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Abstract 
 
   Many product characteristics are qualitative in nature, e.g. colour, brightness, surface finish etc. The manufacturing process of 
such products is usually described in terms of fraction nonconforming or conforming which is assumed to follow binomial 
distribution. Measuring capability of a binomial process implies assessing to what extent the fraction nonconforming or 
conforming in the continuous stream of lots conform to the specification limits. The Cp or Cpl of a binomial process can be 
estimated using several approaches. However, these approaches generally give widely varying assessment about the capability 
of a given binomial process. Consequently, a user of the index may inadvertently be led to erroneous decision making based on 
an inaccurate estimate of the index. In this paper, a procedure is proposed for assessing accuracies of estimates of Cpu or Cpl 
obtained by different methods. Subsequently, the best method for evaluating capability of a binomial process is identified based 
on analysis of multiple case studies, and also the methods giving inaccurate estimates are highlighted.   
 
Keywords: Process capability index, binomial process, fraction  nonconforming, nonconforming lot (NL),  predicted NL%, 
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1. Introduction 
 
   Process capability refers to the ability of a given process to produce outputs according to specified requirements. The basic 
process capability index is Cp = (USL – LSL)/ σ6 , where USL and LSL are the upper and lower specification limits and σ  is the 
population standard deviation. When there is only USL or only LSL for a product characteristic, then the process capability indices 
are defined as Cpu = (USL – µ )/3σ  and Cpl = (µ  – LSL)/3σ  respectively, where µ  is the population mean. The most widely 

used other indices are Cpk (Kane, 1986), Cpm (Hsing and Taguchi, 1985; Chen et al., 2008) and Cpmk (Choi and Owen, 1990; Pearn 
et al., 2005). More detailed information on these indices are available in Kotz and Johnson (1993), English and Taylor (1993), 
Kotz  and Lovelace (1998), Kotz and Johnson (2002), Wu et al. (2009), Yum and Kim (2011), Chen et al. (2017), Polhemus 
(2017) and De-Felipe and Benedito (2017). Historically, all these indices are developed for a product characteristic that can be 
described as a continuous variable and follows normal distribution. The generalization of these indices for continuous non-normal 
variables are suggested by Clements (1989), Pearn and Kotz (1994), Pearn and Chen (1995), Shore (1998), Chen (2000), Goswami 
and Dutta (2013),  Kovarik and Sarga (2014), Li et al. (2015) and Chen et al. (2019). 
   However, in reality, it is observed that many product characteristics are qualitative in nature, e.g. colour, brightness, surface 
finish etc. The manufacturing process of such products are usually described through a discrete-valued characteristic e.g. fraction 
defective, fraction nonconforming, fraction conforming etc. The measurement of this kind of characteristic is typically obtained by 
counting number of defective or nonconforming units (d) within a given number of sample units (n). It is generally assumed that 
the fraction (proportion) data, f = d/n, follows binomial distribution with parameter p (population proportion) and n. It may further 
be noted that binomial data ideally have one-sided specification limit only. For example, the ideal target value for fraction 
defective/nonconforming is zero and the value of fraction defective/nonconforming is desired to be less than a specified USL (say, 
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fU). Again, the ideal target value for fraction conforming is one and the value of fraction conforming is desired to be more than a 
specified LSL (say, fL). The main point of concern for a binomial process is the quality of the lots (say, number of items produced 
in every T hours span) that are formed for shipment. Based on the information contained in a sample taken from a lot, it is possible 
to estimate the expected fraction nonconforming with upper confidence limit or fraction conforming with lower confidence limit in 
the lot. Accordingly, it can be assessed if fraction nonconforming or fraction conforming in a lot satisfies the specified USL or 
LSL. But such analysis, does say nothing about the continuous stream of lots that are produced over long period.  
   However, the design engineers, process managers, vendors or customers are often interested to know if the process is capable of 
producing continuous stream of lots having fraction nonconforming or fraction conforming less than fU or greater than fL 
respectively. These queries can be answered satisfactorily by evaluating the appropriate process capability index of the concerned 
binomial process. When the fraction of interest is smaller-the-better (STB) type, e.g. fraction defective/nonconforming, the 
capability of the binomial process can be evaluated using Cpu index, and when the fraction of interest is larger-the-better (LTB) 
type, e.g. fraction conforming, the capability of the binomial process can be evaluated using Cpl index. 
   Conventionally, the count data (or fraction data) is assumed to follow a binomial distribution which is often approximated by a 
standard normal distribution and therefore, process capability index Cpu or Cpl is computed by using the standard formula for 
normal data. The normal approximation works well only when the sample size n is large and population proportion (p) is such that 
both np and n(1–p) are greater than 5. Alternatively, Clement's (1989) percentile based approach (which is developed for 
continuous non-normal process) may be applied to binomial process (a discrete non-normal process) for obtaining an approximate 
estimate of Cpu or Cpl. An estimate of Cpu or Cpl of a binomial process obtained by percentile based approach will be approximate 
only because the values of percentile points used in these computations are approximated. Thus, both these approaches can 
measure Cpu or Cpl approximately only. Maravelakis (2016) developed a method for measuring process capability of a binomial 
process. In this method, binomial data are first converted into normally distributed data by using a two-step transformation 
technique and then, capability of the binomial process is assessed by directly applying the standard formula for Cpu or Cpl on the 
transformed data. 
   Borges and Ho (2001) suggested a new measure of process capability, called C-index, which has one-to-one correspondence 
(mapping) between the proportion of nonconforming items and Z-value of the standard normal distribution. This implies that the 
process capability will respond to changes in the nonconforming region and not to changes in the distribution of the observed 
quality characteristic. Thus, the basic process capability index (Cp) for any process can be expressed in terms of C-index. In case of 
unilateral specification, the Cpu or Cpl of a process can be measured in terms of Cu or Cl respectively.  
   In the recent past, researchers have proposed some generalized indices for assessment of process capability, which can be used as 
alternative to Cp. These indices are defined as the ratio of two probabilities instead of ratio of the specification width and actual 
process width. Thus, these indices can be computed irrespective of distribution of the quality characteristics (normal or non-
normal) and data type (continuous or discrete). Yeh and Bhattacharya (1998) proposed Cf index, Perakis and Xekalaki (2002, 
2005) presented Cpc index and Maiti et al. (2010) suggested Cpy index for assessment of process capability. In case of unilateral 
specification, the equivalent indices for Cpu can be obtained as Cfu, Cpcu and Cpyu, and the equivalent indices for Cpl can be obtained 
as Cfl, Cpcl and Cpyl. Therefore, Cpu or Cpl index for a binomial process can be measured in terms of these generalized indices. 
   It has been observed that application of the above discussed methods to a single set of binomial data results in widely varying 
values for Cpu or Cpl. This implies that accuracies of the estimates of Cpu or Cpl obtained by different methods vary widely. No 
study is reported in literature that attempt to evaluate the accuracies of the estimated Ĉpu or Ĉpl values that may be obtained by 
different approaches. Consequently, a user of the index may inadvertently be led to erroneous decision making based on an 
inaccurate estimate of the index.  
   In this paper, a procedure is proposed for assessing the accuracies of the estimates of Cpu or Cpl obtained by different approaches. 
Then the best method for evaluating capability of a binomial process is identified based on application of the proposed procedure 
on multiple case study data. The article is organized as follows: Different approaches for computation of Cpu or Cpl from binomial 
data are described in Section 2. A procedure for assessing accuracies of estimated Ĉpu or Cpl values obtained from binomial process 
using different methods is discussed in Section 3. Analysis of multiple case study data sets and related results are presented in 
Section 4. Important findings and the issues related to different methods are discussed in Section 5. Section 6 concludes the paper. 
 

2. Different approaches for computation of Cpu or Cpl from binomial data 
 
   Suppose, an item has one or more quality characteristics that are examined by the inspector. If the item does not conform to 
standard on one or more of these characteristics, it is classified as nonconforming and if the item conforms to standard on all of 
these characteristics, it is classified as conforming. Let the production process is operating in a stable manner, such that the 
probability that any unit will be nonconforming (conforming) to specification is p and successive units produced are independent. 
Suppose a random sample of n units of product is selected from the process. If the random variable D denotes the number of units 
of product that are nonconforming to the standard, then D has a binomial distribution with parameters n and p, i.e.  
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Then, the probability distribution of sample fraction nonconforming, f=d/n is also binomial. The cumulative distribution function 
of f can be obtained by using the binomial distribution as 
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where [na] denotes the largest integer less than equal to na. It can be shown that E(f) = p and E( 2
fσ ) = p(1–p)/n (Montgomery, 

2009). Generally, the unknown population proportion (p) is estimated by using the sample fraction of nonconforming items (f). 
If the sample fraction (f) is STB type, then it will have only USL (say, USL = f1U), and one will need to estimate Cpu as a 

measure of process capability. On the other hand, if the sample fraction (f) is LTB type, then it will have only LSL (say, LSL = fL) 
and one will need to estimate Cpl as a measure of process capability. For convenience, let us assume that the fraction of interest is 
the fraction nonconforming which is STB type. Therefore, the task is to estimate the values of Cpu from m number of computed 
sample fractions fi = di/ni (i = 1,2,3,…,m), where di is the observed number of nonconforming items in a sample of size ni (i = 

1,2,3,…,m). Obviously, average sample size is n =∑
=

m

i
i mn

1

/  and average sample fraction nonconforming (f ), given by Equation 

(3), is the best estimate of the unknown binomial parameter p.  
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It must be noted that f  is only an overall estimate of the population fraction nonconforming p. The values of sample fraction 

nonconforming (f1i)(i=1,2,3,…) that may be measured from the continuous stream of lots will vary following binomial 
distribution, and the sample fraction nonconforming (f) in all the lots may not be less than fU. The expected proportion of 
nonconforming fractions (PNFU) or proportion of nonconforming lots (PNLU) with respect to USL can be estimated as  
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where [n fU] denotes the largest integer less than equal to n fU. The percentage of nonconforming lots can be obtained by 
multiplying PNLU by 100.  

If the fraction of interest is LTB type, the parameters n  and f  can be estimated from the sample data in the same manner. 

The expected proportion of nonconforming fractions (PNFL) or proportion of nonconforming lots (PNLL) with respect to LSL can 
be estimated by using Equation (5) and the percentage of nonconforming lots can be obtained by multiplying PNLL by 100.  
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ff
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   (5)   

The process capability analysis of a binomial process essentially implies assessing if the process is capable of producing 
continuous stream of lots having fraction defective/nonconforming less than specified fU or fraction conforming greater than 
specified fL. There are various approaches that can be used for estimating Cpu or Cpl for binomial process are described in the 
following sub-sections. 
 
2.1 Normal approximation approach 

If sample size n is large and estimate of population parameter p̂ (= f ) is such that both n f  and n(1– f ) are greater than 5, the 

distribution of f may be approximated by normal distribution with mean f  and variance f (1– f )/ n (Montgomery 2009). Thus, 

the approximate estimates of Cpu and Cpl can be obtained from the observed sample proportions as follows: 
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Ĉpu = (fU – f )/(3x nff /)1(( − )                                                                                                                  (6) 

                            Ĉpl = ( f –fL)/(3x nff /)1(( − )                                                                                                (7) 

where fU and fL are the specified upper and lower limit for STB and LTB type of fraction, respectively.  
 
2.2 Percentile based approach 

The percentile based approach (Clements 1989) is developed for estimating Cp, Cpu and Cpl of a continuous non-normal process. 
However, the same concept can be used for approximating the estimates of Cpu and Cpl of a discrete non-normal process. Thus, the 
approximate estimate of Cpu and Cpl can be obtained as follows: 

Ĉpu = (n fU – M)/(D0.99865 – M)           (8) 

                            Ĉpl = (n fL – M)/(D0.00135 – M)         (9) 

Where M is the median (50th percentile point), D0.99865 is the 99.865th percentile point and D0.00135 is the 0.135th percentile point in 

the binomial distribution with parameters n  and f .  It may be noted that M, D0.99865 and D0.00135 must be integers. So it may not 

be possible to get exact 50th, 99.865th or 0.135th percentile points. 
 
2.3 Transformation approach 

Maravelakis (2016) has proposed a transformation technique by which binomial data, i.e. the sample observations (ni, 
di)(i=1,2,3,…,m) can be transformed into Qi (i =2,3,…,m) values. Using the same transformation technique, fU (or fL) can also be 
transformed into Q value. Suppose the transformed fU (or fL) is denoted as QU (or QL). Quesenberry (1991) has shown that if the 
probability of success p be constant, then Qi (i =2,3,…,m) are approximately independently and normally distributed. Therefore, 
Cpu or Cpl of the original process can be evaluated from the Qi (i =2,3,…,m) values as follows: 

                                Ĉpu = (QU – Q )/(3 x SDQ)                                                                                                      (10) 

                               Ĉpl = (Q  – QL)/(3 x SDQ)                                                                                                         (11)  

where Q  and SDQ are average and standard deviation of the Qi (i =2,3,…,m) values. Maravelakis (2016) has proposed two 

different techniques for transformation of sample fractions into Q values for the following two cases. 

Case 1: Transformation of sample fractions when P is known 

Let probability of success p = p0 (known), and di denotes the number of nonconforming items observed in the i th sample of size ni. 
At first, the sample observations (ni,di)(i = 1,2,3,…,m) are transformed into cumulative binomial values (ui) using the binomial 
cumulative distribution function, as shown in Equation (12). Then, the cumulative binomial values are retransformed into Qi 
(i=1,2,3,…,m) values by the inverse of the standard normal distribution, as shown  in Equation (13). 

ui = FB(xi;ni,p0) for i = 1,2,3,…,m                                                   (12) 

   Qi = 1−φ (ui) for i = 1,2,…,m                   (13) 

Case 2: Transformation of sample fractions when p is unknown 

At first, the sample observations (ni, di)(i=1,2,3,…,m) is transformed into cumulative hypergeometric value (ui) using the 
hypergeometric cumulative distribution function as follows: 

ui = FH(di;ti,ni,Ni); i=1,2,3,…,m                                                                                       (14) 

where, Ni be the sum of all the sample sizes up to sample i, i.e. ∑
=

=
i

j
ji nN

1

and ti is the sum of all the nonconforming items in all 

the samples up to sample i, i.e. ∑
=

=
i

j
ji dt

1

and m is the number of samples. Then, the cumulative hypergeometric values are 

retransformed into Qi  (i =2,3,…,m) values by the inverse of the standard normal distribution as shown in Equation (13).  
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2.4 Mapping based approach  

Using Borges and Ho's (2001) mapping based approach, Cpu or Cpl can be estimated from the observed sample fractions fi 
(i=1,2,3,…,m) as follows: 

1) Calculate first the values of PNFU (or PNFL) for calculation of Cpu (or Cpl) using Equation (4) (or Equation (5)). 

2) Determine the corresponding Z-value of the standard normal distribution that result in probability area equal to PNFU on the 
upper tail (or probability area equal to PNFL on lower tail). Let the Z-value corresponding to PNFU (or PNFL) is ZU (or ZL). The 
ZU (or ZL) value can be obtained by using inverse cumulative probability of the standard normal distribution function as 
follows: 

                                   ZU = 1−φ (1– PNFU) and ZL = 1−φ (1– PNFL)  

where, )(•φ denotes the standard normal cumulative distribution function. 

3) Then the estimates of  Cpu or Cpl can be obtained as follows: 
                          Ĉpu = Ĉu = (1/3) x ZU                                                                                                             (15) 
                          Ĉpl = Ĉl = (1/3) x ZL                                                                                                              (16) 
 
2.5 Process nonconforming based approach 

Yeh and Bhattacharya (1998) and Perakis and Xekalaki (2002, 2005) proposed indices Cf and Cpc respectively, and these indices 
measure the process capability by looking directly at the proportion of nonconforming in a process. In case of unilateral 
specification, the Cf index can be expressed as 

Cfu = U
0α / Uα               (17) 

              Cfl = L
0α / Lα                (18) 

where, in case of binomial process, U0α and L
0α are the proportion of nonconforming lots having fractions beyond the specified 

limits fU and fL respectively that the manufacturer can tolerate, and Uα (=PNFU) and Lα (=PNFL) are the actual proportion of 

nonconforming lots having fraction beyond fU and fL respectively that can be measured using Equations (4) and (5) respectively.  

Following the convention for normal distribution, Yeh and Bhattacharya (1998) recommend to consider U
0α = 0.00135= L

0α .  

For unilateral specification, Perakis and Xekalaki (2002, 2005) proposed Cpc index can be expressed as 

Cpcu = (1–
Up0 )/(1–pU)                                                                                                      (19) 

                             Cpcl = (1– Lp0 )/(1–pL)                                                                                                       (20) 

where, in case of binomial process, Up0 and Lp0 are the desired proportion of lots having fractions conforming to the specified 

limits fU and fL respectively, and pU and pL are actual proportion of lots having sample fractions conforming to fU and fL 

respectively. It may be noted that 1–pU = Uα (=PNFU) and 1–pL = Lα (=PNFL), and these can be measured using Equations (4) 

and (5) respectively. On the other hand, Perakis and Xekalaki (2002, 2005) recommend that 0.9973 is a good choice for the desired 
proportion of conforming for both sided specifications and thus, a good choice for the desired proportion of conforming for one 

sided specification is 0.99865. So, 1–
Up0 =0.00135= U

0α and 1– Lp0 = 0.00135 = L
0α . Thus, the indices defined by Yeh and 

Bhattacharya (1998) and Perakis and Xekalaki (2002, 2005) are essentially the same in case of unilateral specification. Therefore, 
Cpu index of a binomial process can easily be estimated in terms of Cfu or Cpcu index as Ĉpu = Ĉfu = Ĉpcu and Cpl index of a binomial 
process can easily be estimated in terms of Cfl or Cpcl index as Ĉpl = Ĉfl = Ĉpcl. Here only the Cpcu and Cpcl indices are considered for 
further analysis. 
 
2.6 Process yield based approach 

Maity et al. (2010) proposed Cpy index as a measure of process capability. For a quality characteristic with both sided 
specifications, the Cpy index is defined as follows: 



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 12, No. 1, 2020, pp. 25-37 

 

30 

 

                             LUpy

LFUF
C

001
)()(

αα −−
−=                                                                                                                    (21) 

where, F(U) and F(L) are cumulative probability distribution function of the quality characteristic at USL and LSL respectively, 

and U
0α and L

0α are the maximum allowable proportion of nonconforming at upper tail and lower tail of the distribution of the 

quality characteristic.  Here the numerator, F(U) - F(L), gives the measure of the actual process yield (i.e. actual proportion of 

conforming) and the denominator, (1–U0α – L
0α ) gives the measure of the desired process yield (i.e. desired proportion of 

conforming). 

Maiti et al. (2010) suggested that in case of unilateral specification, the process target should be taken as eµ , and the process 

centre should be located such that F( eµ ) = [F(U) + F(L)]/2 = ½ = 0.5. Therefore, for unilateral specification, Cpy index can be 
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where the value of U
0α or L

0α is conventionally taken as 0.00135, and in case of a binomial process, the cumulative probability 

F(U) or F(L) can be computed by using Equation (5). Therefore, Cpu or Cpl index of a binomial process can easily be estimated in 
terms of Cpyu or Cpyl and Ĉpl = Ĉpyl. 
 
3. Proposed procedure for assessing accuracies of the estimated Ĉpu (or Ĉpl) values 
 
   The most important aspects of process capability indices are that the analysts/users can assess about the products' conformance to 
the specifications, process centering etc. by examining the values of these indices, and accordingly he/she can take appropriate 
decision. For example, if a product characteristic X of a product follows normal distribution and the estimated process capability 
index Ĉp = 1, it implies that the process is capable to produce 99.730% conforming products with respect to two-sided 
specifications; if Ĉp = Ĉpk, it implies that the process must have been centered at the midpoint of the two-sided specifications and 
thus, production of 99.730% conforming products is ensured. Similarly, Ĉpu = 1 implies that the process is capable to produce 
99.865% conforming products with respect to the USL of X (say, USLX). This interpretation is derived from the following 
relationship:  

                 

=φ (3 x Ĉpu)  

where  and  are the estimates of mean and standard deviation of X, respectively. Therefore, percentage of nonconforming 
products (NP%) is predicted as 

                     NP% = 100 x P(X≥ USLX)=100 x [1-P(X≤ USLX)] =100 x [1-φ (3 x Ĉpu)]                     (24) 

It may be noted that the concept of prediction of NP% is not applicable for a binomial process. This is because a binomial 
process is described through a discrete-valued characteristic and its measurement is typically obtained by counting number of 
nonconforming units (d) within a given number of sample units (n). For a binomial process, the main point of concern is the 
quality of the stream of lots produced, and the basic purpose of process capability analysis for a binomial process is to assess if the 
process is capable of producing stream of lots having fraction nonconforming less than fU or fraction conforming greater than fL. 
When the fraction of interest is fraction nonconforming, a lot may be called as conforming lot if the fraction nonconforming in the 
lot is less than fU, otherwise it may be called as nonconforming lot. Similar to an assessment about the expected NP% based on the 
estimated Ĉpu or Ĉpl value in case of normal process, the analysts/users of the index should be able to guess about the expected 
percentage of nonconforming lots (NL%) that may be produced in a given binomial process based on the estimated Ĉpu or Ĉpl value 
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from the concerned binomial process. Otherwise, obtaining the estimate of Cpu or Cpl from a binomial process would have little or 
no use. 

However to the best of our knowledge no such method is reported in literature which aims to predict expected NL% in a 
binomial process based on the estimated Ĉpu or Ĉpl value. Equation (24) is also not ideally applicable for prediction of NL% based 
on the estimated Ĉpu value from a binomial process because fraction nonconforming (f) does not follow normal distribution but 
follows binomial distribution. But we believed that we can get at least an approximate idea about expected NL% in the continuous 
stream of lots produced in a binomial process by using the same concept for prediction of NP% based on the estimated Ĉpu value, 
and so we use Equation (25) for prediction of NL% (Approx) based on the estimated Ĉpu value. On the other hand, the True NL% 
in the binomial process can be obtained by using Equation (26). Therefore, Prediction error (Approx) for an estimated Ĉpu value 
can be obtained by Equation (27). The Prediction error (Approx), obtained by Equation (27), may be considered as a metric for 
comparison of the accuracies of the estimated Ĉpu values obtained by different methods.  

                           Predicted NL% (Approx) = 100 x [1 - φ (3 x Ĉpu)]                                                        (25) 

                           True NL% = dnd
fn

d

n

d

ff
U

−

=

−






− ∑ )1(1
][

0

                                                                    (26) 

                           Prediction error (Approx) = |Expected NL% (Approx) – True NL %|                          (27) 

Less is the Prediction error (Approx) for an estimated Ĉpu value, the accuracy of the estimate may be considered more and better is 
the method of estimation of the Cpu. The advantage of the proposed procedure for assessing accuracy of an estimated Ĉpu value is 
that it is simple and the disadvantage is that the procedure is based on an approximate measure of the prediction error. 

 
4. Analysis and related results 
 
   Three data sets, published in literature, are analyzed here as three case studies for the purpose of assessing the accuracies of the 
estimated Ĉpu values obtained by different methods. In the three case studies, the sample data are collected from binomial 
distributions with population proportions about 0.02, 0.06 and 0.10. Sample sizes also varied widely in the three case studies, e.g. 
500, 100, 30. 

4.1. Case study 1 

Hsieh and Tong (2006) carried out process capability analysis of a lead frame manufacturing process. For enhancing yield of the 
packaging product, the package fabrication department (customer)  requires that the number of defective lead frames in their on-
line quality control must be less than ten strips per 500 inspection strips, i.e. fu = 10/500 = 0.02. They carried out the study to assess 
if the lead frame manufacturing process is capable to satisfy the package fabrication department's requirement. For this purpose, 
they collected count data on number of defective strips (d) per 500 strips for 30 lots produced in 30 days, i.e. n = 500 and m = 30. 

It is observed that the total number of defective strips ∑
=

m

i
id

1

=295. Thus, the average sample fraction (f ) is estimated as 

mn

d
f

m

i i

×
= ∑ =1 =

30500
295

×
=0.01967 

All the sample fractions fi (i = 1,2,3, …, m) are plotted in a p-chart and the chart indicates that the manufacturing process is in 
control. So this data set is used for estimating Cpu using all the six approaches described in Section 2. 

Estimation of Cpu using normal approximation approach 

Since the sample size is large enough (n = 500) and n f  (= 9.833) is greater than 5, the binomial process data can be approximated 

by normal distribution with mean f = 0.01967 and standard deviation = nff /)1(( − )= 0.00621. Thus, using Equation (6), 

the estimate of Cpu is obtained as 

Ĉpu = (fU – f )/(3x nff /)1(( − )=(0.02-0.01967)/(3 x 0.00621)=0.0179 
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Estimation of Cpu using percentile based approach 

The 50th percentile point (i.e. median M) and the 99.865th percentile point (D0.99865) for the fitted binomial distribution with n = 500 
and p = 0.01967 are found as 10 and 20 respectively. Thus, using Equation (8), the estimate of Cpu is obtained   as 

Ĉpu = (nfU – M)/(D0.99865–M) = (10–10)/(20–10) = 0 

Estimation of Cpu using transformation approach 

Here it is assumed that binomial probability p is known to be equal to f = 0.01967. Therefore, transformation technique for case 1 

described in section 2.3 is applied on the sample observations (500, di)(i=1,2,3,…,30) and Qi(i=1,2,3,…,30) values are obtained. 
The USL for fraction defective, fU = 0.02 is also transformed into Q value, which is considered as the equivalent USL for the 
transformed Q values and it is denoted as QU. The QU value is obtained as follows: 
 

QU = 1−φ { FB(nfU]|n,p)} 

                                  = 1−φ { FB([0.02x500]|n=500,p=0.01967)}= 1−φ { FB([10]|n=500,p=0.01967)}= 1−φ {0.604}= 0.264 

The Q  and SDQ are found to be 0.1841 and 0.75 respectively. Thus, the estimate of Cpu is obtained as 

                             Ĉpu = 0355.0
75.03
1841.0264.0

3
=

×
−=

×
−

Q

U

SD

QQ
      

Estimation of Cpu using mapping based approach 

Here, n = 500, f = 0.01967, fU = 0.02 and [nfU] = 10. Therefore, using the procedure described in section 2.4, PNFU and ZU are 

computed first and then, the estimate of Cpu is obtained as follows: 

∑
=

−







−=
10

0

500
500

)98033.0()01967.0(1
d

dd

d
UPNF = 0.3959 

ZU = 1−φ (1 – PNFU) = 1−φ (1 – 0.3959) = 1−φ (0.6041) = 0.264 

Ĉpu = Ĉu = (1/3) x ZU = (1/3) x 0.264 = 0.088 

Estimation of Cpu using process nonconforming based approach 

The value of Up0 is not specified here and so, as per convention it is taken as 0.99865.  This implies that allowable (acceptable) 

proportion of nonconforming lots is (1–
Up0 ) = 0.00135. Here, the sample size n = 500 and the estimate of binomial parameter p is 

f = 0.01967. So, using Equation (4), the actual proportion of nonconforming lots, (1–pU) = Uα is found to be 0.3959. Therefore, 

Cpu is estimated as 
                        Ĉpu = Ĉpcu = 0.00135/0.3959 = 0.0034       

Estimation of Cpu using process yield based approach 

Here, the sample size n = 500 and the estimate of binomial parameter p is f = 0.01967, the USL for fraction defective is fU = 0.02 

and allowable proportion of lots having fraction defective more than fU is 0.00135. Using Equation (5), the cumulative probability 
for conforming fractions or lots, F(U) is computed as 0.6041. Therefore, Cpu is estimated as 

                        Ĉpu = Ĉpyu = (0.6041–0.5)/(0.5–0.00135) = 0.1041/0.49865 = 0.2085 
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It may be noted that estimated Ĉpu values obtained by the six approaches varies widely. For the purpose of assessing relative 
accuracies of these estimates, Predicted NL% are obtained separately based on each estimated Ĉpu value using Equation (25). On 
the other hand, the True NL% in the current process is computed using Equation (26) and it is found to be 39.59%. Then 
Prediction errors (Approx) are obtained for all the estimated Ĉpu values using Equation (27). Table 1 shows the estimated Ĉpu 
values obtained by different methods, Predicted NL% (Approx) by these estimates and the Prediction error (Approx) for these 
estimates. 

Table 1.  Ĉpu values obtained by different methods and the Prediction errors (Approx) for these estimates 

Sl. 
No. 

Approaches for Cpu calculation Estimated 
Ĉpu value 

Predicted NL% 
(Approx)  

True 
NL% 

Prediction 
error (Approx) 

1 Normal approximation approach 0.0179 47.86 8.27 
2 Percentile based approach  0.0000 50.00 10.41 
3 Transformation approach  0.0355 45.76 6.17 
4 Mapping based approach  0.0880 39.59 0 
5 Nonconforming based approach  0.0034 49.59 10.00 
6 Yield-based approach 0.2085 26.56 

39.59 

13.03 

Table 1 shows that the Prediction error (Approx) is minimum (zero) for the estimated Ĉpu value obtained by Mapping based 
approach, and maximum (13.03) for the estimated Ĉpu value obtained by yield-based approach.  This implies that Mapping based 
approach give the best estimate of Cpu and Yield based approach results in the worst estimate of Cpu. The Prediction errors 
(Approx) for the estimated Ĉpu values obtained by all other approaches are also substantially high, which is indicative that 
accuracies for these estimates also are quite poor compared to the estimated Ĉpu value obtained by Mapping based approach.  
 
4.2 Case study 2 

Montgomery (2009) presented in exercise 7.3 (pp. 335), a set of process data on total number of personal computers inspected and 
total number of nonconforming personal computer observed in each day over last ten consecutive days. Then he wanted to know if 
the process was in control. The plotted fraction nonconforming control chart exhibited that the process was in control, and 
therefore, it is decided to use the same data for process capability analysis purpose. 

In this data set, sample size (ni) was variable and the average sample size (n ) is found to 100, and the average fraction 

nonconforming (f ) is found to be 0.06. Montgomery (2009) did not specify the USL for the fraction nonconforming. For the 

purpose of process capability analysis, here we assume that f  + 2 x 
n

ff )1( − ≈ 0.10 is the USL for the fraction 

nonconforming, i.e. fU  = 0.10.   
Now the Ĉpu values are computed from the same data set using all the six approaches. The Predicted NL% (Approx) are 

predicted based on these estimated Ĉpu values using Equation (25) and the True NL% in the current process is computed using 
Equation (26). The True NL% in the current process is found to be 3.76%. Then Prediction errors (Approx) for all the estimated 
Ĉpu values are computed using Equation (27). Table 2 shows the estimated Ĉpu values obtained by different methods, Predicted 
NL% (Approx) and the Prediction errors (Approx) for these estimates. 

Table 2.  Ĉpu values obtained by different methods and the Prediction errors (Approx) for these estimates 

Sl. 
No. 

Approaches for Cpu calculation Estimated
Ĉpu value 

Predicted NL% 
(Approx)  

True 
NL% 

Prediction 
error (Approx) 

1 Normal approximation approach 0.5614 4.61 0.85 
2 Percentile based approach  0.7143 1.61 2.15 
3 Transformation approach  0.6716 2.20 1.56 
4 Mapping based approach  0.5931 3.76 0 
5 Nonconforming based approach  0.0360          45.71 41.95 
6 Yield based approach 0.9273 0.27 

3.76 

3.49 
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Table 2 shows that the Prediction error (Approx) is minimum (zero) for the estimated Ĉpu value obtained by Mapping based 
approach, and maximum (41.95) for the estimated Ĉpu value obtained by Nonconforming based approach. This implies that 
Mapping based approach give the best estimate of Cpu and Nonconforming based approach results in the worst estimate of Cpu. The 
Prediction errors (Approx) for the estimated Ĉpu values obtained by all other approaches are found to be reasonably low and thus 
may be considered as acceptable.  
 
4.3 Case study 3 

Maravelakis (2016) considered a manufacturing process for illustrating his proposed transformation technique for binomial data 
and subsequent computation of process capability index. Maravelakis (2016) collected a total of m = 100 samples each of size n = 
30, and observed the number of nonconforming items (d) in each sample. The fraction nonconforming in these samples are 
calculated and plotted in p-chart. The plotted p-chart revealed that the process is in control. The USL for the fraction 

nonconforming is fU = 0.2. The total number of nonconforming items in these samples is found to be ∑
=

m

i
id

1

=286 and so, the 

average fraction nonconforming is computed as f = 286/(30 x 100) = 0.09533.  

Now the Ĉpu values are calculated from the same data set using all the six approaches. The Predicted NL% (Approx) are 
computed based on these calculated Ĉpu values using Equation (25) and the True NL% in the current process is computed using 
Equation (26). The True NL% in the current process is found to be 2.04%. Then Prediction errors (Approx) for estimate of Cpu is 
computed using Equation (27). Table 3 shows the estimated Ĉpu values obtained by different methods, Predicted NL% (Approx) 
based on these estimates and the Prediction errors (Approx) for these estimates. 

Table 3.  Ĉpu values obtained by different methods and the Prediction errors (Approx) for these estimates 

Sl. 
No. 

Approaches for Cpu calculation Estimated 
Ĉpu  value 

Predicted NL% 
(Approx)  

True 
NL% 

Prediction 
error (Approx) 

1 Normal approximation approach 0.651 2.546 0.51 
2 Percentile based approach  0.511 6.250 4.21 
3 Mapping based approach  0.682 2.040 0 
4 Transformation approach  0.611 3.348 1.13 
5 Nonconforming based approach  0.066 42.130 40.09 
6 Yield-based approach 0.962 0.195 

2.04 

1.85 
 

Table 3 shows that the Prediction error (Approx) is minimum (zero) for the estimated Ĉpu value obtained by Mapping based 
approach, and maximum (40.09) for the estimated Ĉpu value obtained by Nonconforming based approach. This implies that 
Mapping based approach give the best estimate of Cpu and Nonconforming based approach results in the worst estimate of Cpu. The 
Prediction errors (Approx) for the estimated Ĉpu value obtained by Percentile based approach are also noted to be quite high. The 
Prediction errors (Approx) for the estimated Ĉpu values obtained by all other approaches are found to be reasonably low and thus 
may be acceptable. 
   The Prediction errors (Approx) for the estimated Ĉpu values obtained by different methods in the three case studies are 
summarized in Table 4. It can be noted from Table 4 that the Prediction errors (Approx) is consistently zero for the Ĉpu values 
obtained by the Mapping based approach. On the other hand, it is found that Prediction errors (Approx) is consistently high for the 
Ĉpu values obtained by the Nonconforming based approach. Therefore,  it may be concluded that Mapping based approach is the 
most appropriate one and Nonconforming based approach is the most unsuitable one for assessing capability of a binomial process. 
For the Ĉpu values obtained by the other methods, the Prediction errors (Approx) are observed to be inconsistent. It may be noted 
from Table 4 that the Prediction errors (Approx) for the Ĉpu values obtained by Normal approximation approach, Percentile based 
approach, Transformation approach and Yield based approach are quite low in case studies 2 and 3 but substantially high in case 
study 1. Therefore, it may be concluded that these four approaches are also not reliable for estimation of Cpu for a binomial 
process.  
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Table 4.   Ĉpu values obtained by different methods and the Prediction errors (Approx) for these estimates 

Prediction errors (Approx) for different estimates of Cpu  Sl. 
No. 

Approaches for Cpu calculation 
Case study 1 Case study 2 Case study 3 

1 Normal approximation approach 8.27 0.85 0.51 
2 Percentile based approach  10.41 2.15 4.21 
3 Transformation approach  6.17 1.56 1.13 
4 Mapping based approach  0 0 0 
5 Nonconforming based approach  10.00 41.95 40.09 
6 Yield-based approach 13.03 3.49 1.85 

 
5. Discussions 
 
The Cpu or Cpl index for a binomial process can be estimated using several approaches. However, results of analyses of multiple 
data sets in section 4 show that accuracies of these estimates vary widely. It is observed that the Predicted NL% (Approx) based on 
Ĉpu values obtained by Mapping based approach exactly matches with the True NL% in the binomial process in all the three case 
studies, and thus, Prediction errors (Approx) are zero for all the three case studies. This happens because of the following facts. In 
mapping based approach, the Cpu value is computed by directly mapping the probability of nonconforming lots to the Z-value of 
standard normal distribution that results in the same probability of nonconforming products and the formula used for prediction of 
NL% (Approx) is also truly applicable for the normally distributed quality characteristic. If a more appropriate formula for 
prediction of NL% in a binomial process can be developed, the Prediction errors (Approx) may not be zero. However, there is no 
doubt that Mapping based approach gives the most accurate estimate of Cpu or Cpl for a binomial process. 
   The results in Table 4 reveal that Prediction errors (Approx) are always very high for the estimates of Cpu obtained by Nonconforming 
based approach. This implies that Predicted NL% based on these estimates differ highly from the True NL% in the respective 
binomial process. The problem with the Nonconforming based approach is that in this approach, Cpu (or Cpl) is estimated as the 
ratio of the two very small numbers, where numerator is 0.00135 (acceptable proportion of nonconforming lots) and denominator 
is actual proportion of nonconforming lots having fraction beyond fU (or fL). Thus, the estimate is highly impacted due to a minor 
deviation in the value of actual proportion from the acceptable proportion. For example, if actual percentage of nonconforming lots 
is 0.135% then the value of Ĉpu is equal to one but if the actual percentage becomes 0.01% then the value of Ĉpu would become as 
high as 13.5, which would give a misleading impression that the process is highly capable although one nonconforming lot per 
1000 lots are expected in the process. On the other hand, if the actual percentage becomes 0.5% then the value of Ĉpu would 
become as low as 0.27, which would give again a misleading impression that the process capability is very poor. Due to the same 
reason the estimated Ĉpu values in case studies 2 and 3 give an impression that the capability of those processes are very poor. 
   The results in Table 4 reveal that Prediction errors (Approx) are inconsistent for the estimates of Cpu obtained by Normal 
approximation approach, Percentile based approach, Transformation based approach and Yield based approach. The problem with 
the Normal approximation approach is that the accuracy of the estimate obtained by this method highly depends on the value of 

sample size (n) and the average sample fraction (f ) that is used as an estimate of the population proportion. Higher is the sample 

size (n) and greater is the value of n f , more accurate will be the estimate of Cpu or Cpl obtained by Normal approximation 

approach. The Percentile based approach is a well accepted method for estimation of Cp, Cpu or Cpl for a process when the quality 
characteristic can be described as a continuous non-normal variable. But application of this method for obtaining an approximate 
estimate of Cpu or Cpl of a binomial process (a discrete non-normal process) does not work well always. This is because the values 
of percentile points used in the computation are approximated to the nearest integers only and the actual percentile values 
corresponding to the nearest integers often may differ substantially from the prescribed percentile values. As a result, the estimate 
of Cpu obtained by Percentile based approach sometimes may become quite inaccurate. Among the various approaches considered, 
the transformation approach is the most complex method for computation of process capability index for a binomial process. 
However, the results in Table 4 show that accuracy of estimates of Cpu obtained by this method are not good always. This is 
perhaps the technique for transformation of binomial data into normal data does not work well always. In Yield-based approach, 

the values of the ratios [F(U)–0.5]/(0.5– U
0α )and [0.5– F(L)]/(0.5–

L
0α ) are considered as the estimate of Cpu and Cpl respectively. 

Since the values U
0α  and L

0α  are usually taken as 0.00135, the denominator is always equal to 0.49865 in both the ratios. On the 
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other hand, the values of the numerators in both the ratios can be at most 0.5. Therefore, the maximum value of Ĉpu or Ĉpl in a 
process can be 0.5/0.49865 = 1.0027. This implies that the estimated Ĉpu or Ĉpl obtained by Yield-based approach would fail to 
make distinction among almost capable process, just capable process and highly capable process. 

  
6. Conclusion 
 
   Process capability analysis (PCA) is an important analytic tool frequently employed by the design engineers, process managers, 
vendors as well as customers. The basic purpose of PCA is to assess if a process is capable of meeting the specified requirements. 
In reality, many product characteristics are qualitative in nature and quality of such products is usually described in terms of 
fraction nonconforming or fraction conforming in a lot. The fraction nonconforming or fraction conforming is known to follow 
binomial distribution with parameters n (sample size) and p (population proportion). Measuring capability of a binomial process 
implies assessing to what extent the fraction nonconforming (or fraction conforming) in the continuous stream of lots produced 
comply with USL for fraction nonconforming (or LSL for fraction conforming). In this paper, a procedure for assessing accuracies 
of the estimates of Cpu or Cpl obtained by various methods is discussed. Analysis of multiple case study data reveals that Mapping 
based approach gives the most accurate estimate of Cpu or Cpl for a binomial process and Nonconforming based approach gives the 
most inaccurate estimate of Cpu or Cpl obtained by other methods like Normal approximation approach, Percentile based approach, 
Transformation based approach and Yield based approach are inconsistent and therefore, these estimates are unreliable. Thus, only 
the Mapping based approach is appropriate for estimating Cpu or Cpl for a binomial process. 
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