related objects, debris like rocket 
bodies, spent stages, etc., prediction of close approaches between orbiting objects is an important factor to avoid collision between 
the operational satellite and other orbiting objects. To protect an operational satellite, called ‘primary’ in this paper, from colliding 
with another space object, called ‘secondary’ here, their orbits must be computed simultaneously and the distance between them 
should be monitored. Recently, space scientists all over the Globe are giving much importance to the problem of collision 
avoidances (Alarcon-Rodriguez et al., 2004, Gronchi, 2005 and Choi et al., 2009) for the stability of future Low Earth Orbit (LEO) 
environment to protect the launch vehicles and operational satellites from the collision. 
   In this paper, a detailed study related to the prefiltering of close approaches between space objects using analytical techniques 
(Hoots et al., 1984) are carried out. The analytical equations are solved using an iterative technique. The prefiltering solutions are 
obtained in an efficient manner, which eliminates many objects from considering long term orbit simulations for close approaches. 
The methodology is valid for all values of eccentricities less than one and all relative geometries between the two orbits. As a test 
case, we have utilized a data base consisting of 23544 simulated LEO-crossing objects of size greater than or equal to 10 cm. 
Using these analytical methods more than 98% of the objects were prefiltered. Only for the remaining 2% of the objects, the close 
approaches using the long term orbit predictions are necessary. As a result, these analytical methods are much more efficient in 
reducing the total number of simulations which need to be carried out for further analysis.   
   In general, the problem is stated by specifying a time span [Tb, Te], and a separation distance D between two objects moves 
around their respective orbits in space, the relative separation distance between the two orbiting bodies is  

 
,rrr sprel −=  
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where r is the radius vector in the Earth centered frame and the subscripts p and s stand for primary and secondary objects, 
respectively, over the span of time interest [Tb, Te]. Figure 1 shows a typical graph of relative distance r rel .  
 
 

 
Figure 1: Relative separation distance. 

 
   Since these points are simply relative minima of the function r rel , the most obvious solution to the problem would be a 
numerical technique. Starting at the beginning of the time interval of interest Tb, we could numerically step along the primary and 
secondary orbits noting the relative separation distances. Whenever the relative distance changed from decreasing to increasing, 
we would know that the two objects had passed relative minima. If these minima were less than D, we would record this time as a 
time of close approach. Stepping would continue until we reached the end of the time interval of interest Te. If we wanted to find 
all times of close approach with all orbiting objects, the procedure would be repeated for each of the total secondaries. Clearly, this 
procedure consumes exorbitant amounts of computer processing time with large number of simulations. Hence, when we consider 
the task of collision alerting for many primaries, use of numerical techniques becomes hopeless.  

Thus, to make the task manageable, we consider two analytical approaches methods for determining the close approaches 
between two orbiting bodies. 

 
2. Perigee-Apogee prefilter 

 
   Many of the possible secondaries can be eliminated from consideration, because of the relative geometry of the two ellipses, 
which does not allow the two trajectories to ever come within the threshold distance D. The simplest test is perigee-apogee test. 
Let q denote the larger of the two perigees and Q denote the smaller of the two apogees. If  
 
     q – Q > D          (1) 

 
 then the secondary will not come within the distance D and it need not be considered for further analysis/simulation. 
 
3. Geometrical prefilter 
 
   This prefilter considers the relative geometry of two ellipses in space. Figure 2 illustrates the two arbitrary ellipses and the line 
intersection of the orbital planes. There will be two closest approach distance d1 and d2 between the two elliptical paths. It should 
be noted that the points are not necessarily along the line of intersection of the two planes. 

t1tS tF t2 Te Tb 

D 

rrel 
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Figure 2: Geometrical prefilter. 

   This is a purely geometrical calculation and is independent of the location of the two satellites on their paths. If the minimum 
distance in the space between the two paths is greater than the separation distance D, then the satellites cannot have a close 
encounter of interest. Let  

wwK ps×= ,           (2) 
where ws  and w p  are unit vectors normal to the orbital planes of secondary and primary objects, respectively. These unit vectors 
can be calculated using the expression 
 

W = (sinΩ sinI) i + (cosΩ sinI) j + (cosI) k                            (3) 
 
where Ω is the right ascension of the ascending node (RAAN), I is the inclination of the orbit and i,  j and k are unit vectors along 
x, y and z directions.  

The vector K lies along the line of intersection of the two planes and has the property that    

IK Rsin= ,         (4) 

where, IR is the relative inclination angle between the two orbital planes. It should be noted that, IR  is not simply the difference 
between the inclinations of the two orbits. If IR is identically zero, then the geometrical prefilter equations become indeterminate. 
The orientation of the vector K within the orbital plane of the either satellite is given by the angle Δ between the line of ascending 
node of the satellite plane and the vector K as illustrated in Figure 3. Let 
 

      =n p  cos Ωρ i + sin Ωρ j                                                      (5) 
                                                                       
be a unit vector along the line of ascending node of the primary satellite. Then  
 

      
=⋅nK p sin Ip cos Iѕ - sin Is cos Ip cos ( Ωp-Ωs)                          (6) 

But from Figure 3, it is clear that 
 

      
KnK p =⋅ cos ∆p  

d1 

d2 
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                  = sin IR cos ∆p                                                   (7) 
 

From Eqs. (6) and (7), we obtain   
     
       cos ∆p =  [sin Ip cos Iѕ - sin Is cos Ip cos ( Ωp-Ωs)] / sin IR               (8) 

 
Also, by using the law of sines in spherical trigonometry, we get 
 
      sin ∆p =  [sin Iѕ sin( Ωp-Ωs)] / sin IR                         (9) 
 

From the above two equations, ∆p is uniquely determined. Similarly, it can be shown that  
 
     cos ∆s =  [sin Ip cos Iѕ cos ( Ωp-Ωs) - sin Is cos Ip] / sin IR            (10) 

 
and 
     sin ∆s =  [sin Ip sin( Ωp-Ωs)] / sin IR                       (11) 
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   Let UR denote the angle within the orbital plane from the vector K  to the satellite position measured positive in the sense of the 
satellite motion as shown in Figure 4. 
   Let rp and rs denote the magnitude of the position vectors of the primary and secondary satellites and let γ denote the angle 
between the two position vectors. Then 
 

      γcos2222 rrrrr spsprel −+=           (12) 
 
From spherical trigonometry we get, 
 

      Iuuuu RRRRR PPPP
cossinsincoscoscos +=γ                         (13) 

 

 
Figure 4: Satellite positions in orbital planes. 

 
The point of closest approach of the elliptical paths will be a relative minimum of the function in Eq. (12). It is a function of the 
true anomalies of the two satellites since 

      =uR f + ω - Δ                          (14) 
 
where f is the true anomaly and ω is the argument of perigee of the orbit.  
 
Thus, for the relative minimum the solution of following two simultaneous equations need to be solved 

        0
2

=
∂
∂

r
r

p

rel    and 0
2

=
∂
∂

r
r

s

rel                      (15) 

The above Eq. (15) is simplified using Eqs. (13) and (14) as follows 

    

( ) ( )[ ]
( ) ( )[ ] 0coscossinsincossin

0coscossinsincossin

=+−++

=+−++

auIuauurfer

auIuauurfer
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            (16) 

 
where we have introduced the notations  
    ax = e cos (ω - Δ) and ay = e sin (ω - Δ)                                (17) 
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For the case of two near circular orbits Eqs. (16) have the solutions 
     fp = Δp - ωp and fs = Δs – ωs                            (18) 
 
   For noncircular cases the equations readily admit an iterative solution by Newton‘s method (Conte and De Boor, 2000). Given 
equations are of the form 
 
    F (fp , fs) = 0 and G (fp , fs) = 0,           (19) 
  
Newton’s method gives the iterative solution 
 

                                          
hff pp ii

+=
+1

 and kff ss ii
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+1
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with  auCauBauA yRxRyR sspPpP
+=+=+= sincossin  and auD xR ss

+= cos                                      

where, E denotes the eccentric anomaly. A starting value for the iteration is given by Eq.(18). Let f p
*  and f s

*  denote the final 
converged values from the iteration. These are used in Eq. (12) to calculate one point of closest approach between the two 
elliptical paths. The another point of closeness is found by iteration on Eq. (16) with starting values π+= ff p p

*

1
 and  

π+= ff s s
*

1
.                      

   The converged values from the iteration are used in Eq. (12) to calculate the other points. If both points are greater than D, then 
the secondary need not be considered further analysis. 
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4. Numerical Results 
 
   A numerical experimentation was performed with a model consisting of 23544 LEO-crossing simulated objects. The first object 
with its orbital details provided in Table-1 is chosen as primary and all other 23543 objects are chosen as secondaries, whose 
apogee and perigee combinations are plotted in Figure 5a. 
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Secondary objects after filtering

 
Figure 5a: Perigee/Apogee combinations of initial secondaries Figure 5b: Perigee/Apogee combinations of secondaries after     

                   filtering 
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Secondary objects before filtering
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Secondary objects after filtering

 
Figure 6a: Semi-major axis vs. eccentricity of initial   
                   secondaries 

Figure 6b: Semi-major axis vs. eccentricity of 
                                 secondaries after filtering 
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Secondary objects after filtering

 
Figure 7a: Semi-major axis vs. inclination of initial secondaries Figure 7b: Semi-major axis vs. inclination of 

                                  secondaries after filtering 
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Secondary objects after filtering

 
 
 

Figure 8a: Inclination vs. RAAN of initial secondaries Figure 8b: Inclination vs. RAAN of  
                                         secondaries after filtering 

 
 

Table 1: Orbital Details of Primary Object. 

Semi major axis (a)         = 7325.5 km Eccenticity (e)         = 0.0189 
Inclination (i)                  = 70.94 deg Longitude of ascending node (Ω) = 155.66 deg 

Argument of perigee (ω) = 3.57 deg Mean Anomaly        = 120.90 deg 
Orbital Mass      = 2988 kg Diameter          = 28.51 cm 

 
   The orbital characteristics of the 23543 secondaries such as semi-major axis vs. eccentricity, semi-major axis vs. inclination and 
inclination vs. right ascension of ascending node (RAAN) are plotted in Figures 6a, 7a and 8a respectively. A separation distance 
D of 100 meters is considered. After applying the filtering techniques presented above, the following results were obtained: 

 
8579 objects were prefiltered by perigee-apogee prefilter 

and 
14675 objects were prefiltered by geometrical prefilter. 

 
So, total numbers of objects prefiltered are 23254. 
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   Hence, the job became much lesser with only 289 secondaries to be considered for long term analysis. So, more than 98% 
objects were prefiltered using these analytical methods. The effect of using these filtering techniques is presented in Figures 5b, 
6b, 7b and 8b. From Figures 5a and 5b, it is observed that the secondaries with perigee altitude of more than 1200 km never come 
within 100 meters of the primary considered in Table-1. By comparing the Figures 5a with 5b, 6a with 6b, 7a with 7b and 8a with 
8b, one can visualize the advantage of the prefiltering techniques. Particularly, instead of propagating all objects for identifying the 
close approaches between the space objects one can eliminate the filtered objects and carry the simulations/analysis for the 
remaining few objects. As a result, these analytical methods are much more efficient with a significant amount of computer time 
savings due to the less number of objects for simulations. 
 
5. Conclusions 
 
   In this paper, a detailed study regarding prefiltering of close approaches among space objects using analytical techniques is 
presented. The simulation is carried out by considering a batch of data, which includes a primary and secondaries. The study 
reveals that the prefiltering techniques are effective to reduce the computation of long term propagation of orbits by which 
collisions between space objects can be evaluated. Therefore, the paper eliminates the need for actual orbit computation for a great 
number of space objects for conjunction analysis. 
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