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Abstract

   This study discusses the use of numerical integration in evaluating the improper integrals appearing as inverse integral
transforms of non-analytic functions.  These transforms appear while studying the response of various sources in an elastic
medium through integral transform method. In these studies, the inverse Fourier transforms are solved numerically without
bothering about the singularities and branch points in the corresponding integrands. References on numerical integration cited in
relevant papers do not support such an evaluation but suggest contrary. Approximation of inverse Laplace transform integral into
a series is used without following the essential restrictions and assumptions. Volume of the published papers using these dubious
procedures has reached to an alarming level. The discussion presented aims to draw the attention of researchers as well as
journals so as to stop this menace at the earliest possible.
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1. Introduction

   The use of numerical integration in computing the inverse integral transforms sounds fascinating and can be thought to be a very
useful numerical procedure. For the last nearly two decades, few research groups are claiming the use of Romberg integration to
compute the inverse Fourier transforms as improper integrals. However, none of these researchers ever discussed the branch points
or the singularities present in the corresponding integrands. Sharma (2010a) has discussed the errors deliberately committed by
these researchers while going for this numerical adventure. The relevant studies mainly consider calculating the response of elastic
materials to various sources of deformation. Nearly fifty of such papers are listed in Sharma (2010a), which have appeared in
reputed international journals devoted to mechanics of solids. Irony is that even after this publication (Sharma, 2010a), these
authors did not stop their erroneous numerical adventure on inverse Fourier transforms.  In most of these papers, the inverse
Laplace transforms are also calculated numerically. It has been claimed that the procedure and computer programs used for this
numerical inversion are taken from Honig and Hirdes (1984). Unfortunately, in none of these studies, authors have bothered to
discuss any of the restrictions, which are essential to apply the said procedure (Honig and Hirdes, 1984). One such restriction is to
ensure the absence of singularities from the integration scene. This requires the translation of the imaginary axis to the right so that
all the singularities of function under transform lies on the left half-plane. Obviously, this can be possible only after locating all the
singularities of the integrand. In the studies under scanner, such singularities happen to be the zeroes of a non-algebraic complex
expression, which may not be solved through any obvious technique or using a standard method.  But, the tradition of ignoring the
singularities in numerical evaluation of integral transforms is continued unabated, as can be checked in Ailawalia and Kumar
(2019), Kumar et al. (2018),  Kumar et al. (2017a,b) and Kumar et al. (2016a,b,c).
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   A survey of relevant literature indicates that this adventure was perhaps started with a research paper of Sharma and Kumar
(1996) published in Journal of Thermal Stresses. This publication success encouraged Sharma and co-authors to use the same
procedure in other similar studies. In the next five years, they published nearly a dozen papers in various reputed journals. Then,
sometime around the start of the 21st century, this procedure of J.N. Sharma's camp seems to have infected few other research
groups (R Kumar, MIA Othman, MA Ezzat, P Ailawalia plus co-authors).  The result is hundreds of papers in various regional and
international journals since then. Surprisingly, all these papers claim the use of the same techniques for inverse integral transforms
with ditto text. But, restrictions attached to the procedure of Honig and Hirdes (1984) for Laplace transform are not discussed in
any of these studies. Suitability of this method to the integrands in their studies is never ensured.  Few dozens of such papers are
cited in the study (Kumar et al., 2016a) chosen to discuss. This study is also using the numerical integration to evaluate inverse
integral transforms so as to compute the thermomechanical interactions in transversely isotropic magneto-thermoelastic medium.
   The present author has chosen to discuss the various aspects of numerical procedure (Honig and Hirdes, 1984), which is used to
calculate the inverse Laplace transforms. This procedure demands to follow few restrictions along with some manipulations.  The
aim is not to target a particular paper but to expose the dubious numerical procedures, which have been ditto repeated in each of
the papers under scanner. The paper of Kumar et al. (2016a) (referred as paper-A, hereafter) is chosen to explain the abuse of this
procedure by ignoring all the essential restrictions.  In this paper, the integral transforms are inverted numerically to calculate
displacement, stresses, temperature change and induced magnetic field in the physical domain. It is claimed that the inverse
Fourier transforms are computed through Romberg integration and the procedure of Honig and Hirdes (1984) is used to compute
the inverse Laplace transforms.
   Frequency and volume of the studies using this erroneous procedure have reached to an alarming level. So, any delay in
exposing this erroneous procedure may cause an irreparable loss to an important aspect of mathematics dealing with numerical
computations. The present discussion aims to draw the attention of the corresponding researchers towards the sanctity of the
mathematical procedures. It is further expected that the editors of the journals as well as readers should be more cautious while
dealing with the papers involving this erroneous procedure and the research groups frequently using it.

2. Integral Transforms

Purpose of the numerical part in paper-A is to calculate displacement, stresses, temperature change and induced magnetic field in

the physical domain. That means to calculate a function ),,( tzxf from ),,(ˆ szf  through ),,(
_

szxf , where

),,(ˆ szf  represents any of the expressions (44)-(49) in paper-A. With few printing corrections in paper-A, the inverse Fourier

transform is written as follows.
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 which represents the deformation characteristics (displacements, stresses, temperature change and induced magnetic field) in
space-time domain.

In reverse order, each of the expressions (44)-(49) in paper-A is designated, in turn, as a function ),,(ˆ
kszf  but with a chosen

value of z. This function of  and s is used in the inverse Fourier transform (1) to calculate the function ),,(
_

szxf  for a chosen

value of x. Then, ),,(
_

szxf , as a function of s, is used in the inverse Laplace transform (2) to evaluate the function ),,( tzxf ,

for a chosen value of t. Finally, the values of function ),,( tzxf could be calculated for any given values of the triplet ),,( tzx .

In the numerical evaluation of inverse Laplace transform, as proposed in Dubner and Abate (1968) and modified in Durbin (1973),
the function ),,( tzxf  in (2) is approximated as
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and to evaluate it for
L

ik
Cs


 with integer k varying from 0 to N. Here the function f̂ represents, in turn, the physical

entities defined through the expressions (44)-(49) of paper-A.

3. Evaluation of Inverse Fourier Transforms

    ''The last step is to calculate the integral in Eq. (54). The method for evaluating this integral is described in Press et al.  (1992).
It involves the use of Romberg’s integration with adaptive step size. This also uses the results from successive refinements of the
extended trapezoidal rule followed by extrapolation of the results to the limit when the step size tends to zero.''

It is obvious that the most part of this text on page 6567 of paper-A is just the definition of Romberg integration. But, there
seems to some blind faith attached to this text as whole of this is ditto repeated in almost all the papers using this numerical
adventure. However, to calculate the said integral, i.e. inverse Fourier transform (5), is not the last but first step in the process to

compute ),,( tzxf  from ),,(ˆ szxf  through ),,(
_

szf  . Anyway, the purpose is to calculate the improper integral (5) with

integrand xi
k eszf  ),,(ˆ (or its alternate form), for
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So, we have an expression for ),,(ˆ
kszf   in (44)-(49) of paper-A with )(
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 replacing s. Clearly, for any sk, the

integrand has singularities at the points where it is unbounded. In general, these singularities arise with the vanishing of the
determinant  , which appears as denominator in each of the expressions (44)-(49) in paper-A. It is noted that  , is calculated to
be a non-algebraic complex expression, which involves radicals as well. Then, some specific method from complex analysis will
be required to locate its zeroes. It seems that instead of locating the zeroes of ∆, Kumar et al. (2016a) have preferred to look away

from these trouble-making singularities of ),,(ˆ
kszf  .

  In addition to the above, the roots of complex cubic equation (31) in paper-A cannot be all real. That means, the corresponding

roots i are going to be complex. Then, in expressions (33)-(36), choosing zie  does not make sense as radiation requirement

unless all the i  have positive real parts. Moreover, the relevant expressions involve the square root of various complex quantities,

which may encounter bifurcation (branch cuts) as  varies continuously. Hence, a miracle numerical method is expected, which

could evaluate an improper integral in the presence of unknown singularities and unknown branch points in its range of
integration. Kumar et al. (2016a) have chosen for numerical integration using the Romberg method. The reference of Press et al.
(1992) is cited in support of this choice. But, it has been explained very clearly in Sharma (2010a) that Romberg integration cannot
be used for such integrals and the cited reference (Press et al., 1992) never supported this adventure. Moreover, on the evaluation
of such integrals, a relevant reference (Ewing et al., 1957) suggests to use the contour integration rather than numerical integration
(Sharma, 2010a).

In the relevant literature, one can find some earlier references dealing with the Romberg integration of singular integrands
(Hunter, 1967; Fox, 1967; Fox and Hayes, 1970; El-Tom, 1971). However, in each case, the Romberg integration could be applied
only for singularities of very specific kinds. Details are found in Press et al. (1992) and relevant discussion is available in Sharma
(2010a). Moreover, it involves a lot of analytical manipulation. For example, Fourier transforms (when any range of integration is
infinite) are done by splitting the infinite branch of the integral when the function falls quickly along it.

The above discussion poses many questions to all those researchers who are evaluating the Fourier transform numerically
through the Romberg integration method. Have their numerical results been obtained by satisfying the necessary requirements and
using the suggested way-outs? Else, any procedure they adopted must have been approximating the integral with a series sum. The
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terms in this series must be ignoring the singularities (El-Tom, 1971). But, how could one be able to ignore the singularities
without locating them? Then, was the convergence obtained always with an acceptable convergence rate? Which, if any, were the
situations where convergence could not be achieved and how were these handled?  The most important question is, did they ever
verify their own procedures for a known pair of Fourier transforms involving functions with singularities and branch points?

4. Evaluation of Inverse Laplace Transforms

    In the twin-transform procedure, the inverse Laplace transform part, given by
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is calculated approximately through the expression (3). The required function values ),,(
_

L

ik
Czxf


 in (4) come from the

Romberg integration of a singular integrand with singularities and branch points at unknown locations.
The numerical procedure used to compute the inverse Laplace transform (6) is claimed to be that of Honig and Hirdes (1984),
which is an improvement to the procedures suggested by Dubner and Abate (1968) and Durbin (1973). For ease of discussion, let

f(t) and F(s) represent the functions ),,( tzxf  and ),,(
_

szxf  respectively.

Following Honig and Hirdes (1984), the real constant C in (6) is to be chosen so that it is greater than the real parts of all the
singularities of F(s). There is no singularity of F(s) with 0)(Re s is the required assumption. This is to be ensured by a

suitable translation of the imaginary s -axis.  Then the following points are notable.
a) The procedure proposed yields a good result through the choice of a particular contour (a vertical line with abscissa C > 0).
b) The absence of singularities of F(s) in the right half-plane ensures that there exist c > 0, m  0 and t0  0, such that

mcttf |)(| , for all t  t0. This helps to estimate the discretization error resulting from the approximation of infinite integral by

an infinite series. This error can be made small if the product CL  (i.e. T  in Honig and Hirdes (1984)) is sufficiently large.
c) An infinite series can be summed up only for finite number (N) of terms. Hence there occurs a truncation error which may
diverge for large values of CL.
d) From b) and c) above, it is clear that both errors may not be reduced simultaneously for an arbitrary increase or decrease of CL.
‘Korrektur’-method allows a reduction of discretization error without enlarging the truncation error. But this requires non-zero m

to satisfy the condition CL
m

m
21

2
!
 else the method is not applicable.

e) An adequate reduction of total error can be obtained by the ‘Korrektur’-method only if (for fixed N and L) the parameter C is

suitable. There may exist a value 0 such that successful application of the ‘Korrektur’-method requires C < 0 . But, acceleration

of convergence (i.e. reduction of truncation error) may hold only for C > 0 . However, a simultaneous application of acceleration

of convergence method and ‘Korrektur’-method is recommended if parameters (N, L, C) are optimally chosen.
f) In Honig and Hirdes (1984), two situations are specified to obtain the optimized parameters. One is the equality of discretization
error and truncation error that decides an optimized value of C (of the method of Durbin (1973)) for fixed values of N and L. The
other one minimizes the sum of the absolute values of the two errors to decide an optimized value of C (in accordance to
‘Korrektur’-method and acceleration of convergence method) for fixed N and L.
  The final word is that any study using the method of Durbin (1973) and the procedure of Honig and Hirdes (1984) for the
evaluation of Laplace transform must ensure the following points.
i) The value of C is fixed to ensure that all the singularities of F(s) lies on the left half-plane. This requires to find all the
singularities of the function F(s), and an appropriate translation of the imaginary axis to the right. Unfortunately, in all the studies
using this techniques, none has bothered to specify the singularities involved. For example, in paper-A, the singularities for

integrand come from the values of S for which denominator ( ) in (44)-(49) vanishes. Note that the roots ( i ) of the complex

cubic equation (31) in paper-A and hence lj as well as dj are functions of S. Consequently,   is a non-algebraic complex function
of s, which must be solved to locate its zeroes. But, no standard method is available to find the zeroes of such an irrational
complex function.

ii) A value of m to satisfy mcttf |)(| , for all t  t0 is used to ensure the applicability of 'Korrektur'-method. For non-zero m, the

application of the method is subject to the condition CL
m

m
21

2
!
 ,  which puts a restriction on the product (CL) of two

parameters C and L.
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iii) 'Korrektur'-method and convergence of acceleration method can only be applied simultaneously if parameter C is optimized
for values of N and L chosen according to i) and ii) above.

The hundreds of papers under scanner claim the use of the procedure of Honig and Hirdes (1984) in solving the inverse Laplace
transform numerically. Such a solution has been used mainly in the numerical examples solved to calculate and exhibit the
response of elastic materials to various kinds of sources. But not a single such study could afford a little space to mention about the

values chosen or calculated for any of the C, m, L, N or 0 . This cannot be a coincidence or some kind of a miracle. The bare fact

is that, in all these studies, the authors have not bothered to ensure any of the requirements mentioned above. So this is some kind
of insensitivity towards the sanctity of mathematical techniques.

5. Concluding Remarks

   From Sharma (2010a), it is clear that Romberg integration cannot evaluate the inverse Fourier transforms appearing in paper-A
unless

i) locations of all the singularities are known;
ii) all these singularities are integrable;
iii) branch points are identified to define the branch line integrals with (single-valued) uniform functions as integrands.

   Another perspective may put forward a question that what is wrong in employing the numerical (Romberg) integration to
integrals ignoring the singularities and branch points? Such a question can be answered with the application of this bye-pass
technique (Kumar et al., 2016a) in calculating the integrals appearing in the solutions of classical Lamb problems (Ewing et al.,
1957). These results should be verified with the corresponding results calculated in Ewing et al. (1957) using the procedures of
complex analysis.   Unfortunately, not a single reference could be found in the relevant literature, where this black-box technique
has been verified or even tested on a known pair of Fourier transforms. Moreover, if the improper integrals as in paper-A can be
evaluated using Romberg integration and bye-passing the  branch points and any number of singularities then it may not be
possible to find an example of a non-integrable function.
   For numerical integration of inverse Laplace transform, the procedure and computer programs of Honig and Hirdes (1984) can
be used only with many restrictions. It starts with choosing the value of C in equation (2).  This requires to locate all the
singularities of )(sF so that imaginary axis in complex plane could be shifted to carve a region where )(sF  becomes analytic.

This requires solving a complex transcendental equation for all its complex solutions. There cannot be a general method for
solving such an equation and numerical methods are not beyond doubt (Sharma, 2010b).  While studying the dynamic response of
an elastic layer or plate, the resulting transcendental equation involve periodic functions (Sharma et al., 2004). Then, any shifting
of imaginary axis will not be sufficient to carve a region free from singularities. That means, no finite value of C is possible.  Then,
what is being evaluated in the computer programs and exhibited in the plots in all the papers using Honig and Hirdes (1984) as a
gate-pass?  This is not simply a question but a big mystery. The present author wishes if this mystery could ever open.
   It is obvious that readers may expect to see the losses coming from the incorrect procedure questioned in the present study. In
this regard, authors are working on to solve the problem studied in Sharma et al. (2000) again, but keeping in mind all the
limitations discussed above as well as in Sharma (2010a, b). This involves finding the singularities for source problem in
thermoelastic medium with stress-free isothermal or insulated boundary. These singularities are obtained as the zeroes of
thermoelastic Rayleigh function, which is analogous to solve the frequency equation for thermoelastic Rayleigh waves (Sharma,
2014).  So, the focus of future publications will be to demonstrate the effects of ignored limitations on the dynamic response of
elastic materials.
   The presented discussion aims to draw the attention of the researchers working on the response of elastic media to the
disturbance generated by various kinds of sources. These people are urged to ensure the requirements and follow the actual
procedures specified for the numerical implementation of mathematical techniques. The relevant research journals are expected to
be cautious while dealing with the papers involving this technique and the research groups frequently using this technique. The
ultimate concern is the insensitivity in using the mathematical techniques to such an extent that it starts emanating a scent of an
academic fraud.
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