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Abstract

This paper presents numerical solution of secorterosingularly perturbed self-adjoint boundary eajproblems using
weighted residual method of Galerkin type. Firgir the given problem, the residue was computed gusippropriate
approximated basis function which satisfies allboendary conditions. Then, using the chosen weigttinction, integrating
the weighted residue over the domain and the giff@rential equation is transformed to linear sys$ of algebraic equations.
Further, these algebraic equations were solvedyuGalerkin method. To validate the applicabilitytioé proposed method, two
model examples have been considered and solvatifferent values of perturbation parameter and wifferent order of basis
function. Additionally, convergence of error bounkias been established for the method. As it cambserved from the
numerical results, the present method approximdtesxact solution very well. Moreover, the presemthod gives better
accuracy when the order of basis function is ineedaand it also improves the result of the metlexisting in the literature.
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1. Introduction

Any differential equation obtained from a giveifferential equation and having the property titgtsolution is an integrating

factor of the other is known as adjoint differehtémuation. If the coefficientsBo(X), @ (X)and @(X)in the differential
equation of the form;

a0 (X)Y'(X) +au(X)y () +az(x)y(x) =0
are continuous an@o(x) # Owith the given domain, the obtained differentialation can be transformed into the equivalent
az(X)

ao(X)
Singularly perturbed differential equation is aeliéntial equation whose highest order derivatsvmultiplied by a small positive
parameter. A self-adjoint differential equation, osk highest order derivative is multiplied by a Bmpositive

self-adjoint equation c(fa(X) y’(x))' +b(x) y(x) =0 for the functionsa(x) = ef%ggdx and b(x) = a(x) .
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parametere (0 < & << 1),which has the form —£(a(x)y’(x))' +b(X)y(X) = g(X)is called second order self-adjoint

singular perturbation problem. A singular pertuidbaiproblem is a problem containing a small positparameter that cannot be
approximated by setting the parameter value to.zero

In singularly perturbed differential problesmall positive parameter affecting the highest pdigivative(s) of the differential
equation which gives rise to large gradients in flodution over narrow regions of the domain. Thespnce of a small
perturbation parameter in the differential equatigpically leads to boundary layers in the solutiahich makes the convergence
analysis very difficult (Yuzbas and Sahin, 20133%. Miller et al., (1996), Boundary layer is a region of the indemstdsariable
over which the dependent variable changes rapidly.

Singularly perturbed second order two-pointittary value problem occur very frequently in flumbtion, chemical reactor
theory, elasticity, diffusion in polymer, reactiodiffusion equation, control of chaotic system aadon (Kadalbajoo and Kumar,
2008). If the order of singularly perturbed diffetial equations of the reduced problem is redugedr® then the problem called
as convection-diffusion type and if the order idueed by two it is called reaction-diffusion typéence, Second order singularly
perturbed self-adjoint ordinary differential eqoat are types of reaction-diffusion problem. Duettte importance of these
problems in real life situations, the need to depehumerical methods for approximating its solutienadvantageous. But,
numerically solving the singularly perturbed diffatial equations depends upon the small positivampaters. The solution varies
rapidly in some parts of the domain and varies klaw some other parts of the domain because ofettistence of boundary
layer. The solution of second order self-adjoingslarly perturbed two point boundary value prablexhibits one or two layers.
For solving this problem having two layers, theséirig numerical methods give good results whemtash size h is smaller than

the perturbation paramete (i.e.,h < £). But it is expensive and time consuming proc&sl\fet al., 2017). If we také1> &,
the existing numerical methods produce oscillasmution and pollute the solution in the entireembl, because of boundary
layer behavior. As a result, developing numericathods for solving self-adjoint singular perturbati problems yield
consideration of the researches.

Recently, different scholars like Gedual., (2016), Geluet al., (2017) and Edosa and File (2017) have developleigtser
(fourth, sixth, eighth and tenth) order compacitdéiifference method to solve singularly perturlbedction diffusion problems.
These authors’ developed higher order compactefidifference methods, by considering the condifiamthe coefficients of
diffusion and reaction terms are constant only. sTheven if their methods produce more accurate noaiesolution, it is
restricted to treat the problems with constant faciehts of diffusion and reaction term. Similarlpli et al., (2018) have
presented numerical study of self-adjoint singylaerturbed two-point boundary value problems usioipcation method with
error estimation and other scholars, Astadl., (2016) and Zeslasset al., (2017) have presented fourth and sixth order stabl
central difference method for solving self-adjogihgularly perturbed two -point boundary value peolb As far as the
researchers knowledge is concerned, numericalisnlaf second order self adjoint singularly peradtboundary value problems
via weight residual method of Galerkin type is tfiteeing considered and it has the following advaesa It works for both
constant and variable coefficient, it is more aatai than the earlier method we listed in our ditere and it is conceptually
simple, easy to use and readily adaptable for ceenpanplementation for solving singularly perturksaf-adjoint boundary value
problems.

Therefore, the purpose of this paper is tonfdate weighted residual method of Galerkin typeritreasing the order of the
basis function which gives more accurate resultsstdving second order self-adjoint singularly peoed two point boundary
value problems.

2. Mathematical For mulation

Consider the following self-adjoint singularlgnurbed equation of the form:

o8 {00 Y|4 r0y9 = 209 for 0<x<1 o
dx dx
subject to the boundary conditiofier

y(@)=a, y@)=45 2

where€ (0< & <<1),s a small positive perturbation paramefefx),r(x) and Zx) are assumed to be sufficiently smooth

known functions on(0,1), & andf3 are known parameters.
For the derivation of the scheme, to make genetald consider our entire domaid = (a,b) in the form

N
Yo = 2G40+ g(X)
E 3)

=g(X)+cgrep,t. .. to g
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where C, are constant unknown parameter to be determinedqq(ld) and (%(X) are basis functions chosen such that the

specified boundary conditions of the problem atistad by the N parameter approximate solutiyyy. The particular form in

N

Eq.(3) has two parts, one containing the unkno@schoj which is called the homogeneous part and the dthéne non-
=

homogeneous pa(%) satisfying the specified boundary conditions @& pinoblem.

To apply the method, we choose the approximatiogsisbfunction which satisfies the Eqg. (2). For a ichoof algebraic
polynomials:

We assumgg(X) =C+dX and the two conditions df to determine the constatandd we obtain
@p@=a=c=a-ad,

ab)=p=d= ﬁ;’

@(x) =c+dx:a+('[;:

j(x— a),
a
Therefore,

%(X)=a+(ﬁ:2j(x—a), (4)

Similarly, choosego} which satisfies the boundary conditions in homegers form. Since there are two homogeneous condijtio

we must assume at least a three parameter polyhtin@htain a nonzero function.
Let us assumeg (X) = m+ nx +ex?, using the conditions otfq(X),we obtain:

@(a)=0=>m=-an-ea’
@(b)=0=n=-e(b+a)
@ (x)=m+nx+ex?* = -€(x-a)[(b+a) —(x+a)]
The constang can be set equal to unity because it will be alebib to the parameter notatiGn
@ (x)=-(x-a)(b+a) —(x+a)] (5)
For @(X) we can assume one of the forms:
@(X) =m+nx+torg@ (x) = m+ex’ +tx°

with t Z0; @(X) does not contain all-order terms in either casetlimiapproximate solution is complete becaugg ¢}
contains all terms up to degree three.
Using conditions likeg for ¢ (X) = m+ex® +tx’we obtain:

@(a)=0= m=-ea’-ta’

@) =0= e——t(gs_a j

-a’
a’la(b*-a%) -(b*-ad] +xf(b°-a b*-a
Now, 3 () = me+ ext + ¢ = —t| 21407 ~a) ~(b*=a) +x{(b*-a] ~xb*-aj]
b* - a?
The constant can be set equal to unity because it will be atebib to the parameter notatiyn

Therefore,

T2 ©)

@(X)={a2[a(b2—a2>—(b3—a3>] +xf(b°-aj —be—aﬂ}
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In the same way, choos@(x) which satisfies all the boundary conditions in lbg@neous form.
For @(X) we can assume one of the forms:
@(x) =m+nx+gx*org(x) =m+ex’ + gx*org(x) = m+tx° + gx*.
Using the conditions ogg(X) and ¢ (X)for g(x) = m+tx® + gx*, we obtain;
@(@) =0= m=-ta’ - ga*

@,(b)=o:»t=-g(b4‘a4j

b®-a’
4 _ L4 4_ 4
Now, @) :m+tX3+9X4233[9(%D—ga4—9x3{23_23]+gx4
3 b3_ _ b4_ + b4_ _ b3_
%(x):_g|:a[a( 33) ( a;)g_:;[( aj )( aﬂ}

The constangj can be set equal to unity because it will be alembib to the parameter notatiGyir herefore, for the third choice

ala(b’®-a%) -(b*-a’] +xf(b*-a]} —>(b3—a?]}

b — o ()

In generally, the chosefd, @ and ¢ for, (j =1,2...N') g is given as follows
@ (x)=-[(x-a)[(b+a) -(x+a)]]
5% ={zf[a(rf—zﬁ—(b3—a’°>] +xf(b*-aj —be—aﬂ}

@(X) we obtain; @(x) = _[

b2_a2
@A) =- a’la(b’-a’) -(b*-a’) +xf(b*-af-xb*-a)]
b3_a3
_ aN[a(bN _aN) _(bN+1_aN+l)] +XN[( bN+1_aN+§ —)(bN _aN)]
- |

for N is a positive integer.
We choose a set of basis functi{)gqs j =1,2,...,N },and make an approximation of the form of Eq. (3)

Y = 2000+ B(9

The basis functions can be polynomials functiomgophometric functions or other functions. But r@ase the basis functions
are polynomial because polynomial functions aretinaous, easily differentiable, integrable andaili¢é for programming.
Weighted integral method (WIM) is a class of metligéd to obtain the approximate solution to thiedéhtial equations in
matrix form as

Ay=12z inQ. (8)
where A is an operator (linear or nonlinear), often aetihtial operator, acting on the dependent varighland Z is a known
function of the independent variables.

To apply the WRM, we can approximatéx) of the differential equation in Eq. (8) in¥g, (x) . When y, (X) is substituted into

Eqg. (8), it is unlikely that the equation is saasf

= Ay (X)-z= A(icm(xﬂ%(x)}—zio
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= R= Ay, (X)-z ©)

whereR is residual of the approximation.
Multiply Eq. (9) by an arbitrary weighted functioW(X) and integrating over the domdihto force this integral to vanish over

the given domain to obtain the unknown parameters:

j W(X)R(X)dQ =0 (10)

In the weighted residual method, the unknown paterse, 'Sare determined by minimize the residldlin some special cases.

Different methods of minimizing the residual yieldferent approximate solutions.
When the weight functions are chosen to be theslfasctions themselves, then it is known as Gatemkethod. We set

p(xX)=w(x), i=12,..N (11)

The unknown coefficients in the approximate solutiwe determined by setting the integral oGkrof the weighted residual to
zero.

For one-dimensional problem in the inter{@, b), this procedure will result:

b b
[#(IROYdx =[ W ()R()dx =0, (i=1,2,..N }
The present method considers result in a systesqudtions of the form:
N
[(@lAg +3 c;Ag - Z)dx =0
Q =1

cjqugdx:jq[z—A%]dQ

Dc=B (12)
WhereD Iqqua dx, B Iqq[z A(/g)]dx D is matrices andCis unknown vectors andB is a column vector.

3. Conver gence of the method

Consider the following self-adjoint singularlgmurbed equation of the form:

e (p(x)dy( )j+r(x)y(x)=z(x) for a<x<b

subject to the boundary conditions:
y(@=a, yb)=p
The weak form of the above problem is:

| w(—g%(p(x)%))dw [wr () y(dx ~ [ wz(x)dx 13)

By using integration by part

Fuf -6 (p00 Y2 | g= fep Y W[ o ®
{w[ edx(p(x) X )jdx-!spdx dxdx (gpwdxj

Now substituting Eq. (14) in to Eq. (13) we

getjw( g—(p( )dy(x) jdx+jvw(x)y(x)dx—jvvz(x)dx =I(£p%%\/+wr(x)y(x)]dx

b
(14)

a

b

- (.
_[Wz(x)dx (5 pwW- dxj a
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b
Since the give boundary condition Dirichlet bourydesndition assume thay(a) = y(b) =0. Therefor{é‘ pw%j =0
iw(—a%(p(x)%)jdx+z[vw(x)y(x)dx—ivvz(x)dx
= I(E p%?j—vxuwr (x)y(x)j dx—jwz(x)dx
jw( £—(p(x)dy( X jdx+ jwr(x)y(x)dx jwz(x)dx B(y,w)—I (w)
The quadratic functional of the Eq. (15) is:
1(9) =5 By )1 (y), since y =w then
I(y) = Iz(spgxgx+ynqu—jwmx
b b
:j%(ep(gzj-+y%]dx—jwwx
b 2
1(y)=| %{5 p(é—‘ij +y*r —2y2de
Similarly,
1(yy) = f [ (OLLX) +yN2r—2yNszx
Now  I(yy) —I(y):£ ( (dg;j +yN2r—2yNszx—u%[£p(;—dij +y2r—2szde
b 2
j%[ (dyNj +yN2r—2yNz—£p(%j —y2r+2yz]dx
2 b
L(yy) =1 (y) = j [w(d;’“j er{%) +yN2r—y2rde+IZ(y—yN)dX
sincez(X) = 5—(p(x) o )j+r(x)y(x)
dx dx
_[Z(y—yN)dX:I(_‘E%(p%)-Fryj(y_yN)dX
Hepvd -9
j( Py g Y Y)Yy yN)jdx (fp(y yN)dX)a

Substitute Eq. (19) in to Eq. (18) we get:

(15)

(16)

(17)

(18)

(19)
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i YR - Y PR
Izy yNde £pd £de +y,T-yT |dX

b
dy d
+j Y Yn Yry ¥- Yn }jx—(ep Y_YN ‘Sjlj
2
;—'Zj +—;yN2r ;y fp(gyj ~ep Y Dy rnyde
dy
dx

b

dx
( dx dx

Y
dYJ 1
-—¢
x ) 2°P
dy, 1 21 2, 1 o dydyN
+=ep| =2 | += +— IN d
e 3ol2] o2

1
2
1
2 P ok
dy dy,, , (dy)z ’ )
~2epY - 2yy, +
( £ e o | (- 2 ) o
dy2 1 2
- +=r(yy-y) ox=0
o 22 o

=1(yy)-1(y)20,

Y
dx

i
o
(2]

oa:
|
|
:
j

:
E
:

So,
I(yy) 2 1(y) 20]

Therefore, convergence of energy of the apprate solution to the exact solution is from thewe and the exact solution

minimizes the energy. The data of the problem fcsently continues, differentiable and integrabléhis guarantees convergence
of the method.

4. lllustrative Examples and Results

To demonstrate the applicability of the methads, model self-adjoint singularly perturbed prabfehave been considered.

These examples have been chosen because theydeveviolely discussed in the literature and thesrcesolutions were
available for comparison.

Example 1: Consider the singularly perturbed problem:
—£(I+ X))y + U+ x-x)y=1(x), 0<x<1 withy (Ory (&
where z K E ¥ x (£ X yemg(zz— 3+ 1y @ @-x @Je 9 1

e_(f] £ (2- B @ @+xde+ 1)

The exact solution is given by:

y(x, &) =1+ (x— 1)eu§j - xe_(%x]

The numerical solutions in terms of maximum absokrrors are given in Tables 1-2 and Figures 1— 2.

Table 1: Maximum absolute errors of Example 1 for diffarerder of base function

£ Order 3 Order 5 Order 7 Order 9
2 8.1767x10 1.0615x10 2.8640x10 8.6945x10
23 7.0081x10d 7.8164x16 5.2035x16 5.8425x1H
2° 7.5765x10 3.1996x10d 8.1669x10 5.4286x10
27 4.8755x10 5.6437x16 4.8615x10 3.0480x10
2° 1.8217x10 4.9736x1G 8.9656x10° 1.6241x1d
ot 3.9651x10 1.8364x10 4.8905x10 2.1081x10
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Table 2. Maximum absolute errors for Example 1 =16 (using ninth order base function)

& Present method Asratet al.,2016
2* 5.9456x10 5.8500x10
2° 5.4286x10 8.5700x10
2 2.5381x10 9.5800x10
27 3.0480x10 1.2900x10
28 2.6089x10¢ 1.6500x10
212 4.3854x10 3.7600x10

1.4

—+— Numerical solution
Exact solution

1.2+

Numerical Solution

I I I I I I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: The behavior of exact and numerical solution featple 1 a€ =102 and N = 10C

1.4

—#— Order 3
Exact

Order 5
Order 7
—+— Order 9

Numerical Solution

0.4 05 06

Figure 2: Numerical solution of Example 1of different ordéhase function wheé = 2

ahd=32.
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epselon=1/8
—+— epselon=1/32
—S— epselon=1/64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Point wise absolute errors for Example INit= 32and different perturbation parameters.

Example 2: Consider the singularly perturbed problem:

—&y'+(1-x-x")y = (x),

wherez & )= ¥ x-x2+ (/e =x2 +x° 9?_[

The exact solution is given by:

1-x

JEJ_,. (Q/E—X (}Xae[ﬁj

y(x, &) =1+ (x— 1)e[

=X

Je

=X

) el

O<x<1l withy (0yy (I¥

The numerical solutions in terms of maximum absokrrors are given in Tables 3-5 and figures 3— 4.

Table 3: Maximum absolute errors of Example 2 for differerder of base function

£ Order 3 Order 5 Order 7 Order 9
> 1.7321x10 9.7792x10 3.4644x10 3.1349x10
24 2.4999x10 5.4650x16 7.1434x10 5.9456x1¢
2° 1.9313x10G 1.4944x10 7.3215x10 2.5381x10
28 1.0077x10 1.7969x1G 2.4117x10 2.6089x10
210 2.8574x10 1.0700x10 2.3994x10 7.1512x10
212 4.9550x10 2.6125x10 8.6681x1CF 4.3854x10¢

Table 4: Maximum absolute errors for Example 2 fbf =16 (using ninth order base function)

£ Present method Asratet al., 2016

1/8 5.9456x10 1.424x10

1/16 5.9456x10 4.148x1¢

1/32 5.4286x10 9.622x1¢

1/64 2.5381x10 3.074x10"
1/128 3.0480x16 1.301x10
1/256 2.6089x16 5.910x10"
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Table 5. Maximum absolute errors for Example 2 r= 32 (using ninth order base function)
& Present method Ali et al., 2018

1 8.3600x15  3.9200x1C
1/10 7.9975x10  8.8600x10
1/100 1.2940x1®  1.7700x10

1/1000 6.8420x106  4.0500x1d

1.4

—#—— Numerical solution
Exact solution

1.2+

Numerical Solution

Figure 4: The behavior of exact and numerical solution feample 2 a€ =103 and N = 10C

1.4

Numerical solution

Figure 5: Numerical solution of Example 1of different ordéibase function whe& = 2

ahd=32.
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x10°

epselon=1/8
—+— epselon=1/32
2.5 | —S— epselon=1/64

1.5-

Error

0.5-

N cp
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 6: Point wise absolute errors for Example INit= 32and different perturbation parameters.
5. Discussion

This study introduces weighted residual methbdsalerkin type for solving second order self-adfosingularly perturbed
boundary value problems. To demonstrate the competef the method, we realized two model examplesaking different
values for the perturbation parameter,and mesh sizeh). The numerical results obtained by the presenhatehave been
compared with the numerical results presented bsemecent authors like, Asrat al., (2016) and Aliet al., (2018); and it is
observed that the present method gives more aecrgatilts than some findings reported in literaufiene numerical results are
tabulated in terms of maximum absolute errors (Bekles 1-5) and compared with the results of thevipusly developed
numerical methods existing in the literature (Tahld, 5). Further, behavior of the numerical dolutwith exact solution (Figure
1 and 4), behavior of the numerical solution witffedent order of basis function (Figure 2 and pdint-wise absolute errors
(Figure 3 and 6) are plotted graphically. In coaaisanner, the present methods are conceptuallyiesimgsy to use and readily
adaptable for computer implementation for solvimgslarly perturbed self-adjoint boundary valuelgems.

5. Conclusion

This paper presents numerical solution of secorder singularly perturbed self-adjoint boundaiue problems using
weighted residual method of Galerkin type. The @vgence analysis is investigated. As the formulatdtme is validated by
numerical model examples and results, one carzeetdllat the maximum absolute error decreases ds simsh decreases, which
in turn shows the convergence of the computed isoluFurthermore, the result of the present meikambmpared with previous
findings and shows that, it is more accurate tlmnesexisting numerical methods reported in theditee and approximates the
exact solution very well. Generally, the presenthuod is stable, and gives more accurate numeraiatisn for solving second
order self-adjoint singularly perturbed boundariuegproblems.
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