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Abstract 
 
   This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous 
polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is 
discussed numerically and then it is solved analytically with the help of Friedlander Series using Eikonal equation of optics.  The 
model is chosen for studying viscous, elastic and retarded elastic response to shearing stress. In another section, the applicability 
of the developed model is studied through wave propagation in polymer non-homogeneous rods.  We have used linear partial 
differential equations for finding the dispersion equation of waves in the polymers. The rheological behaviour of four-parameter 
viscoelastic models under dynamic loading is also discussed in detail. All the cases taken in this study are discussed analytically 
and numerically with MATLAB. 
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1. Introduction 
 
   Many branches of science like seismology, earth-quake & civil engineering, acoustics, optics, bio-mechanics, ocean engineering, 
electronics & communication engineering, mechanical engineering, applied physics and applied mathematics are working 
experimentally and analytically to study the characteristics of engineering materials by wave propagation in homogeneous and 
non-homogeneous media for the last few decades. For the elastic and viscoelastic waves, a long list of references is available in the 
monographs of Victorov (1958), Milkowitz, J (1966) and Kolsky (1966). 
   In solid materials, during rest position, the volume elements retain their relative positions and orientations alike. On the other 
hand, when the solid is under the action of external forces such as elastic stresses and strains, the volume elements get departed 
from the original position. Therefore, the subject of elasticity of crystals has its own importance in several circumstances. In recent 
years, the elastic behaviour of polycrystalline solids, used as the materials in engineering construction, are of great practical 
importance. 
   Mathematical models to analysis of wave propagation in homogeneous materials have a centuries old history. Modeling 
problems actually is a study of mechanical properties of materials. The polymer models have specific characteristics which 
distinguish them from elastic models. The elastic materials store maximum of the energy (100%) due to deformation but 
viscoelastic materials do not do this. The dissipation of energy in polymer materials is known as hysteresis. Nearly, all materials 
behave like some viscoelastic response. However, some common materials such as steel or quartz do not deviate much from linear 
elasticity at room temperature. But synthetic rubber, wood, and biological tissue and metals at high temperature show significant 
viscoelastic effects.   
   In the earlier times, sufficient interest has been led on wave propagation in that material whose mechanical characteristics and 
density are functions of space i.e. non-homogeneous engineering material. Early attempt in this field was made by Victorov (1958) 
established the fundamental mathematically model of the problem for isotropic material properties have been taken into various 
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forms: exponential (Restovtsov & Khranexskaia, 1973; Rao and Goda, 1978): integral power law (Mukhopacryar 1979; Chandra 
1980; Narain 1980) and binominal (Singh and Dhaliwal, 1980; Wantanabe 1981); Singh Chopra & Gogna, 1978) studied the SH-
waves propagation in a laterally and vertically heterogeneous layered media where as Breuer and Shlomo (1970), Gaiduk (1971), 
Kriekaja (1971), Turoan and Mengi (1970), Rous (1978), Singh (1978) and Singh and Singh (1979) have treated the wave 
propagation problems in Non-homogeneous Viscoelastic media.  
   On the basis of the theory of elasticity, the propagation of harmonic waves in isotropic or anisotropic materials has been 
evaluated numerically by White (1981), Mirsky (1965) and Tsai (1991). To explain the soil behaviour, Murayama and Shibata 
(1961) and Schiffman et al. (1964) developed five and seven parameter models. Moodie (1973) presented research paper on 
propagation, reflection and transmission of transient cylindrical shear waves in non-homogeneous four-parameter viscoelastic 
media. Kakar et al. (2012-2013) and Kaur et al. (2012-2013) have studied four and five parameter viscoelastic models for wave 
propagation and dynamic loading.  
   But in this study, authors have considered the specimen is non-homogeneous i.e. density, rigidity and viscosity of the rod is 
space dependent. In this paper, the wave equation is approximated by using WKB theory. The displacements are assumed to be 
small under isothermal conditions, the linear constitutive laws hold.  Time dependent displacement and stress boundary conditions 
are employed for calculating the relations for displacement and stress. The rods are assumed to be initially unstressed and at rest. 
In this study, it is assumed that density ' 'ρ , rigidity ' 'G  and viscosity ' 'η  of the specimen i.e. rod are space dependent and obey 

the harmonic laws as 31 2 2  2  2  
0 0 0   , , i xi x i xe k k e e αα αρ ρ η η= = = . The various graphs are plotted to show the effect of non-

homogeneity on the velocity of waves. 
 
2. Formulation of Problem  
 
   Let us consider wave is propagating in one dimensional non-homogeneous semi-infinite rod, the end of the rod is kept at x=0. 
We consider the four parameter model with two springs 1 1 2 2( ), ( )S G S G  and two dash-pots ( ) ( )1 1 2 2,D Dη η  with 

viscoelasticity 1η  and 2η  respectively (Figure 1). The springs represent recoverable elastic response and dash pot represents 

elements in the structure giving rise to viscous drag. Here 1G and 2G are elastic parameters, 1η and 2η are viscoelastic parameters. 

Let σ  be the stress and a be the strain in the model. Let 1a be the strain in 1 1( )S G  , 2a be the strain along dashpot ( )1 1D η  and 

3a be the strain in the Kelvin model. Figure 1 represents the sketch of the standard four parameter viscoelastic models. The stress 

v/s strain behavior for constant stress (σ ) with time ( at ) has been shown in Figure 1. Here, 1 1 1 2 G λ μ= + , 2 2 22  G λ μ= +   

are the modulli of elasticity, 1 2,η η  are Newtonian viscosities coefficients and taken as functions of ‘x’ in the non-homogeneous 
case.  

 
Figure 1. Rheological model and its response 

The stress-strain relation for the four parameter viscoelastic models are constituted by the equations, Kakar et al. (2013) 
1 1 1 2 2 3 2 3, , , .G a a G a aσ σ η σ σ η= = = =& &                                                                    (1)              
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Eliminating 1 2 3, ,a a a  from Eq. (1) we get the constitute equation for the four parameter model: 

1 2 1 1 2 1 2
1

2 2 1 1 2 2

G G G G G G GG a aσ σ σ
η η η ηη η
⎛ ⎞ ⎛ ⎞

+ + + + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

&& & && &                                                (2) 

The stress strain equation for four parameter model is of general form: 

1 0 2 1B B A a A aσ σ σ+ + = +&& & && &                                                                                     (3) 

Where 'iB s  and 'iA s are the coefficients made up of combinations of the 1G , 2G  and 1η , 2η and depend upon the specific 
arrangement of the elements in the model. In operator form the Eq. (2) can be written as 

{ } { }2 2
1 0 2 1t t t tB B A A aσ∂ + ∂ + = ∂ + ∂                                                                       (4) 

The equation of motion and strain-displacement relation is given by 
2

2 U
x t
σ ρ∂ ∂
=

∂ ∂
                                                                                                          (5) 

 
Ua
x

∂
=
∂

                                                                                                                 (6) 

Where  ( )xρ ρ=  is the variable density of the material. 

Differentiating Eq.(5) w.r.t x ,we get 
2

,2 2

1 1
xttu

x x x
ρ σ σ

ρ ρ
∂ ∂ ∂

− + =
∂ ∂ ∂

                                                                                   (7) 

Differentiating Eq.(6) w.r.t. t  ,we get 

a u
t t x

∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
 

Again differentiating w.r.t. t , 
2

, ,2 ttx xtt
a u u u

t t t x
⎧ ⎫∂ ∂ ∂ ∂⎛ ⎞= = =⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎩ ⎭

                                                                           (8) 

Using Eq. (7) and Eq. (8), Eq. (3) gives 

,tttσ + , ( ){ }1 , 0 , 2 , 2 , 1 , 1 , ,,

1   ( )tt t xxt xt xx x xx
B B A log A A logAσ σ σ ρ σ σ ρ σ

ρ
+ = − + −                        (9)                  

3. Method of Solution 
 
   Let the solution ( , )x tσ  of Eq. (9) may be represented by the series, Friedlander (1947) 

( ) ( ) ( ){ } 0
0

, ,          0n n
n

x t A x F t h x Aσ
∞

=

= − ≠∑                                                      (10) 

Where, 

  1'  n nF F −=   (where, n = 1, 2, 3………….)   with , 1n t nF F −=  and , , 1n x x nF h F −= −                                                      (11) 

and for 0n < assume that 0 nA =  and the derivatives of σ may be obtained by term-wise differentiation of  Eq. (10), the prime in  

Eq. (11) denotes differentiation with respect to the argument concerned, and by using  Eq. (10) and Eq.(11) we relate all '
nF s to 

0F  by successive integrations. 

The Solution of equation Eq. (9) in the form of Eq. (10) can be obtained by taking a phase function ( )h x , ( )h x satisfies the 
Eikonal equation of geometrical optics, Moodie (1973) 
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2

2
1

( ) 1 dh x
d Gx c

ρ⎛ ⎞ = =⎜ ⎟
⎝ ⎠

                                                                                            (12) 

Where c = c(x) is the variable wave speed for elastic longitudinal waves in a medium whose modulus of elasticity 1G  .Using, 

Eq.(10), Eq.(11) and the successive derivatives of ( ),x tσ   w.r.t.  ‘t’ and ‘x’  in equation Eq.(9), we get  

1 2 1 1 2
3 2 1

2 2 1 1 2
n n n n n n

G G G G GA F A F A F
η η η ηη− − −

⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ){ } ( )
'2" ' ' ' " ' '1 1

1 2 3 2 1 222n n n n n n n n n n n n
G GA F A F h A F h A F h A F A F hρ
ρ ρ− − − − − −= − + − − −  

( ){ } ( )2" ' ' ' " ' '1 2 1 2
1 2 1 12

2 2

'2n n n n n n n n n n n n
G G G GA F A F h A F h A F h A F A F hρ
η ρ η ρ− − − −+ − + − − −              (13)   

 On simplifying the Eq. (13) using Eq. (11), we get the amplitude function satisfy the equation 

( ) ( ) ( ) ( ) ( )' ' '
,

1 2

,1 12   "( )  0,1( ,2 )n n nx
h x A x log h x h x A x Q nρ ρ

η η
⎧ ⎫⎛ ⎞⎪ ⎪+ + − + = = …⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭                              (14)

 

Where,    

( )
( ) ( ) ( )2 21

1 1 , 1 2 , 22 ,
2

2 2 2

2

2

2 1 2

1 " 2 ' ' ( ) ' 2 " " ( ) '
'

n n n x n n x nx

GA log A h log h h A A log A
h

G G G GQ ρ ρ
η η η

ρ
η η− − − − −

⎧ ⎫ ⎧ ⎫⎪ ⎪= − + − − + −⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪

+
⎩ ⎭

 

Which is a linear partial differential equation and its solution is obtained by reducing it into ordinary differential equation using an 
asymptotic method. The origin of this method is the ray optics and central feature of this method is the motion of rays which are 
curves or straight lines. The rays are of the fundamental importance because all the functions which make up the various terms of 
the asymptotic expansion can be shown to satisfy ordinary differential equations along these curves. Thus, this is the one of the 
method which reduces partial differential equation to ordinary differential equation. Also on using asymptotic method,  it is very 
important to choose the proper signs in the solution of equation (12) so that the direction of the propagation of the wave is taken 
into consideration. 
On integrating Eq.  (12), we get 

( ) ( )
0

0  
( )

x dsh x h
c s

= ± ∫                                                                                            (15)           

The plus sign shows the wave travelling along positive direction of x-axis and negative sign shows the waves travelling along 
negative direction of x-axis.                                                                                                                                      
Therefore the solution of Eq.  (14) can be obtained as 

( ) ( ) ( )'
',

1 2

1 1 1 "( )   0,1,2 )
2 ( )

,
2

(n n nx

h x cA x c log A x Q n
h x

ρ ρ
η η

⎧ ⎫⎛ ⎞⎪ ⎪+ + − + = = …⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

( ) ( ) ( )'
,

1 2

,1 1 1  (log , ),  0,1,2 )
2 2

(n n nx

cA x c log h x x A x Q nρ ρ
η η

⎧ ⎫⎛ ⎞⎪ ⎪+ + − + = = …⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭  

( ) ( ) ( )'
,

1 ( ) log ( )   0,1,2, ( )
2 2n n nx

cA x m x l s A x Q n⎧ ⎫+ − = = …⎨ ⎬
⎩ ⎭

( ) ( ) ( )'
,

1 2

1 1 1   0, , 2 )
2 2

, 1(n n nx

cA x c log c A x Q nρ ρ
η η

⎧ ⎫⎛ ⎞⎪ ⎪+ + − = = …⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭  
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Integrating Factor    

 
( ),

0

1 2

0

1 ( ) log ( )  
2 (0)log exp ( )

( )
x

x

m x l s ds xle m s ds
l x

⎧ ⎫−⎨ ⎬
⎩ ⎭∫ ⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

∫   

And its solution is 

1 2 1 2

0 0 0

(0) 1 (0)( ) log exp ( ) ( ) ( ).log exp ( )
( ) 2 ( )

x x x

n n
l lA x m s ds c s Q s m s ds ds r
l x l x

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  

Where r  is constant of integration. 
At 0, (0)x r A= =   

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 1 1
2 2 2

0 0 0

10 ( )  Q
0

0
(

2
)

0

x x x z

nn n
x

l x l x l
A exp m s ds exp m s ds c s exp m z dz s dsA x

l l l s
±⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪− + − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩
=

⎭
∫ ∫ ∫ ∫

                               (16) 

Which is the expression for wave travelling in the positive  direction of x-axis. The expression for wave travelling in positive and 
negative direction of x-axis is as   

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
1 1
2 2

0 0

10 ( )  Q
0 2

x x z

n n n
x

l x l x
A x A exp m s ds c s exp m z dz s ds

l l s
±⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ± ±⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭
∫ ∫ ∫m

 ( 0,1, 2n = … ) 

Where,   

( )    l x cρ=  and  ( )
1 2

1 1 .
2
cm x

η
ρ

η
⎛ ⎞

= +⎜ ⎟
⎝ ⎠                                                              

 (17) 

The upper signs are associated with wave traveling in the positive direction of x and the lower signs   are associated with the waves 
travelling in the negative direction of x. At the end 0x =  ,the impulse of magnitude 0σ  is suddenly applied and thereafter 
steadily maintained , that is  

 ( ) 00, ( )t H tσ σ=                                                                                                 (18) 

From Eq. (11) and Eq.  (18), we have 

( ) ( ){ } 0
0

0 0 ( )n n
n

A F t h H tσ
∞

=

− =∑
                                                    

                      (19) 

Thus we choose, Moodie (1973)  

( ) 0

0
 0

0
 0  0n

n
A

if n
i

o
f

r n
σ =

< >
=

LLL

LLL
                                                                       (20) 

( )0 0 h =  and 0 ( )F H t=                                                                                       (21) 

The solution of Eq.  (9), for the waves travelling in the positive direction of x is generated by boundary stress Eq. (20), is 

( ) ( ) ( ){ } ( ){ } ( ) ( ){ }
0 0 0

,  
! ! ( )

n n x

n n
n n

t h x t h x dsx t A x H t h x A x H t
n n c s

σ
∞ ∞

= =

− − ⎧ ⎫⎪ ⎪= − = −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∫                                  (22) 

Where,    
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( )
0 ( )

x dsh x
c s

= ∫                                                                                                       (23) 

Where, ( )nA x  are given recursively by Eq. (16) (with upper signs) in combination with Eq. (20). 

The first–term approximation leads to Eq. (23) as  

( ) ( )
( ) ( )

1
2

0
0 0

,   
0 ( )

x xl x dsx t exp m s ds H t
l c s

σ σ
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎩ ⎭ ⎩ ⎭⎩ ⎭
∫ ∫                                                  (24) 

The Eq. (24) represents a transient stress wave which starts from the end ' 0 'x = with amplitude 0' 'σ  and moves in the positive 
direction of ‘x’ with velocity c(x). Hence, it is modulated by the factor  

( )
( ) ( )

1
2

00

xl x
exp m s ds

l
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪−⎨ ⎬ ⎨ ⎬

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭
∫                                                                                    (25) 

Further terms in the approximate solution may be obtained recursively from Eq. (19) 
 
4. Viscoelastic Model Applied to a Particular Case 
 
   For the sake of concreteness and for studying the qualitative effect of non-homogeneity on the longitudinal wave propagation in 
non-homogeneous four parameter viscoelastic rods, it is assumed that density ' 'ρ , rigidity ' 'G  and viscosity ' 'η  of the 
specimen i.e. rod are space dependent and obey the harmonic  laws  

31 2 2  2  2  
0 0 0   , , i xi x i xe G G e e αα αρ ρ η η= = =                                                                               (26) 

If, 1 2 3      α α α≥ ≥  i.e. density ≥  rigidity≥viscosity                                                                                                                   (27) 

Case-1 
 When, 1 2 3  α α α= = , then from Eq. (26), we get 

2  2  2  
0 0 0   , ,i x i x i xe G G e eα α αρ ρ η η= = =                                                                   (28) 

Therefore, from Eikonal equation of geometric optics  
2 2  

0 0
2  2

1 10 10 0

( ) 1  
i x

i x

edh x
G Gdx G e c

α

α

ρ ρρ⎛ ⎞ = = = =⎜ ⎟
⎝ ⎠

  = constant.                                                (29) 

or                                                                            10
0

0

c G
ρ

=
                                                                                                      

(30) 

Since, the harmonic variation of modulus of rigidity G  and density ρ  is similar, therefore sound speed is constant i.e. non-

homogeneous has no effect on speed and phase of the wave is given ( )
0

     xh x
c

= . So it becomes the case of semi non-

homogeneous medium (a medium when characteristics are space dependent while the speed is independent of space variable). 

The amplitude function ( )nA x  satisfies the equation 

( ) ( ) ( ) ( )' ' '
0

10 20

1 12  2   ' ( 0,1,2 ),n n nh x A x i h x A x Q nρ α
η η

⎧ ⎫⎛ ⎞⎪ ⎪+ + − = = ………⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭  

                                                                                                                       (31) 

Where,
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( )
( ) ( )' 20 20 22 210

1 1 1 2
02

2
22

20 10 20 20

1 " 2 2 ' ' (2 ) ' " (2 ) '
'

n n n n nn
GA i A h i h A A i A

h
G G GGQ α α α
η ηηη η− − − − −

⎧ ⎫ ⎧ ⎫⎪ ⎪= − + − + −⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

+   

As the amplitude function is given by Eq.(15), For this case
 

2
0 10( ) i xl x G e αρ=

 

0 10
0

10 20

1 1( )
2
G

m x m
ρ

η η
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠  

0
0

( )
x

m x dx m x=∫
                                                                                                   

(32) 

Hence, 

( ) ( ) { } ( )0 00
10 exp e exp '
2

s
i x i x

n n n
x

A x A e c m dz sx dsm Qα α ±⎧ ⎫⎪ ⎪= ± ±⎨ ⎬
⎪ ⎪⎩

−
⎭

∫                                  (33) 

For this case the value of first term approximation, the stress function is given by 

( ) ( ){ }0 0
0

,  i
x

xx t exp m ds t xe H hασ σ
⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭
∫  

' "( , )x t iσ σ σ= +                                                                                                            (34) 

Where 'σ  and "σ  represents the real and imaginary parts respectively when , , ,Gρ η  obeys harmonic laws. 

The expression for the wave front at ( )t h x=  is as 

( ) { } { }0 0 0 0(cos ) (sin,  )  x xx t ex x xp m i exp mα ασ σ σ= − + −
                                   

(35) 

The progressive harmonic wave which starts from the end 0x =  with amplitude 0σ  and moves with constant velocity 

10
0

0

Gc
ρ

=
 

in the positive direction of x is modulated by the factor { }0 0(cos )  expx xmσ α − and attenuation by the 

factor { }0 0(sin )  expx xmσ α − .                           

Case II 

1 2 3   α α α> >  i.e. density >  rigidity> viscosity,  then from Eq. (25), we get  

31 2 2  2  2  
0 0 0   , , i xi x i xe G G e e αα αρ ρ η η= = =  

From Eikonal equation of geometric optics  

( )
1

1 2

2

2 2  
20 0

2  2
1 10 10

( ) 1  
i x

i x
i x

edh x e
dx G G e G c

α
α α

α

ρ ρρ −⎛ ⎞ = = = =⎜ ⎟
⎝ ⎠

 , Here, ( )2 110

0

  i xGc e α α

ρ
−=

                           
 (36) 

The amplitude function ( )nA x  satisfies the equation  

( ) ( ) ( )1 3)2 (' ' ''
0 1

10 2

'

0

2  "( )  , ( 0,1,1 1 ( 2) )2xi
n n ni hh x A x e h x A nx x Qα αρ α

η η
− ⎛ ⎞

+
⎧ ⎫⎪ ⎪+ + = = ………⎨ ⎬
⎪ ⎪

⎟
⎝ ⎠⎩ ⎭

−⎜
                                    

(37) 
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Where,  

( )
( ) ( ) ( ) ( )1 3

2 22' ' ' "10
1 1 1 1 1 1 1 2 1 1 22'

10

' 1 " 2 2 ' 2 2 " 2 ' ( 0,1, 2 )i x
n n n n nn

GA i K A K h i e h h A K A K n
h

Q i Aα αα α α
η

−
− − − − −=

⎧ ⎫ ⎧ ⎫⎪ ⎪− + − − − + − = ………⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

 
and ( )2 3 10

2

2
1

0

i xK G
G

e α α−= .  Amplitude function ( )nA x is given by Eq.(16). 

For this case  

( )1 2
10 0( ) i xl x G e α αρ +=  = 1( )l x  and ( )1 2 3210 0

1
10 20

1 1( ) ( )
2

i xG
m x e m xα α αρ

η η
+ − ⎧ ⎫

= + =⎨ ⎬
⎩ ⎭

 

 

( ){ } { }1 2 3 1 2

10 0

210 20 ( ) 1

1 2 3 10

1 1
2 ( )( )( ) 1 ,
( 2 ) (0) (0)

x
i i x

G
l xl xm x dx e e

i l l
α α α α α

ρ
η η

α α α
+ − +

⎧ ⎫
+⎨ ⎬

⎩ ⎭= − = =
+ −∫

                                      

(38) 

Therefore  

{ } ( ) ( )
( ) ( ) ( )1 2

1
2

1 ''
1 1

10 0

1
( ) 2 1 ( )  Q

2
( ) (0)

x x z

n
x

i x
n n

l x
exp m s ds c s exp m z dz s ds

l s
A x A e α α ±+ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪± ±⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭
= ∫ ∫ ∫m                       (39) 

For this case the value of first term approximation, the stress function is given by 

( ) ( ) ( ){ } ( ){ }1 2
0

1
2

2 1, ir x ir xx t expe i e H t hp xσ σ −= −  

( ) ( ) ( ) ( ){ } ( ){ }1 1
2 2 2 20 2 2exp sin cos sin cos co, s 1 sin cos 1

2 2
r rp r x x i xx t H t h xp r x i p r xσ σ ⎛ ⎞− + − + −⎜ ⎟

⎠
−

⎝
=  

  
' "( , )x t iσ σ σ= +                                                                                                   (40) 

The equation of wave front at ( )t h x=  is given by 

( ) ( ) ( ) ( ) ( )0
1 1

2 2 2 2 2 2 2 20exp sin cos cos 1 exp sin sin cos 1
2 2

, r rp r x x p r x p r x x p r xx t iσ σ σ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫− + − − + −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣
+

⎦
=          (41) 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

0
1

2 2 2 2

1
20 2 2 2

exp sin cos cos 1
2

exp sin sin cos 1
2

,x t t hrp r x x p r x H

rp r x x p r

x

i H t h xx

σ σ

σ

⎡ ⎤⎧ ⎫− + −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
⎡ ⎤⎧ ⎫− + −⎨ ⎬⎢ ⎥⎩ ⎭⎦

−

⎣

=

+ −

 

The progressive harmonic wave which starts from the end 0x =  with amplitude 0σ  and moves with constant velocity 

( )2 110

0

  i xGc e α α

ρ
−=  in the positive direction of ' 'x  is modulated by the factor 

( ) ( )1
2 2 20 2exp sin cos cos 1

2
rp r x x p r xσ ⎡ ⎤⎧ ⎫− + −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

.  

The attenuation factor is given by  
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( ) ( )1
2 2 20 2exp sin sin cos 1

2
rp r x x p r xσ ⎡ ⎤⎧ ⎫− + −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦

  .    

Where                                       

0

1

10 1
1 2 2 1 3 1 2

10 20 2

1 1, 2 , ,
2

G pr r r p p
r

ρ
α α α

η η
⎧ ⎫

= + = − + = =⎨ ⎬
⎩ ⎭

. 

5. Numerical Analysis 
 
   Here, all the mechanical properties obey harmonic laws. As x  lies between 0 x≤ ≤ ∞ and also x  depends upon α .Two 
distinct cases are considered for taking  1α <  and 1α >  . 
Let the parameters are as 

Table 1. Material Parameters 

0ρ   10G   10η   20η  

1.8  1.6 1.2 1.3 
 
Case: 1 
 For 1α <  , Let 01/ 2, 8.12mα = =  

The equation of wave front at ( ) 1.06t h x x= =  is as 

{ } { }
0

8.12  (cos ) (sin 8.12
2

)
2
x xexp i expx xσ

σ
= − + −                                                          (42) 

The wave is modulated by the factor 

   { }(cos )
2

8.12ex xpx
−                                                                                          (43) 

and attenuated by the factor 

{ }(sin )
2

8.12ex xpx
−                                                                                           (44)                  

For 1α >  , Let 02, 8.12mα = =  

The equation of wave front at ( ) 1.06t h x x= =  is as 

{ } { }0
0

8.12  8.12  (cos 2 ) (sin 2 )exp x ix x xexpσ σ
σ

= − + −                                                  (45) 

The wave is modulated by the factor 

{ }8.12(cos 2 )ex xpx −                                                                                        (46) 

And attenuated by the factor 

{ }8.12(sin 2 )ex xpx −                                                                                        (47) 

Case: 2 
For non-homogeneous case 
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Table 2. Material Parameters 
  
   1α  

2
α  3α 1r  2r  1p  2p  

α <1 1/2 ¼ 1/6 ¾ ½ 8.12 16.24 
α >1 8 4 2 12 8 8.12 1.015 

 
For 1α <   

The equation of wave front at ( ) 2.12sin 2.12 cos 1
2 2
x xt h x i ⎛ ⎞= = − −⎜ ⎟

⎝ ⎠
 is as 

0

3 3exp 16.24sin cos 16.24 cos 1 exp 16.24sin sin 16.24 cos 1
2 8 2 2 8 2
x x i x xx xσ

σ
⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − + −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣
=

⎦
+  

The modulated factor is given by  

0

3exp 16.24sin cos 16.24 cos 1
2 8 2
x xxσ

σ
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞− + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎠⎩ ⎭⎣
=

⎝ ⎦
                                     (48) 

The attenuation is given by the factor 

3exp 16.24sin sin 16.24 cos 1
2 8 2
x xx

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞− + −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

                                              (49) 

For 1α >   

The equation of wave front at ( )( ) 0.26sin (0.26) cos 4 1
2
xt h x i x= = − −  is as 

( ) ( ){ } ( ) ( ){ }
0

exp 1.015sin 8 cos 6 (1.015) cos8 1 exp 1.015sin 8 sin 6 1.015 cos8 1x x x xix xσ
σ

⎡ ⎤ ⎡ ⎤− + − − + −⎦= +⎣ ⎣ ⎦        (50) 

The modulated factor is given by  

( ) ( ){ }exp 1.015sin 8 cos 6 (1.015) cos8 1x x x⎡ ⎤− + −⎣ ⎦                                             (51) 

The attenuation is given by the factor 

( ) ( ){ }exp 1.015sin8 sin 6 1.015 cos8 1x x x⎡ ⎤− + −⎣ ⎦                                                (52) 

To see qualitative effect of non-homogeneity on the harmonic wave propagation in non-homogeneous four parameter viscoelastic 

rods, the various graphs are plotted between
0

σ
σ

 and x . For the semi homogeneous cases Figure (2) represents the plot for 

Eq.(43) and Figure (3) represents the plot for Eq.(44).It shows that there is slight variation in the wave in the neighborhood of 
0x =  As x  increases the wave becomes constant. Figure (2) represents the wave in progress and Figure (3) represents its 

attenuation. It is also observed that for 1α < , the wave progression is near the origin and not along the x  apart. The Figure (4) 
and (5) also represents the similar result for 1α >  . So it can be concluded that the value of α  does not impact more in the semi 
homogeneous case and also that the wave progression is at near the starting point only.  For the non-homogeneous cases, Figure 
(6) and Figure (7) represents the plot for Eq.(48) and Eq.(49) respectively. Figure (8) and Figure (9) represents the plot for Eq. (51) 
and Eq. (52) respectively for 1α <  and for 1α >  harmonic wave is in progress but with unequal interval of times. Thus the effect 
of non-homogeneity is clearly observed for the harmonic waves in non-homogeneous four parameter viscoelastic model. 
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Figure 2. Wave in progress in homogeneous case for 1α <  

 
 
 

 
Figure 3. Attenuation of the wave in homogeneous case for 1α <  
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Figure 4. Wave in progress in homogeneous case for 1α >  
 

 

 
Figure 5. Attenuation of the wave in homogeneous case for 1α >  
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Figure 6. Wave in progress in non-homogeneous case for 1α <  

 

 
Figure 7. Attenuation of the wave in non-homogeneous case for 1α <  
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 Figure 8.  Wave in progress in non-homogeneous case for 1α >  

                                                       
 

 
Figure 9. Attenuation of the wave for non-homogeneous case for 1α >  

                                                        
6. Dynamic response of four parameter viscoelastic model 
 
   The following values of strain are taken for the dynamical response of four parameter model   

 

0 0* ,iwt iwtG a e a a eσ = =                                                                                                                          (53)                 
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From Eq. (1) and Eq. (53), we get  
 

 2 21 2 1 1 2 1 2
1

2 2 1 1 2 2

*G G G G G G Gi G G iω ω ω ω
η η η ηη η

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪− + + + + = − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

                                                (54)    

  
On simplifying Eq. (54), we get  
                                                 

( ) ( ) ( ){ }2 2
1 8 9 5 6 7*

2

G R i R R R R i
G

A

ω ω ω ω− + − − + +
=                                                                     (55)   

  where, ( ) ( )
2 22

2 9 5 6 7A R R R Rω ω= − + + +                                                                                               

 
*G can be written in terms of real and imaginary parts     

( ) ( ){ } ( ) ( ){ }2 2 2 2 3
1 9 8 5 6 7 8 9 8 5 6 7*

2

G R R R R R i R R R R R R
G

A

ω ω ω ω ω ω⎡ ⎤− + + + + − + + +⎣ ⎦=                    (56)    

 or * ' "G G G= +                                                                                                                                         (57)                  

( ) ( ){ }2 2 2
1 9 8 5 6 7

2

' ,
G R R R R R

G
A

ω ω ω⎡ ⎤− + + +⎣ ⎦=                                                                            (58)  

( ) ( ){ }
( ) ( )

2 3
8 9 8 5 6 7"

2 22
9 5 6 7

.
R R R R R R

G
R R R R

ω ω ω

ω ω

− + + +
=

− + + +
                                                                                 (59)  

The loss tangent is, 

"

'tan G
G

δ =                                                                                                                   (60)  

From Eq. (58), Eq. (59) and Eq. (60), we get 

( ) ( )
( ) ( ){ }

2
8 9 8 5 6 7

2
9 8 5 6 7

tan
R R R R R R

R R R R R

ω ω
δ

ω

− + + +
=

− + + +
                                                              (61) 

The behavior of the model has been studied numerically as well as graphically, the rheological responses are discussed by plotting 

a graph between ''G and ω  and 'G verses ω  for four parameter model. 
 
Four parameter model, we have 

( ) ( ){ }{ }
( ) ( )

2 3
8 9 8 5 6 7"

2 22
9 5 6 7

.
R R R R R R

G
R R R R

ω ω ω

ω ω

− + + +
=

− + + +
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The values of the parameters for studying the rheological response are  
 

1 1.0,G =  2 1.10,G =  1 0.1,η =  2 0.2,η =  5 5,R =  6 5.5,R =  7 10,R =  8 5.5,R =  9 55.R =  

 
Now, 

( ) ( ){ }
( ) ( )

2 2 2
1 9 8 5 6 7'

2 22
9 5 6 7

G R R R R R
G

R R R R

ω ω ω

ω ω

⎡ ⎤− + + +⎣ ⎦=
− + + +

 

A graph between 'G verses ω  is plotted by taking above equation. The parameters taken for this case are the same. 

The Figure  (5-6), shows that as the value of ω increases both ''G and 'G decreases, but the value of 'G becomes constant after 
ω =55 for four parameter model. 
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Figure 10. Variation of ''G verses ω for four parameter model 
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Figure 11. Variation of 'G verses ω for four parameter model 

 
7. Conclusions 
 

o It can be concluded that the four parameter model possesses an excellent potential for proper representation of the time 
dependent behavior of a viscoelastic medium subjected to loading and unloading. The viscous strains due to a constant 
stress are found to increase linearly with time.  
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o Moreover, after the removal of stress, the viscous strain is found to remain constant with time. The use of four parameters 
is mostly restricted in the field of rock mechanics. Thus, models can be used in determining the time-dependent behavior 
of a viscoelastic medium.  

o When the density, rigidity and viscosity all are equal for the first material specimen, the sound speed is constant i.e. non-

homogeneous has no effect on speed and phase of the wave is given ( )
0

     xh x
c

= . So it becomes the case of semi non-

homogeneous medium (a medium when characteristics are space dependent while the speed is independent of space 

variable). The longitudinal speed will be equal to 10

0

 Gc
ρ

= .  

o When the density, rigidity and viscosity are not equal for the second material specimen, the speed of sound varies 

exponential as ( )2 110

0

  i xGc e α α

ρ
−=  
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