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Abstract

The objective of this research is to proposeeshodology for multi-objective optimization of a xed-model assembly line
balancing problem with the stochastic environmémt.do this a mathematical model representing tleblpms at hand is
developed with objectives of minimizing cycle tiraad minimization of the number of workstations (g¥his of Type-E ALB
problem). And two optimization meta-heuristics aomsidered to solve it, namely, Non-Dominated &grtbenetic Algorithm-

II (NSGA-II) and Multi-Objective Genetic AlgorithfiMOGA). To test the performance of the algoriththeee different size
standard problems in Assemble-to-order types ofistrg are taken and five demand arrival scenaries cansidered to
incorporate the stochastic nature of the demaridahiior each model in all problems. Both the aloms are coded and run
using MATLAB® 2013a and are compared based on different perfurenaneasures. The results indicated that MOGA
outperformed NSGA-II in most of the test problefsyvertheless, both algorithms have resulted inifsgimt improvements in
the performance measures in Assemble-to-order ypiesiustry dataset compared to the existing dioefiguration.
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1. Introduction

Nowadays, due to the level of globalization, éver-increasing competition, dynamic and uncertgadal market with greater
need for flexibility and responsiveness, the apilif a company to compete effectively is very caliciwhich in return is
influenced, to a large extent, by its capacity todoice an increased number of customer-based proihua timely manner (Samy
and El-Maraghy, 2010). This requires the manufémgucompanies to consider decisive strategic agttai design and optimize
their own production systems as well as possibth wigoal to control (innovate, improve, etc.) aéinevery process which can be
managed to obtain an efficient production systedm@uzgar, 2012; Albert, 2012; Abeya and Mulugetal 4 Pavel and Ulrych,
2012; Zacharia and Nearchou, 2012; Delice et @lL,/2 In this context, the design of real-world mf@cturing systems becomes
more and more important. Particularly, the desifaroefficient assembly line has a considerablaistiial importance system
(Baudin, 2002; Zacharia and Nearchou, 2012) aaritrnake the overall operations as effective asifgess
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Most of the work related to the assembly lin&ks) concentrate on the assembly line balancingBAWwhich deals with the
allocation of the tasks among stations so thaptkeedence relations among them are not violatddaagiven objective function
is optimized (Wengiangt al., 2014; Li-Man, 2014). Optimization of assemblyelnencompasses one or more predetermined
objective(s). However, in real environment of assignines, two or more optimization objectives aignificantly desired to be
achieved simultaneously. A large part of real-wodgtimization problems are of multi-objective intme (Naveen and
Dalgobind, 2013). Most of the time, these objectivan be conflicting and compromised with each rofBaif et al., 2014,
Manavizadelet al., 2012, Naveen and Dalgobind, 2013, Pavel and U|r612, Lapierret al., 2006).

Previous research shows there is a tremendausaise in the researches in assembly line optimizat the past few years,
especially in the years 2008 and onwards. Nonetheleelative to the importance of including therafoentioned real-world
assembly line problem occurrences, only a few rebeas have considered incorporating them in thedblem set-up (Zein-
Eldin, 2014). Even among those studies considamalji-objective nature and randomness of task cetigl time of real-world
mixed-model assembly line problems none of themdmdied them in large scale problem instancesis phper deals with
multi-objective optimization of mixed model assegndine balancing in an assemble-to-order industrith wstochastic
environment, in which assemble-to-order types b§jwith large scale assembly line balancing probteconsidered.

2. Review of Literature

Assembly line balancing with a single objectwigh consideration of a line with a single modebguct in which the task times
are deterministic was studied by several reseascfidéedaet al., 2012; Chicaet al., 2010). They introduced a technique of
balancing assembly lines of Type-I problem with T&earch (TS) algorithm in which they have apptieel method on a real
industrial dataset after comparing it with the oiveshe literature. Similar work in the same catggeas done in which Multi-
Started Neighborhood Search Heuristic (MSNSH) netivas applied in a real industrial dataset of aomytcle manufacturer
(Uddin and Lastra, 2011), which then was testedinayahe initial solution of the case company ussigulation-based
performance analysis using ARENA. Several otherkaaof literature also dealt with such problems wdlifferent solution
approaches like genetic algorithm (Aravelli, 2Q1#&@bu search (Beyer and Deb, 2001), hybrid of gersdgorithm and tabu
search (Kaveh and Laknejadi, 2011), ant colonyrétyn (Bukchin and Rubinovitz, 2003), hybrid antiaoy algorithm (Randy
and Sue, 2004; Liu and Chen, 2002).

Liu et al. (2008) introduced a multi-objective ant colony aptiation algorithm for the 1/3 Variant of the Tinaad Space
Assembly Line Balancing Problem. Similar work irethame category was done by Bautista and Perdl@2)2in which they
have worked on a solution procedure for type E Bngssembly line balancing problem in which optitian objectives are
minimization of the cycle time and the number aitisin. Blumet al. (2008) also presented a solution approach fanalsly line
balancing with Type-E problem in which they usechedified genetic algorithm (GA) for fuzzy assembhe balancing. Karat
al. (2014) presented a paper on assembly line balgnaider uncertainty in which interval for operatiimes was assumed to be
probabilistic and have proposed robust optimizatimudels and exact solution methods to solve suchl@ms. A similar effort in
this category was made with other researchers lt@ such problems using multiple single-pass hé&aragorithm (Sheu and
Chen, 2008), bidirectional heuristic (Koltet al., 2014). Chianget al. (2012) introduced a Pareto based artificial be@ropl
algorithm for multi-objective single model assembhe balancing with uncertain task times. Sevégahniques have also been
used by other researchers to come up with solufmmgroblems of such category, for instance, geragorithm (Wuet al, 2008)

, and simulated annealing (Bukchin and Rubinot)3) are some of which hybridized the well-knowetheds to mitigate the
shortcomings of the traditional versions of the imes resulting with such methods as hybrid simdlatenealing algorithm
Burcin (Liu and Chen, 2002), and hybrid multi-olijee evolutionary algorithm (Nourmohammadi and Zehg2011).

Previous researchers have also formulated aemettical model and used a heuristic that minimthesnumber of stations for
predetermined cycle time. Similarly, other researshalso made effort to solve ALB problems in ttégegory using different
solution approaches as ant colony algorithm (Sianand Vilarinho, 2004), genetic algorithm (Ponnalaiveet al, 2000, Akpinar
and Bayhan, 2014; Vilarinho and Simaria, 2006),usatted annealing (Fattaki al., 2011), hybrid genetic algorithm (Chiegal.,
2010; Nedeet al, 2012).Mixed-model assembly line balancing problems witigke optimization objective, stochastic task time
consideration, and straight type line configuratiwas presented by Sivasankaran and ShahabudeeB).(20%his paper, two
kinds of robust criteria are provided; min-max tethandoa-worst scenario-based. They have designed a gealgticithm-based
robust optimization framework for each scenarianifirly, (Bock, 2008) presented a paper on the saategory in which
overlapped and stopped operation was considerddumater certainty (deterministic) and uncertairstp¢hastic) environment in
which they have developed mathematical model ftvwirsg the problem.

Assembly line balancing with a multi-objectivadaconsideration of a line with mixed-model in whithe task times are
deterministic was studied by various researchemsog the many others, Carlo-Colon and Nambiar (2@08sented a multi-
objective optimization method for the mixed-modekl assembly line design problem. It was adoptexkdban the strength of
Pareto Evolutionary Algorithm Il (SPEA2) for the &#id-Model Assembly Line balancing and equipmenéa&in problem.
Similar efforts were made with other researchershis same area where solution methods such asdmty optimization
algorithm (Van Hop, 2004), genetic algorithm (Akgirand Bayhan, 2011, Kucukkoc and Zhang, 2014t 3L, 2014, Kara and
Tekin, 2009; Wengiang and Mitsuo, 2011).
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There are also other works which consideredifieid solution methods such as ant colony optitiorawith genetic algorithm
(Kara, 2008), hybrid genetic algorithm (Doettal., 2014), and those literatures in which two-sidedsion of mixed-model multi-
objective optimization of ALB with deterministicgl time and straight-line configuration was conside(Xu and Xiao, 2009;
Vilarinho and Simaria, 2002; Vilarinho and Simai2806; Wsur and Bilal, 2009). However, very few researchmmssidered the
stochastic version of such ALB problems. Mixed-maaesembly line balancing problems with multipldimjization objectives
with consideration of stochastic task time andightatype line configuration was presented in Saifl. (2014), Nedeaet al.
(2012) and Yabeet al. (2014). Nedeet al. (2012) presented a mixed-model assembly line baignn the make-to-order and
stochastic environment. The number of stations @mie time being the two major conflicting objee$y the study introduced
two additional balancing measures (horizontal agrdical balancing) which are minimized simultandgu$hey have used multi-
objective evolutionary algorithms and using thebpem in the Make-to-Order environment as a testbesl; have compared five
Multi-Objective Evolutionary Algorithms (MOEAS). @¢ér solution methods for problems of this categargh as ant techniques
(Yaboet al., 2014), modified ant colony optimization were ailswoduced.

Tables 1a and 1b elaborate the different caiegoof ALB problems presented by different researshalong with the
experimental datasets considered. Moreover, ons@amhat very few of the publications incorporatl-world datasets and the
problem category of MM_MO_St_S. This paper trieptesent Multi-Objective Optimization of Mixed Mdd&ssembly Line
Balancing in an Assemble-to-Order Industry with chi@stic Environment which makes its category MM_MBD S, with both
standard benchmark problems as well as real-woll problem datasets are utilized.
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Table 1a. Categories of the single model ALB litieras and the respective problem types & the emprial dataset used

Experimental Experime
Problem Type P Problem Type ntal
Dataset
Dataset
Category Literature Category Literature
m m
—:mum#m%%%%m —:Luu.mvm%%%%m
(Lapierreet al, 2006, Sheu (Chianget al, 2012, Wuet
and Chen, 2008, and | x X al, 2008, Ponnambalast | x X
Tamaset al, 2011) al, 2000, Chicat al, 2010)
X X SM_MO _D_S (Zein-Eldin, 2014) X X
(Blum, 2008, Liuet al, (Bukchin and Rubinovitz,
SM_SO D S 2008) X X 2003) X X
(Nourmohammadi and
Zandieh, 2011; Liu and
(Karaetal., 2014) 4 X Chen, 2002, Zacharia and X X
Nearchou, 2012
(Bautista and Pereira, (Reaet al., 2008, Arminet
2002) X X SM_MO_D U al, 2013) X X
(Sachin and Prashant, (Ullah et al, 2014 and
SM—LSJO—D— 2014) X X SM_MO_St S|  Wengianget al., 2014) X X
SM—%O—St— (Gamberiniet al ,2009) y X (Fattahiet al, 2011), X
SM—iO—St— (Adil and Lale, 2007) X SM_MO_St U|  (Baghestal, 2011) | » X
Experimental Dataset: RW: Real World dataset, HD: Hypothetical Data, BB&nchmark, RG: Randomly generated, RB: Real waetdset and Benchmark
Categorization: SM: Single Model, MM: Mixed Model, SO: Single Obfa®, MO: Multi-Objective, D: Deterministic Task ffie, St: Stochastic Task Time, S: Straight
Line Configuration, U: U-Type Line Configuration
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Table 1b. Categories of the mixed model ALB litaras and the respective problem types & the expmeriah dataset used

Experimental Experimental

Problem Type Dataset Problem Type Dataset
Categor Literature Categor Literature 0
gory —=mumvm§%%8% gory —=mumvm§%§8‘x
(Van Hop , 2004,
(Simaria and Akpinaret al., 2013;
Vilarinho, 2004) X X Vilarinho and Simaria, | x X
' 2002, Vilarinho and
Simaria, 2006,)
(Noorul Haget al, X X (Akpinar and Bayhan, X X
2006) 2011)
MM_MO D_S (Parisat al., 2018) X X X
MM_SO D_ (Nedaet al., 2012) X X (Kucukk;gljr;d Zhang, X X
S
AlGeddawy and
élMaragh;%OlO) X X (Suet al., 2014) X X
(Akpma;gff) Bayhan, X X (Li-Man, 2014) X X
(Bock, 2008) X (Kadiretal., 2016) X X X
(Sivasankaran and (Parames and Suchada,
Shahabudeen,, 2013) * X MM_MO_D_U 2013) X X
((Njgg']ot;;?'%gg)d X x | MM_MO_Stu (Ullahet al, 2014) X X
(Donget al, 2014) X X
MM_SO_D . .
U (Kara and Tekin, X X RW: Real World dataset, HD: Hypothetical Data, BBenchmark, RG: Randoml
2009) generated, RB: Real world dataset and Benchmark
(Kara, 2008) X Categorization: MM: Mixed Model, SO: Single Objective, MO: Multi-Qdxctive, D:
MM SO St Deterministic Task Time, St: Stochastic Task Ti®eStraight Line Configuration, U: U
s~ (Xu and Xiao, 2009) X X Type Line Configuration
MM_SO_SL | ysuretal., 2011) ) X

U




3. Methodology

The required data in this study are collectednfthe case company and are of the secondarywpeh is going to be used in
the implementation and line performance analysimrddver, three different size standard problems aresidered as a
benchmark. A mathematical model for the considédeB problem type is developed and it is coded u$gTLAB® using two
farmhouse optimization techniques; Non-DominatedtiSgp Genetic Algorithm-l1l (NSGA-Il) and Multi-Objive Genetic
Algorithm (MOGA). The two algorithms are run foretldesired stopping criteria and are compared hygusie line efficiency,
line smoothness index, and the run time of therélyo.

Line Efficiency (E): The line efficiency is the ratio between totaltista time to the product of cycle time and the nembf
workstations, represented as a percentage. It stienmercentage use of the line and is expressed as
k
2 ST,
== 100 ®)
kxCT
where k = total number of workstations, a@d = cycle time

Smoothness Index (SI): The smoothness index is an index for the reladiv@othness of a given assembly line. A smoothness
index of 0 indicates a perfect balance. A smalleeSults in a smoother line, thereby reducingithprocess inventory.

N r—

whereST .« = maximum station time, arf§l;, = Station time of station i.

Execution (CPU) Time: Execution time is the time it takes the algorittomreach the stopping generation. It is considéned
many researchers since it is directly tied to ftifieiency of the algorithm selected.

Experimental Dataset

To test the performance of the algorithms thredediht size standard problems are adapted from wassgmbly-line-
balancing.de, a site presenting standard ALB probsetup for various types, size, and configuratiomish their combined
precedence diagrams as shown in Figure 1 througim@4 for the data collected from the case compahg problems range
from small to large scale ALB instances based enctitegorization used in Akpingtral. (2013). Table 1 shows the experimental
dataset used and the problem-specific assumptisreath ALB problem.

Case Study (Large size): The required data for the case study problem alleated from Lifan Motors (Ethiopia) (Table 2).
Lifan Motors (Ethiopia) is a company engaged ireadsly and distribution of LIFAN vehicles in Ethi@piowned by a subsidiary
branch of Lifan Motors (China) called Yangfan Ma&d®Ic. In this study production of two models ofsgd -530 and Mini Van
are taken for the mixed-model assembly line opttiimn.

Table 2. Experimental datasets and problem-spessicmptions
Problem Dataset

Mertens Lutz Kilbridge Case Study
Number of Tasks 7 32 45 55
Size Category Small Medium Large Large

Problem specific assumptions

Positive Zoning Restriction Between tasks  Taskd task 2 Task 30 and task 32 Task 40 and task 41 sk Jaand task 41
Negative Zoning Restriction Between Task 2 and task 7 Task 4 and task 16 Task 4 akd®tas Task 41 and task 55
tasks

The maximum and the minimum number 2 and 4 4 and 11 5and 11 7 and 14

of tasks per station respectively
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Figure 1.The combined precedence diagram of
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4. Mathematical M odel Formulation

4.1. Assumptions

» The precedence relationships among tasks for eaclelnare known and the precedence diagrams féhelnodels can
be combined such that the resulting diagram cosithia N tasks.

» The assignment of tasks to a specific workstatamlwe forced or forbidden through the definitiorpositive or negative
zoning restrictions.

» The setup time of tasks is included in their tasies.

» The same tasks of different models could have miffetask completion times due to different assgngvbcedure
requirements as a result of model variety.

» The time required to perform tapls stochastic, and it has a distribution with mgamd standard deviatian.

» Each task is assigned to only one workstatisnprocessed once, and only one task is alloweddoegs on a single
station at a time. Common tasks could be assignedifferent stations whereas some tasks, accortbhngome
considerations (e.g. specific equipment requires)eshould be assigned to one station.

» The assembly line is a straight line and has alsesrout.

» Task times are independent of the sequences.

4.2. Notations
j Index of taskj =1,2, ...,n
I index of product| =1, 2, ....m
v index of workstationy =1, 2, ... k
ty,  Performance time of taglof productl, on workstation v
X if taskj of modell is assigned to workstatiaf x;, = 1; otherwisey;, =0
IPj Immediate Predecessor of tgsk
ZP Tasks with Positive zoning restriction
ZN Tasks with Negative zoning restriction
Cr Total cycle time of mixed-model
oy expected demand ratio of modeluring the planning period

4.3 Mathematical M odel

k mn
OF1l:minzl= Y > X VX i1y (1)
v=ll=1j=1 J
OF2:minZ2 9 3
:min _Iél aq max jzzltjlvlev (2)
Subject to:
k
> X, =1wherej=1, ...,n,and =1, ..., m; 3)
v=1~ v
k
Xjly < Vélvxolv wherel =1, ..., m,ang =1, ..., nJoJ IP, (4)
Kk Kk )
véllev —Vélxqpv =0,0(gp, jI)O zP (5)
Xilv ~ Xqpv <1,0(gp, jl) O2ZN, inwhichv =1, ... k; (6)
lev =0 orl, inwhichj=1,..,n1=1..mandv=.1,KkK (7

The objective function (1) minimizes the total nwentof stations and objective function (2) minimizbe total cycle time.
Constraint (3) assures that each task will be assidgo a single station. Constraint (4) addresseseplence relations. Constraint
(5) is aimed at tasks with positive zoning thatigtidoe assigned to the same stations and consffitdrgets tasks with negative
zoning that should not be assigned to the samerssat

4.4 Stochastic Environment Consider ations

The stochastic environment incorporates the rantlora of completion of tasks and random arrival efréind for each product
model.
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4.4.1.Stochastic Time Considerations
The time in this problem is considered to be a oamdime which varies between the minimum and the&imam times in the
standard problem and the case study dataset. Howe\his study, the random values of time areegated after categorizing the
tasks under number of time intervals to maintaattme variation among tasks of larger time andgéhwith smaller time. Due to
the task completion time variability of same taskglifferent models assumption (section 4.1), défe times are generated for
model-1 and model-2. The random times are genefates data points for each task on MATLAR013a and rounded to two
decimal places.
4.4.2. Demand Arrival
The stochastic nature of the demand arrival forrtibeed models for which the balancing problem igried out is considered
through the following scenarios, in which the twodels are subjected to different demand proportimra the total demand for
the models based on the same time horizon.

Table 2. The Product Demand Arrival Scenario

Demand Demand Proportion
Scenario
Model-| Model-I

1 0.75 0.25
2 0.60 0.40
3 0.50 0.50
4 0.40 0.60
5 0.25 0.75

To solve the developed mathematical model basdtie experimental datasets, two optimization rhetaristics are considered,
namely, Non-Dominated Sorting Genetic AlgorithmdNSGA-II) and Multi-Objective Genetic Algorithm (MGA). The basic
objective being the selection of an efficient metho solve the assembly line problems of the curtgre based on problem size
variations of small, medium and large scale.

5. Representation of Chromosome (Solution)

In the genetic algorithm, an individual is an erogdf a potential solution. The encoding of salnd used in this study is of type
‘one-to-one’, which means that each solution isespnted exactly by one chromosome and the decadiegch chromosome
results in exactly one solution for the problemeTéncoding scheme is workstation oriented andstnslar to the one used by
Simaria and Vilarinho (2004). The chromosome isria@ of length N where each element represenéska and the value of each
element represents the workstation to which theesponding task is assigned. Fig.5 shows a chromesand the decoded
balancing solution.

Chromosomes (1 |1 |2 |7 I3 |4 |9 |9 |4 |5 |10 |6 |12 [6 (11 |8 |9 14 |11 |12 |13 (15 [15
a
decpding encgding
\ 4
workstations 1 2 (3|4 5 6| 7|8 9 10 11 12 |13 | 14 15 (10| 11
Task 1 2 |3 (5 [6 [10 7 |11 13 |16 |4 |18 8 |9 |14 9 (12 17 |21 |15 (22 23 (20 |24

Fig.5.An example of a chromosome and the correspgrhlancing solution

5.1 Population Initialization

The population is initialized by either using randgeneration (Tang and Liang, 2012), or by thetayeaof feasible population
which satisfy the constraints if any by using diffet heuristic rules, or in some studies, solutioi¢ained from another
optimization algorithm are used to seed the iniiapulation (Goldberg, 1989). In this study, fiveuhistic rules are used to
generate feasible initial solutions for the thréendard problems and for the case study considédédhe heuristics rules are
applied to generate sub-populations which latemfarcomplete feasible population with random peatioh and concatenation
of the matrices of the subpopulations. The fivety rules used in generating the subpopulatien ar

i. Maximum total number of follower tasks (Arcus, 1965

ii. Maximum number of immediate follower tasks (Haileiam, 2009)

iii. Minimum total number of predecessor tasks (Elsayeti Thomas, 1994)

iv. Minimum task number (Arcus, 1965)
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V. Random task assignment (Arcus, 1965)
The algorithms parameter setups are discussedule Ba

Table 3. Parameter setup

NSGA-II MOGA

Population

Mertens 48 48

Lutz 96 96

Kilbridge 96 96

Case Study 112 112
M aximum generation 50,000 50,000
Other Algorithm Specific Distribution index for crossover: 20 Crossover fiac: 0.8
Parameters

Distribution index for mutation: 100 Mutation rafe01

6. Results and Discussion

A perfect balance of the line means the comhinadf the elements of the work to be done in saichanner that at each station
the sum of the elemental times just equals theecyiche. When a perfect balance cannot be achiewed measure the
effectiveness of the balance by the different m#ghdn this research the following three perfornegameeasures are used to
compare the algorithms used based on the experndatiasets considered in the demand arrival sianfarmed.

6.1 Results of the Algorithms

Both the NSGA-Il and MOGA are coded using MATLAR013a and with the basic parameters set, they meren a PC with
Intel® Core™ i3-2310M CPU with 2.10GHz processoeeag and 4.0 GB (3.16GB usable) RAM for 50,000 gatimms based on
the test problem selected and the demand arriealas® considered.

Evolutionary Algorithms (EAs), under which thea algorithms used, MOGA and NSGA-II, fall do sséitially converge to the
true Pareto front (Van Veldhuizen and Lamont, 19@8)nsequently, the convergence of the algorittamfthe initial generation
to the 50,008 generation is shown in Fig.6 (a) through (d) facketest problem based on equal likelihood of trwelpct demand
arrival scenario (i.e., Scenario-3). From this ve@ see how the solution advanced towards the Papgimal solutions, and in
which the solutions (Chromosomes) advance to tles ak the two antagonistic objectives. The othargthwe can see from these
convergence diagrams is that all the individualsfomosomes at the 50,00@eneration dominate the individuals at thié 1
generation. Moreover, it is worthy to note that N&{B maintains the number of solution constant aghie end of the maximum
generation due to the elite preservation technitjuses. This is done by adding all individual he tfront until the population
reaches N (number of population used). This is sdmye chromosomes have survived even though theyoaneated by another
chromosome. If in some cases the population excékdsen individuals in the particular froate selected based on their
crowding distance in the descending order untilgbpulation size is N. And hence the process repgeagenerate the subsequent
generations.

Mertens Lutz
2 ‘, ‘, ‘, ; ‘, ‘, ‘ , ‘ , 80 ‘ ‘ ‘ ‘ ‘
| | |
20l Lo __| O Aferlgen | " ! ! ! O After 1 gen.
I I I I I I I +  After 50,000 gen. L e e T +  After 50,000 gen. |
| | | | | | |
o e s e A i R A | | |
| | |
O
© | | | | | | | | | | o
2 K
e300 I S N S N SO T S S N T R
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Figure 7. The convergence of the NSGA-II Solutiafter 50,000 generations: Mertens (a), Lutz (bjbikdge (c), and Case

Company problem (d)
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The convergence of the MOGA from the initial getierato the 50,000 generation is shown in Figure 7 (a) through (d)efach
test problem based on equal likelihoods of the pcodemand arrival scenario (i.e., Scenario-3)nfFthis one can observe that
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the number of points on the Pareto front increagidls generation resulting in relatively smootheorft. And the convergence
towards the minima is also significantly visible.

6.2 Comparison of Methods

In this section, the comparison of the perforoganof lines resulted from the two solution apphesc(NSGA-II vs. MOGA) and
the solution methods with the current setup of ¢hee company dataset are made. The two algoritisens im this study are
compared on the basis of how efficient is the iireeget through the optimization, how smooth isrésulting line i.e, smoothness
index, and the run time needed by the algorithmeézh the desired generations (stopping criteria).

From the average efficiencies of the two aldgwnis Fig.8 (b), one can see that MOGA performs welll the test problems
averaged from the five demand scenarios considéxed.from the average line smoothness indices siilte of MOGA and
NSGA-II as a result of reassignment of tasks tovibekstations Fig.8 (b) we can be observed that M@Gtperformed NSGA-II
in all test problems. However, one can see thatast of the test problems (Mertens, Lutz and Casepany dataset) they have
resulted in approximate values, except Kilbridgevlich MOGA surpasses NSGA significantly.
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Figure 8. Average Line efficiencies (a), average kmoothness indices (b) and the Run (executimest(c) of the two algorithms

From the average efficiencies of the two al¢nonis Figure 8 (b), one can see that MOGA performbiwell the test problems
averaged from the five demand scenarios considexad.from the average line smoothness indices stilte of MOGA and
NSGA-II as a result of reassignment of tasks to winekstations Figure 8 (b) we can be observed M@GA outperformed
NSGA-II in all test problems. However, one can #&& in most of the test problems (Mertens, Lutd @ase company dataset)
they have resulted in approximate values, excelptridge in which MOGA surpasses NSGA significantly.

When we see the average run times of the tworisthgns from Figure 8 (c), we can see that NSGAdtforms faster on the
small size problem (Mertens) as compared to ital+iMOGA. This agrees with (Neda al, 2012), in which it is found to be
performing well in small ALB problems. However, M@Gurpasses NSGA-II in all the other three tesbfms (Lutz, Kilbridge
and Case company dataset), which range mediunnge paoblem instances.

6.3 Current state vs. Algorithms Results
The comparison of the current setup of the casepeaswith the results of the two algorithms (Fig<€hows both NSGA-II and
MOGA resulted in lines which outperform the exigtiine set up in all the product demand arrivahse®s with average
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efficiency improvements (change) of 4.60% and 6.1@%pectively. This indicates that both the aldpons are capable of solving
ALB problems with similar problem setups.
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- £ 25 1
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[*]
E 80 - B NSGA '+§ 12 l l 1 l m NSGA-I
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Figure 9. Line efficiency (a) and Smoothness Inflg»of the NSGA-Il and MOGA Result, and The currease company setup for
all demand arrival scenarios

As can be seen from Figure 9(b), both the algorthesulted in much smoother lines compared to tineent setup of the case
company with average smoothness index reductiorpr@iwement) of 15.85 by NSGA-Il and 16.71 by MOGAbI&a 4
summarizes the results of the two algorithms on t¢thee company dataset versus the performance ofxtsting line
configuration.

Table 4. Summary of average results of MOGA and NSIGn the case company dataset

Average Efficiency (%) Average Smoothness Index verdge Run Time

Problems NSGA-II MOGA NSGA-II MOGA NSGA-II MOGA
Mertens 92.078 93.406 1.708 131 11 145
Lutz 92.366 93.536 9.352 8.68 334 31.2
Kilbridge 87.352 88.96 40.074 34.74 37.3 36.1
Case St. 92.392 93.85 11.91 11.05 48.3 44.3
Current State 87.754 87.754 27.76 27.76 - -
Average 4.638 6.096 -15.85 -16.71 -
Improvement

7. Conclusions

This paper deals with the multi-objective optiation of mixed model assembly line balancing imasemble-to-order industry
with stochastic environment. A mathematical modebresenting the problems at hand is developed watme real-life
considerations. The objectives considered in thel@hare the minimization of cycle time and minintiaa of the number of
stations, which are to be optimized simultaneou$he stochastic environment incorporates the rantiora of completion of
tasks and random arrival of demand for each prochactel. To solve these mathematical model two dp#itton meta-heuristics
are considered, namely, Non-Dominated Sorting Genatgorithm-lIl (NSGA-Il) and Multi-Objective Gen&t Algorithm
(MOGA). The basic objective being the selectioranfefficient method to solve the assembly line fois of the current setup
type based on problem size variations of small,iomadind large scale instances.

To test the performance of the algorithms tltiéferent size standard problems; Mertens (7), 8®&), and Kilbridge (45), and
a case study problem (55) were considered. And Himeristic rules are used to generate feasibl@liréblutions for the three
standard problems and for the case study considéiethe heuristics rules are applied to genematbpopulations which later
form a complete feasible population with randomnpiation and concatenation of the matrices of thigpepulations. The two
algorithms are compared based on the average fiiceercy from the demand scenario considered, ayersmoothness index,
and average run time required by the algorithmeach the specified stopping criteria. The result fhown that NSGA-II
performs faster on the small size problem as coetp#v its rival- MOGA. However, MOGA surpasses NSGAN all the other
test problems ranging from medium to large problestances. Moreover, MOGA is found to result ini@ént lines in all the
considered test problems. Nevertheless, both @fhgosi have resulted in significant improvements athiperformance measures
i.e., 4.60% efficiency improvement by NSGA-II andl®% improvement by MOGA, and with respect to srhoess indices;
NSGA-II resulted in 15.85 decreases (improvement) BIOGA resulted decrease in Sl value by 16.71.s€hghow that both
algorithms could be considered as proficient caagisl for solving ALB problems with the problem getwconsidered in this
study.

In this study, the initial solutions are genetausing different heuristics methods and then éaddo be used for population
initialization. However, better solution diversitpuld be acquired by embedding this heuristichégenetic algorithm in which a
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heuristic is selected randomly at a time for edstomosome (individual) generated, which in combarawith other similarly
generated chromosomes form the initial populafidns could be incorporated in the future researadteavors with similar theme
to the current study. The other areas of intemstuture research include the application of therent problem setups and solving
techniques to assembly lines with different linenfegurations (for instance U-Type) and line vamatii.e., lines with station
paralleling, two-sided straight type assembly linete. Furthermore, future researches could inchyl®idization of solutions
techniques to solve problems of the current typetliey are capable of resulting good solution dquadis compared to their
traditional versions by the utilization of the stgpsides of the individual techniques by mitigatihgir shortcomings.
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