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Abstract 
 
   The objective of this research is to propose a methodology for multi-objective optimization of a mixed-model assembly line 
balancing problem with the stochastic environment. To do this a mathematical model representing the problems at hand is 
developed with objectives of minimizing cycle time and minimization of the number of workstations (which is of Type-E ALB 
problem). And two optimization meta-heuristics are considered to solve it, namely, Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) and Multi-Objective Genetic Algorithm (MOGA). To test the performance of the algorithms three different size 
standard problems in Assemble-to-order types of industry are taken and five demand arrival scenarios are considered to 
incorporate the stochastic nature of the demand arrival for each model in all problems. Both the algorithms are coded and run 
using MATLAB® 2013a and are compared based on different performance measures. The results indicated that MOGA 
outperformed NSGA-II in most of the test problems. Nevertheless, both algorithms have resulted in significant improvements in 
the performance measures in Assemble-to-order types of industry dataset compared to the existing line configuration.   
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1. Introduction 
 
   Nowadays, due to the level of globalization, the ever-increasing competition, dynamic and uncertain global market with greater 
need for flexibility and responsiveness, the ability of a company to compete effectively is very crucial, which in return is 
influenced, to a large extent, by its capacity to produce an increased number of customer-based products in a timely manner (Samy 
and El-Maraghy, 2010). This requires the manufacturing companies to consider decisive strategic activity to design and optimize 
their own production systems as well as possible with a goal to control (innovate, improve, etc.) almost every process which can be 
managed to obtain an efficient production system ((Amouzgar, 2012; Albert, 2012; Abeya and Mulugeta, 2014; Pavel and Ulrych, 
2012; Zacharia and Nearchou, 2012; Delice et al., 2017). In this context, the design of real-world manufacturing systems becomes 
more and more important. Particularly, the design of an efficient assembly line has a considerable industrial importance system 
(Baudin, 2002; Zacharia and Nearchou, 2012) as it can make the overall operations as effective as possible.  
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   Most of the work related to the assembly lines (ALs) concentrate on the assembly line balancing (ALB) which deals with the 
allocation of the tasks among stations so that the precedence relations among them are not violated and a given objective function 
is optimized (Wenqiang et al., 2014; Li-Man, 2014). Optimization of assembly lines encompasses one or more predetermined 
objective(s). However, in real environment of assembly lines, two or more optimization objectives are significantly desired to be 
achieved simultaneously. A large part of real-world optimization problems are of multi-objective in nature (Naveen and 
Dalgobind, 2013). Most of the time, these objectives can be conflicting and compromised with each other (Saif et al., 2014, 
Manavizadeh et al., 2012, Naveen and Dalgobind, 2013, Pavel and Ulrych, 2012, Lapierre et al., 2006).  
   Previous research shows there is a tremendous increase in the researches in assembly line optimization in the past few years, 
especially in the years 2008 and onwards. Nonetheless, relative to the importance of including the aforementioned real-world 
assembly line problem occurrences, only a few researchers have considered incorporating them in their problem set-up (Zein-
Eldin, 2014). Even among those studies considering multi-objective nature and randomness of task completion time of real-world 
mixed-model assembly line problems none of them has applied them in large scale problem instances.  This paper deals with 
multi-objective optimization of mixed model assembly line balancing in an assemble-to-order industry with stochastic 
environment, in which assemble-to-order types of jobs with large scale assembly line balancing problem is considered. 
 
2. Review of Literature  
 
   Assembly line balancing with a single objective with consideration of a line with a single model product in which the task times 
are deterministic was studied by several researchers (Neda et al., 2012; Chica et al., 2010). They introduced a technique of 
balancing assembly lines of Type-I problem with Tabu Search (TS) algorithm in which they have applied the method on a real 
industrial dataset after comparing it with the ones in the literature. Similar work in the same category was done in which Multi-
Started Neighborhood Search Heuristic (MSNSH) method was applied in a real industrial dataset of a motorcycle manufacturer 
(Uddin and Lastra, 2011), which then was tested against the initial solution of the case company using simulation-based 
performance analysis using ARENA. Several other works of literature also dealt with such problems with different solution 
approaches like genetic algorithm  (Aravelli, 2014), tabu search (Beyer and Deb, 2001), hybrid of genetic algorithm and tabu 
search (Kaveh and Laknejadi, 2011), ant colony algorithm (Bukchin and Rubinovitz, 2003), hybrid ant colony algorithm (Randy  
and  Sue, 2004; Liu and Chen, 2002).  
   Liu et al. (2008) introduced a multi-objective ant colony optimization algorithm for the 1/3 Variant of the Time and Space 
Assembly Line Balancing Problem. Similar work in the same category was done by Bautista and Pereira (2002), in which they 
have worked on a solution procedure for type E simple assembly line balancing problem in which optimization objectives are 
minimization of the cycle time and the number of station. Blum et al. (2008) also presented a solution approach for assembly line 
balancing with Type-E problem in which they used a modified genetic algorithm (GA) for fuzzy assembly line balancing. Kara et 
al. (2014) presented a paper on assembly line balancing under uncertainty in which interval for operation times was assumed to be 
probabilistic and have proposed robust optimization models and exact solution methods to solve such problems. A similar effort in 
this category was made with other researchers to solve such problems using multiple single-pass heuristic algorithm (Sheu and 
Chen, 2008), bidirectional heuristic (Koltai et al., 2014). Chiang et al. (2012) introduced a Pareto based artificial bee colony 
algorithm for multi-objective single model assembly line balancing with uncertain task times. Several techniques have also been 
used by other researchers to come up with solutions for problems of such category, for instance, genetic algorithm (Wu et al, 2008) 
, and simulated annealing (Bukchin and Rubinovitz, 2003) are some of which hybridized the well-known methods to mitigate the 
shortcomings of the traditional versions of the methods resulting with such methods as hybrid simulated annealing algorithm 
Burcin (Liu and Chen, 2002), and hybrid multi-objective evolutionary algorithm (Nourmohammadi and Zandieh, 2011). 
   Previous researchers have also formulated a mathematical model and used a heuristic that minimizes the number of stations for 
predetermined cycle time. Similarly, other researchers also made effort to solve ALB problems in this category using different 
solution approaches as ant colony algorithm (Simaria and Vilarinho, 2004), genetic algorithm (Ponnambalam et al, 2000, Akpinar 
and Bayhan, 2014; Vilarinho and Simaria, 2006), simulated annealing (Fattahi et al., 2011), hybrid genetic algorithm (Chica et al., 
2010; Neda et al, 2012). Mixed-model assembly line balancing problems with single optimization objective, stochastic task time 
consideration, and straight type line configuration was presented by Sivasankaran and Shahabudeen (2013). In this paper, two 
kinds of robust criteria are provided; min-max related and α-worst scenario-based. They have designed a genetic algorithm-based 
robust optimization framework for each scenario. Similarly, (Bock, 2008) presented a paper on the same category in which 
overlapped and stopped operation was considered both under certainty (deterministic) and uncertainty (stochastic) environment in 
which they have developed mathematical model for solving the problem. 
   Assembly line balancing with a multi-objective and consideration of a line with mixed-model in which the task times are 
deterministic was studied by various researchers. Among the many others, Carlo-Colon and Nambiar (2008) presented a multi-
objective optimization method for the mixed-model-line assembly line design problem. It was adopted based on the strength of 
Pareto Evolutionary Algorithm II (SPEA2) for the Mixed-Model Assembly Line balancing and equipment selection problem. 
Similar efforts were made with other researchers in this same area where solution methods such as ant colony optimization 
algorithm (Van Hop, 2004), genetic algorithm (Akpınar and Bayhan, 2011, Kucukkoc and Zhang, 2014; Su et al., 2014, Kara and 
Tekin, 2009; Wenqiang and Mitsuo, 2011).  
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   There are also other works which considered the hybrid solution methods such as ant colony optimization with genetic algorithm 
(Kara, 2008), hybrid genetic algorithm (Dong et al., 2014), and those literatures in which two-sided version of mixed-model multi-
objective optimization of ALB with deterministic task time and straight-line configuration was considered (Xu and Xiao, 2009; 
Vilarinho and Simaria, 2002; Vilarinho and Simaria, 2006; Uğur and Bilal, 2009).  However, very few researchers considered the 
stochastic version of such ALB problems. Mixed-model assembly line balancing problems with multiple optimization objectives 
with consideration of stochastic task time and straight type line configuration was presented in Saif et al. (2014), Neda et al. 
(2012) and Yabo et al. (2014). Neda et al. (2012) presented a mixed-model assembly line balancing in the make-to-order and 
stochastic environment. The number of stations and cycle time being the two major conflicting objectives, the study introduced 
two additional balancing measures (horizontal and vertical balancing) which are minimized simultaneously. They have used multi-
objective evolutionary algorithms and using the problem in the Make-to-Order environment as a testbed, they have compared five 
Multi-Objective Evolutionary Algorithms (MOEAs). Other solution methods for problems of this category such as ant techniques 
(Yabo et al., 2014), modified ant colony optimization were also introduced. 
   Tables 1a and 1b elaborate the different categories of ALB problems presented by different researchers along with the 
experimental datasets considered. Moreover, one can see that very few of the publications incorporated real-world datasets and the 
problem category of MM_MO_St_S. This paper tries to present Multi-Objective Optimization of Mixed Model Assembly Line 
Balancing in an Assemble-to-Order Industry with Stochastic Environment which makes its category MM_MO_St_S, with both 
standard benchmark problems as well as real-world ALB problem datasets are utilized. 
 
 



Legesse et al. / International Journal of Engineering, Science and Technology, Vol. 12, No. 2, 2020, pp. 90-107 

 

93 

 

 
Table 1a. Categories of the single model ALB literatures and the respective problem types & the experimental dataset used 

Problem Type  
Experimental 

Dataset 
Problem Type  

Experime
ntal 

Dataset 

 

 
Category 

 
Literature 

I II
 E
 

F
 

3
 

4
 

5
 

R
W

 
H

D
 

B
M

 
R

G
 

R
B

 

 
Category 

 
Literature 

I II
 E
 

F
 

3
 

4
 

5 R
W

 
H

D
 

B
M

 
R

G
 

R
B

 

(Lapierre et al, 2006, Sheu 
and Chen, 2008,  and 
Tamás et al, 2011) 

x       x     
(Chiang et al, 2012, Wu et 
al, 2008, Ponnambalam et 

al, 2000, Chica et al, 2010) 
x         x   

    x    x     (Zein-Eldin, 2014)    x      x   
(Blum, 2008, Liu et al, 

2008) 
x         x   

(Bukchin and Rubinovitz, 
2003) 

x        x    

(Kara et al., 2014)    x     x    

SM_MO_D_S 
 
 
 (Nourmohammadi and 

Zandieh, 2011; Liu and 
Chen, 2002, Zacharia and 

Nearchou, 2012 

 x        x   

 
 
 

SM_SO_D_S 
 
 
 
 
 

(Bautista and Pereira, 
2002) 

x           x SM_MO_D_U 
(Rea et al., 2008, Armin et 

al, 2013) 
x         x   

 
SM_SO_D_

U 

(Sachin and Prashant, 
2014) 

   x      x   
(Ullah et al, 2014 and 
Wenqiang et al., 2014) 

 x        x   

SM_SO_St_
S 

(Gamberini et al ,2009)    x        x 

SM_MO_St_S 
 

(Fattahi et al, 2011), x         x   

SM_SO_St_
U 

(Adil and Lale, 2007) x         x   SM_MO_St_U (Bagher et al., 2011) x         x   

Experimental Dataset: RW: Real World dataset, HD: Hypothetical Data, BM: Benchmark,  RG: Randomly generated, RB: Real world dataset and Benchmark 
Categorization: SM: Single Model, MM: Mixed Model, SO: Single Objective, MO: Multi-Objective, D: Deterministic Task Time, St: Stochastic Task Time, S: Straight 
Line Configuration, U: U-Type Line Configuration 
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Table 1b. Categories of the mixed model ALB literatures and the respective problem types & the experimental dataset used

Problem Type  
Experimental 

Dataset 
Problem Type  

Experimental 
Dataset  

Category 
 

Literature I II
 E
 

F
 

3
 

4
 

5
 

R
W

 
H

D
 

B
M

 
R

G
 

H
B

 

 
Category 

 
Literature I II

 E
 

F
 

3
 

4
 

5
 

R
W

 
H

D
 

B
M

 

R
G

 

R
B

 

(Simaria and 
Vilarinho, 2004) 

 x        x   

(Van Hop , 2004,  
Akpınar et al., 2013;  

Vilarinho and Simaria, 
2002,  Vilarinho and 

Simaria, 2006,) 

x         x   

(Noorul Haq et al, 
2006) 

x        x    
(Akpınar and Bayhan, 

2011) 
x        x    

             (Parisa et al.,  2018) x     x  x     

(Neda et al., 2012)  x      x     
(Kucukkoc and Zhang, 

2014) 
    x    x    

(AlGeddawy and 
ElMaraghy, 2010) 

x       x     (Su et al., 2014)   x        x  

(Akpinar and Bayhan, 
2014) 

 x       x    (Li-Man, 2014)  x        x   

(Bock, 2008)     x    x    

MM_MO_D_S 

(Kadir et al., 2016) x     x    x   

(Sivasankaran and 
Shahabudeen,, 2013) 

x        x    MM_MO_D_U 
(Parames and Suchada, 

2013) 
x         x   

MM_SO_D_
S 

(Carlo-Colon and 
Nambiar, 2008) 

 x         x  MM_MO_St_U (Ullah et al, 2014)  x        x   

(Dong et al, 2014)  x        x   

(Kara and Tekin, 
2009) 

x          x  
MM_SO_D_

U 

(Kara, 2008)     x     x   

MM_SO_St_
S 

(Xu and Xiao, 2009)     x     x   

MM_SO_St_
U 

(Uğur et al., 2011)     x     x   

 RW: Real World dataset, HD: Hypothetical Data, BM: Benchmark,  RG: Randomly 
generated, RB: Real world dataset and Benchmark 
Categorization: MM: Mixed Model, SO: Single Objective, MO: Multi-Objective, D: 
Deterministic Task Time, St: Stochastic Task Time, S: Straight Line Configuration, U: U-
Type Line Configuration 



  

3. Methodology 
 
   The required data in this study are collected from the case company and are of the secondary type, which is going to be used in 
the implementation and line performance analysis. Moreover, three different size standard problems are considered as a 
benchmark. A mathematical model for the considered ALB problem type is developed and it is coded using MATLAB® using two 
farmhouse optimization techniques; Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi-Objective Genetic 
Algorithm (MOGA). The two algorithms are run for the desired stopping criteria and are compared by using the line efficiency, 
line smoothness index, and the run time of the algorithm. 
 
Line Efficiency (E): The line efficiency is the ratio between total station time to the product of cycle time and the number of 
workstations, represented as a percentage. It shows the percentage use of the line and is expressed as: 

            
1001 ×

×

∑
==

CTk

k

i iST

E             (8)
 
 

 where, k = total number of workstations, and CT = cycle time 
 
Smoothness Index (SI): The smoothness index is an index for the relative smoothness of a given assembly line. A smoothness 
index of 0 indicates a perfect balance. A smaller SI results in a smoother line, thereby reducing the in-process inventory. 
 

( ) 







∑
=

−=
k

i iSTSTSI
1

2
max                       (9) 

where STmax = maximum station time, and STi = Station time of station i. 
 
Execution (CPU) Time: Execution time is the time it takes the algorithm to reach the stopping generation. It is considered by 
many researchers since it is directly tied to the efficiency of the algorithm selected. 
 
Experimental Dataset  

To test the performance of the algorithms three different size standard problems are adapted from www.assembly-line-
balancing.de, a site presenting standard ALB problem setup for various types, size, and configurations, with their combined 
precedence diagrams as shown in Figure 1 through 3, and 4 for the data collected from the case company. The problems range 
from small to large scale ALB instances based on the categorization used in Akpınar et al. (2013). Table 1 shows the experimental 
dataset used and the problem-specific assumptions for each ALB problem. 
Case Study (Large size): The required data for the case study problem are collected from Lifan Motors (Ethiopia) (Table 2). 
Lifan Motors (Ethiopia) is a company engaged in assembly and distribution of LIFAN vehicles in Ethiopia, owned by a subsidiary 
branch of Lifan Motors (China) called Yangfan Motors Plc. In this study production of two models of cars; L-530 and Mini Van 
are taken for the mixed-model assembly line optimization. 
 

Table 2. Experimental datasets and problem-specific assumptions 
Problem Dataset 

 

 

Mertens Lutz Kilbridge Case Study 
Number of Tasks 7 32 45 55 
Size Category Small Medium Large Large 
     
Problem specific assumptions 
Positive Zoning Restriction Between tasks Task 1 and task 2 Task 30 and task 32 Task 40 and task 41 Task 37 and task 41 
Negative Zoning Restriction Between 
tasks 

Task 2 and task 7 Task 4 and task 16 Task 4 and task 9 Task 41 and task 55 

The maximum and the minimum number 
of tasks per station respectively 

2 and 4 4 and 11 5 and 11 7 and 14 
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Figure 1.The combined precedence diagram of 
Mertens 

 

 

 
Figure 2. The Combined precedence diagram of Lutz 

 

 

Figure 3. The combined precedence diagram of Kilbridge 
 
 
 



  
 

 
 

 

 

Figure 4. The combined precedence diagram of Case Company 
  



  

4. Mathematical Model Formulation 

4.1. Assumptions 
• The precedence relationships among tasks for each model are known and the precedence diagrams for all the models can 

be combined such that the resulting diagram contains the N tasks.  
• The assignment of tasks to a specific workstation can be forced or forbidden through the definition of positive or negative 

zoning restrictions. 
• The setup time of tasks is included in their task times. 
• The same tasks of different models could have different task completion times due to different assembly procedure 

requirements as a result of model variety. 
• The time required to perform task j is stochastic, and it has a distribution with mean tj and standard deviation j. 

• Each task j is assigned to only one workstation v, processed once, and only one task is allowed to process on a single 
station at a time. Common tasks could be assigned to different stations whereas some tasks, according to some 
considerations (e.g. specific equipment requirements), should be assigned to one station. 

• The assembly line is a straight line and has a serial layout. 
• Task times are independent of the sequences. 

4.2.  Notations 
j Index of task, j  = 1,2, …, n 
l index of product, l = 1, 2, …, m 
v index of workstation, v = 1, 2, …, k 
tjlv Performance time of task j of product l, on workstation v 
xjlv if task j of model l is assigned to workstation v, xjlv = 1; otherwise, xjlv  = 0 
IPj Immediate Predecessor of task j 
ZP Tasks with Positive zoning restriction 
ZN Tasks with Negative zoning restriction 
CT Total cycle time of mixed-model 
αl expected demand ratio of model l during the planning period 

 
4.3 Mathematical Model 

∑
=

∑
=

∑
=

=
k

v

m

l

n

j jlvvxZOF
1 1 1

1min:1           (1) 

∑
=

∑
=

=














m

l

n

j jlvxjlvtZOF
1 1

max12min:2 α         (2) 

Subject to: 

∑
=

=
k

v jlvx
1

1where j = 1, …, n, and l = 1, …, m;        (3) 

∑
=

≤
k

v olvvxjlvx
1

 where l = 1, …, m, and j = 1, …, n jIPo ∈∀       (4) 

ZPjlqp
k

v
qpvx

k

v jlvx ∈∀=∑
=

−∑
=

),(,0
11

         (5) 

,),(,1 ZNjlqpqpvxjlvx ∈∀≤−  in which v = 1, …,k;       (6) 

0=jlvx  or 1,  in which j = 1, …, n, l = 1,…,m and v = 1, …, k      (7) 

The objective function (1) minimizes the total number of stations and objective function (2) minimizes the total cycle time. 
Constraint (3) assures that each task will be assigned to a single station. Constraint (4) addresses precedence relations. Constraint 
(5) is aimed at tasks with positive zoning that should be assigned to the same stations and constraint (6) targets tasks with negative 
zoning that should not be assigned to the same stations. 
 
4.4 Stochastic Environment Considerations 
 
The stochastic environment incorporates the random time of completion of tasks and random arrival of demand for each product 
model. 
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4.4.1.Stochastic Time Considerations  
The time in this problem is considered to be a random time which varies between the minimum and the maximum times in the 
standard problem and the case study dataset. However, in this study, the random values of time are generated after categorizing the 
tasks under number of time intervals to maintain the time variation among tasks of larger time and those with smaller time. Due to 
the task completion time variability of same tasks of different models assumption (section 4.1), different times are generated for 
model-1 and model-2. The random times are generated for 50 data points for each task on MATLAB® 2013a and rounded to two 
decimal places.  
4.4.2. Demand Arrival  
The stochastic nature of the demand arrival for the mixed models for which the balancing problem is carried out is considered 
through the following scenarios, in which the two models are subjected to different demand proportions from the total demand for 
the models based on the same time horizon.  

Table 2. The Product Demand Arrival Scenario 
Demand Proportion Demand 

Scenario 

Model-I Model-II 
1 0.75 0.25 
2 0.60 0.40 
3 0.50 0.50 
4 0.40 0.60 
5 0.25 0.75 

 
   To solve the developed mathematical model based on the experimental datasets, two optimization meta-heuristics are considered, 
namely, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi-Objective Genetic Algorithm (MOGA). The basic 
objective being the selection of an efficient method to solve the assembly line problems of the current type based on problem size 
variations of small, medium and large scale.  
 
5. Representation of Chromosome (Solution) 

In the genetic algorithm, an individual is an encoding of a potential solution. The encoding of solutions used in this study is of type 
‘one-to-one’, which means that each solution is represented exactly by one chromosome and the decoding of each chromosome 
results in exactly one solution for the problem. The encoding scheme is workstation oriented and it is similar to the one used by 
Simaria and Vilarinho (2004). The chromosome is a string of length N where each element represents a task and the value of each 
element represents the workstation to which the corresponding task is assigned. Fig.5 shows a chromosome and the decoded 
balancing solution. 
 

Chromosomes 1 1 2 7 3 4 9 9 4 5 10 6 12 6 11 8 9 14 11 12 13 15 15

decoding encoding

workstations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10 11

Task 1 2 3 5 6 10 7 11 13 16 4 18 8 9 14 9 12 17 21 15 22 23 20 24  

Fig.5.An example of a chromosome and the corresponding balancing solution  
 
5.1 Population Initialization 

The population is initialized by either using random generation (Tang and Liang, 2012), or by the creation of feasible population 
which satisfy the constraints if any by using different heuristic rules, or in some studies, solutions obtained from another 
optimization algorithm are used to seed the initial population (Goldberg, 1989). In this study, five heuristic rules are used to 
generate feasible initial solutions for the three standard problems and for the case study considered. All the heuristics rules are 
applied to generate sub-populations which later form a complete feasible population with random permutation and concatenation 
of the matrices of the subpopulations. The five priority rules used in generating the subpopulation are: 

i. Maximum total number of follower tasks (Arcus, 1965) 
ii.  Maximum number of immediate follower tasks (Hailemariam, 2009) 

iii.  Minimum total number of predecessor tasks (Elsayed and Thomas, 1994) 
iv. Minimum task number (Arcus, 1965) 
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v. Random task assignment (Arcus, 1965) 
The algorithms parameter setups are discussed in Table 3. 

Table 3. Parameter setup 
 NSGA-II MOGA 

Population   
       Mertens 48 48 
       Lutz 96 96 
       Kilbridge 96 96 
      Case Study 112 112 
Maximum generation 50,000 50,000 
Other Algorithm Specific 
Parameters 

Distribution index for crossover: 20 Crossover fraction: 0.8 
 

 Distribution index for mutation: 100 Mutation rate: 0.01 

 
6. Results and Discussion 

   A perfect balance of the line means the combination of the elements of the work to be done in such a manner that at each station 
the sum of the elemental times just equals the cycle time. When a perfect balance cannot be achieved, we measure the 
effectiveness of the balance by the different methods. In this research the following three performance measures are used to 
compare the algorithms used based on the experimental datasets considered in the demand arrival scenarios formed. 
 
6.1 Results of the Algorithms  

Both the NSGA-II and MOGA are coded using MATLAB® 2013a and with the basic parameters set, they were run on a PC with 
Intel® Core™ i3-2310M CPU with 2.10GHz processor speed and 4.0 GB (3.16GB usable) RAM for 50,000 generations based on 
the test problem selected and the demand arrival scenario considered.  
   Evolutionary Algorithms (EAs), under which the two algorithms used, MOGA and NSGA-II, fall do statistically converge to the 
true Pareto front (Van Veldhuizen and Lamont, 1998). Consequently, the convergence of the algorithm from the initial generation 
to the 50,000th generation is shown in Fig.6 (a) through (d) for each test problem based on equal likelihood of the product demand 
arrival scenario (i.e., Scenario-3). From this we can see how the solution advanced towards the Pareto optimal solutions, and in 
which the solutions (Chromosomes) advance to the axes of the two antagonistic objectives. The other thing we can see from these 
convergence diagrams is that all the individuals’ chromosomes at the 50,000th generation dominate the individuals at the 1st 
generation. Moreover, it is worthy to note that NSGA-II maintains the number of solution constant up to the end of the maximum 
generation due to the elite preservation technique it uses. This is done by adding all individual in the front until the population 
reaches N (number of population used). This is why some chromosomes have survived even though they are dominated by another 
chromosome. If in some cases the population exceeds N then individuals in the particular front are selected based on their 
crowding distance in the descending order until the population size is N. And hence the process repeats to generate the subsequent 
generations. 
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Figure 6. The convergence of the NSGA-Solutions after 50,000 generations: Mertense, Lutz, Kilbridge, and Case Company 
problem 
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(d) 

Figure 7. The convergence of the NSGA-II Solutions after 50,000 generations: Mertens (a), Lutz (b), Kilbridge (c), and Case 
Company problem (d) 
 
The convergence of the MOGA from the initial generation to the 50,000th generation is shown in Figure 7 (a) through (d) for each 
test problem based on equal likelihoods of the product demand arrival scenario (i.e., Scenario-3). From this one can observe that 
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the number of points on the Pareto front increases with generation resulting in relatively smoother front. And the convergence 
towards the minima is also significantly visible. 
 
6.2 Comparison of Methods 

   In this section, the comparison of the performances of lines resulted from the two solution approaches (NSGA-II vs. MOGA) and 
the solution methods with the current setup of the case company dataset are made. The two algorithms used in this study are 
compared on the basis of how efficient is the line we get through the optimization, how smooth is the resulting line i.e, smoothness 
index, and the run time needed by the algorithm to reach the desired generations (stopping criteria).  
   From the average efficiencies of the two algorithms Fig.8 (b), one can see that MOGA performs well in all the test problems 
averaged from the five demand scenarios considered. And from the average line smoothness indices of results of MOGA and 
NSGA-II as a result of reassignment of tasks to the workstations Fig.8 (b) we can be observed that MOGA outperformed NSGA-II 
in all test problems. However, one can see that in most of the test problems (Mertens, Lutz and Case company dataset) they have 
resulted in approximate values, except Kilbridge in which MOGA surpasses NSGA significantly. 
 

 
 

(a) (b) 

 
(c) 

Figure 8. Average Line efficiencies (a), average line smoothness indices (b) and the Run (execution) times (c) of the two algorithms 
 
   From the average efficiencies of the two algorithms Figure 8 (b), one can see that MOGA performs well in all the test problems 
averaged from the five demand scenarios considered. And from the average line smoothness indices of results of MOGA and 
NSGA-II as a result of reassignment of tasks to the workstations Figure 8 (b) we can be observed that MOGA outperformed 
NSGA-II in all test problems. However, one can see that in most of the test problems (Mertens, Lutz and Case company dataset) 
they have resulted in approximate values, except Kilbridge in which MOGA surpasses NSGA significantly.  
   When we see the average run times of the two algorithms from Figure 8 (c), we can see that NSGA-II performs faster on the 
small size problem (Mertens) as compared to its rival- MOGA. This agrees with (Neda et al, 2012), in which it is found to be 
performing well in small ALB problems. However, MOGA surpasses NSGA-II in all the other three test problems (Lutz, Kilbridge 
and Case company dataset), which range medium to large problem instances. 
 
6.3 Current state vs. Algorithms Results 
The comparison of the current setup of the case company with the results of the two algorithms (Fig.9), shows both NSGA-II and 
MOGA resulted in lines which outperform the existing line set up in all the product demand arrival scenarios with average 
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efficiency improvements (change) of 4.60% and 6.10%, respectively. This indicates that both the algorithms are capable of solving 
ALB problems with similar problem setups. 
 

 
(a) 

 
(b) 

Figure 9. Line efficiency (a) and Smoothness Index (b) of the NSGA-II and MOGA Result, and The current case company setup for 
all demand arrival scenarios 
 
As can be seen from Figure 9(b), both the algorithms resulted in much smoother lines compared to the current setup of the case 
company with average smoothness index reduction (improvement) of 15.85 by NSGA-II and 16.71 by MOGA Table 4 
summarizes the results of the two algorithms on the case company dataset versus the performance of the existing line 
configuration.  

Table 4. Summary of average results of MOGA and NSGA-II on the case company dataset 
Average Efficiency (%)  Average Smoothness Index  Average Run Time 

Problems NSGA-II MOGA  NSGA-II MOGA  NSGA-II MOGA 
Mertens 92.078 93.406  1.708 1.31  11 14.5 
Lutz 92.366 93.536  9.352 8.68  33.4 31.2 
Kilbridge 87.352 88.96  40.074 34.74  37.3 36.1 
Case St. 92.392 93.85  11.91 11.05  48.3 44.3 
Current State 87.754 87.754  27.76 27.76  - - 
Average 
Improvement 

4.638 6.096  -15.85 -16.71  - - 

 

7. Conclusions 
 
   This paper deals with the multi-objective optimization of mixed model assembly line balancing in an assemble-to-order industry 
with stochastic environment. A mathematical model representing the problems at hand is developed with some real-life 
considerations. The objectives considered in the model are the minimization of cycle time and minimization of the number of 
stations, which are to be optimized simultaneously. The stochastic environment incorporates the random time of completion of 
tasks and random arrival of demand for each product model. To solve these mathematical model two optimization meta-heuristics 
are considered, namely, Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi-Objective Genetic Algorithm 
(MOGA). The basic objective being the selection of an efficient method to solve the assembly line problems of the current setup 
type based on problem size variations of small, medium and large scale instances.  
   To test the performance of the algorithms three different size standard problems; Mertens (7), Lutz (32), and Kilbridge (45), and 
a case study problem (55) were considered. And five heuristic rules are used to generate feasible initial solutions for the three 
standard problems and for the case study considered. All the heuristics rules are applied to generate subpopulations which later 
form a complete feasible population with random permutation and concatenation of the matrices of the subpopulations. The two 
algorithms are compared based on the average line efficiency from the demand scenario considered, average smoothness index, 
and average run time required by the algorithm to reach the specified stopping criteria. The result has shown that NSGA-II 
performs faster on the small size problem as compared to its rival- MOGA. However, MOGA surpasses NSGA-II, in all the other 
test problems ranging from medium to large problem instances. Moreover, MOGA is found to result in efficient lines in all the 
considered test problems. Nevertheless, both algorithms have resulted in significant improvements in both performance measures 
i.e., 4.60% efficiency improvement by NSGA-II and 6.10% improvement by MOGA, and with respect to smoothness indices; 
NSGA-II resulted in 15.85 decreases (improvement) and MOGA resulted decrease in SI value by 16.71. These show that both 
algorithms could be considered as proficient candidates for solving ALB problems with the problem setups considered in this 
study. 
   In this study, the initial solutions are generated using different heuristics methods and then encoded to be used for population 
initialization. However, better solution diversity could be acquired by embedding this heuristics in the genetic algorithm in which a 
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heuristic is selected randomly at a time for each chromosome (individual) generated, which in combination with other similarly 
generated chromosomes form the initial population. This could be incorporated in the future research endeavors with similar theme 
to the current study. The other areas of interest for future research include the application of the current problem setups and solving 
techniques to assembly lines with different line configurations (for instance U-Type) and line variation i.e., lines with station 
paralleling, two-sided straight type assembly lines, etc. Furthermore, future researches could include hybridization of solutions 
techniques to solve problems of the current type for they are capable of resulting good solution quality as compared to their 
traditional versions by the utilization of the strong sides of the individual techniques by mitigating their shortcomings. 
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