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Abstract

The paradigm shifts in the electrical industrgnfi demand-driven generation to supply-driven gatiem due to the
incorporation of renewable generating sources grawing research field. Implementing demand respoins present-day
distribution schemes is anattractive approach doddopted by microgrid (MiG) operator.This paperoirporates an incentive-
based demand response (IBDR) method in a grid-at@demicrogrid (MiG) comprising of conventional geators (CGSs),
wind turbines (WTs), and solar PV units. The maiim @ to collectively minimize the fossil fuel cost CGs, lower the
transaction cost of portable power from the griolj amaximize theMiG operator's profitafter impleniegtdemand response.
This multi-objective problem combining optimal eoomic load dispatch of MiG with an efficient demaside response is
solved using a proposed Quasi-opposed Grey Wolin@ger (QOGWO) algorithm. The effect of the propdsdgorithm on
demand-side management (DSM) is analyzed for tveega(i) varying the value of power interruptilyilifi) varying the
maximum limit of curtained power. Performance of @O is compared with original GWO and a varianGWO, Intelligent
Grey Wolf Optimizer (IGWO). Results show the supegglobal search capability and complex constraimaadling capability
of QOGWO.
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1. Introduction

The electrical power system is complicated dwmevdrious interacting factors that are either ndécmuately controlled or
accurately predicted. Therefore, maintaining aatdé and secured operation in a power system iayala challenging task. To
overcome these challenges, the concept of microgvic) provides an alternative solution. MiG intaggs microturbines,
distributed energy resources (DERS), power stosggeem (PSS), and supply emergency power flexiblit aan work in either
island or grid-connected mode.In islanded mode, Ig#® be detached from the main grid in emergentycan still supply the
power demand locally.In grid-connected mode, Mi@ parchase electric power in case of a shortagauorsell excess energy to
the grid leading to monetary gain.

Demand-Side Management (DSM) is a procedureaioage power mismatch between supply and demandakinghchanges in
energy consumption patterns. It follows six majwategies: peak clipping, valley filling, strategionservation, load building,
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flexible load shape, and load shifting, to managged|efficiently over a scheduled period. Thesetesgias can be implemented
through demand response (DR). Here, customers rareusaged to reshape their energy consumptionrpalte less energy
utilization during peak hours or to move the timfeemergy utilization to off-peak duration. DR cae blassified into two
categories (i) Dispatchable or IBDR; wherecustonsespaid incentives for changing their energy oamstion pattern and (ii)
Non-dispatchable or price-based demand responsBR,Bvhere customers are charged with differerifftaccording to their
electricity consumption time.

In recent years, researchers have shown mareesttin MiG scheduling, including DR in it. A di¢a review of various DR
models for optimization related to energy managedrmgstem isreported in various literature as preesein (Fallahi and Smith,
2017; Hussain and Gao, 2018; Jordehi, 2019;Kletlitl., 2019; Mizutaniet al., 2018; Mohammed and Albadi, 2020; Robert et
al., 2018; Sedighizadedt al., 2018; Shariatzadedt al., 2015). Researchers have proposed various enesigggament systems
and models (EMS) to solve the generation schedwimdplems either by using the traditional approé€iptoo et al., 2020;
Mehdizadetet al., 2018; Nwulu and Xia, 2017; SoltaniNejad Farsatgi., 2018) or by using metaheuristic algorithms (Aginaj
et al., 2015; da Silvat al., 2020; Estheket al., 2016; Jordehi, 2020; Kakran and Chanana, 2018aia and Mukherjee, 2018;
Nosratabadi and Hooshmand, 2020; Rabyal., 2019; Sarkeet al.,2020; Shahryaret al., 2019) with the objective to either
minimize operational cost or minimize both cost amission.Grid-tied MiG with DR is seen as an eberel option by
independent system operators (ISO) to achieve ispkitto a large spectrum of modern-day electricadtribution
problems.Futuristic MiG control systems are encgedato include demand-side management (DSM) asnhdispensable
component (Imangt al., 2020;Ajoulabadgt al., 2020).

Various configurations of DR programs are inigzged in (Imaniet al., 2020), and a priority list of DRPs based on the
weighting approach from microgrid operator (MO) siolering MG's effects operation cost on the pnorlist is
prepared.(Ajoulabadéet al., 2020)explores the benefit of PBDR programs in aMietwork and concludes that there is a
significant improvement in the distribution systembwer factor and the simultaneous reduction twaowk losses, operation cost,
and peak demand.In (Kiptogt al., 2020), mixed-integer linear programming (MILP) Haesen used for the techno-economic
analysis of a stand-alone MiG. Here dynamic pri@pgroach as per the availability of renewable gyné utilized, and DSM has
been investigated under different scenarios. Iny(Boal., 2019) a combination of ant lion optimization (AL@jd recurrent
neural network (RNN) is proposed for EMS of grichoected MiG.

Here DR has been carried out using recurrentah@etwork (RNN) for getting information of custemresponse, and ant lion
optimization (ALO) is used for the energy schedglifhe optimum bidding price was calculated usimfgrimation gap decision
theory (IGDT), and price-based demand responseused to reduce the energy procurement in the catinpetlectricity market
(Mehdizadelet al., 2018). In (SoltaniNejad Farsangial., 2018), both price-based and incentive-based Rrams have been
used and their impact on reducing operation codficf in grid-connected and in island mode has hiegastigated using a two-
stage stochastic programming approach. Here ibsemed that an incentive-based approach in gmaected mode is found to
be more effective in reducing operation cost. TRBR has been utilized to minimize fossil fuel cosbst associated due to
transfer of power, and maximize the profit of Mi@evators(Nwulu and Xia, 2017). Results show thabiporating DR in EMS is
beneficial for the supply and the demand side d&N¥tbm an economic point of view.

The multi-objective scheduling of MiG coupledthvincentive-based DR has been investigated in &gt et al., 2015; da
Silva et al., 2020; Esther et al., 2016; Jordehi, 2020; Kalaath Chanana, 2019; Niharika and Mukherjee, 2018r&abadi and
Hooshmand, 2020;0lorunfemi and Nwulu, 2020;Rbogl., 2019; Shahryast al., 2019)for minimization of operational cost and
emissions released to the atmosphere. The augmeptatstraint approach has been used to solve the-ofjictive problem to
minimize operation costs and emissions (Sedighiz&tial., 2018). Here price-based DR is used to maintastesy reliability
during on-peak periods. In (Aghajani et al., 2018)lti-objective particle swarm optimization (MOPB@as been utilized for
minimizing operational cost and emission for MiGratving DR. Here, it is observed that the DR appto&elps to mitigate
power shortage caused due to the uncertainty of BftSis also useful in reducing operational cost paollutant emission
effectively. The benefit of using DR in grid-connedtMiG after considering the uncertainties of dedparenewable power
generation, and the market price is explored irrd@ai, 2020). Here, particle swarm optimization (§Ss used as the
optimization algorithm.A multi-objective model isrimulated in (Olorunfemi and Nwulu, 2020) to sinaméously minimize
the annual cost of electricity production, minimithee carbon dioxide emission and maximize the gusts’ participation in
the IBDRP to increase the customer benefit thatemith the program.An improved IBDR program fortioum multi-
objective MiG scheduling is given in (Shahryetral., 2019).

Improvisation in the DR program has been carpetl by considering elasticity as a function of goveconsumption time,
customer type, and peak load intensity. Here pilimeand elasticity coefficients based on historitzth and incentive payment
model as a function of peak intensity and price-aletnelasticity concept have been utilized for teaday market. Finally,
multi-objective group search optimization (MOGS®pking used for minimizing both cost and emis&ioa competitive market.
In (da Silvaet al., 2020), non-dominated sorting genetic algorithh (NSGA IIl) has been implemented for optimizing
consumption cost of electricity, inconvenience cobtend consumers, and minimizing environmentallytion in a MiG,
incorporating DR. Results show that DR helps toglate the overhead cost and reduce consumptidrotegectricity. Bacterial
foraging optimization algorithm (BFOA) (Esther &t 2016), symbiotic organisms search (SOS) algori{Cheng and Prayogo,
2014)is used for DSM in a smart grid (Niharika andkherjee, 2018). Here energy management is caotgefficiently through
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load shifting approach. In (Nosratabadi and Hoostin2020), day-ahead and intra-day generation pigns performed using
the best DR programs selected based on the Noedalimex of assessment strategy (NIAS) index imdastrial virtual power
plant (VPP).

By the proposed methodology, DR programs berné#ft industrial establishments by providing impmvead shedding
management and lower cost of operation. A homedB84S incorporate load shaping DR program for mimmelectricity cost
(Kakran and Chanana, 2019). Here, for the solubibacheduling problem, Particle Swarm Optimizat{®80O) is implemented
along with DR program for easy implementation.

In this paper, an incentive-based DR prograrmésrporated for the energy management problematge@runder the grid-
connected mode. As it is a highly constrained amuipgiex optimization problem, a well-accepted popaiabased GWO with
guasi opposition-based learning is proposed fasrsglit. The novelty of this paper can be summedias follows:

e A new variant of GWO named QOGWO is proposed ferghergy management problem of a microgrid

* Incorporating an incentive-based DR program insystem, its solution has been carried out usingvav@ants
of GWO to minimize total operating cost and to nmaigie the utility benefit.

» Effect of power interruptibility factor and dailytailment limit are also analyzed from an econoptmnt of
view using the three algorithms for comparison.

As per the authors' knowledge, there is no wegorted in the literature for the solution of DRogram integrated with MiG
using QOGWO. The developed model provides gridilfidity and simultaneously use DR to provide reliefthe system. The rest
of the paper is organized as follows: Section Z@més the system's problem formulation. Sectionx@Baéns the fundamental
GWO and its variants that are used inthe simulat®ection 4 deals with the results obtained by Ktan, and concluding
remarks are presented in Section 5.

2. Problem formulation

2.1 Grid-connected microgrid

A trading scheme of power transfer is utilizetey in which electric power can either be purctiamesold to the grid to fulfill
load demand over 24 hours. Here, the MiG considéwsedinalysis combines three types of generatingcgs: Conventional
generators (CGs), Wind turbines (WTs), and SolaruBis. Fuel cost associated with C(G;(fo )is given as (Nwulu and Xia,

2017):

2
Ci(GEF) = aiGif™ + bGY (1)
The output power available from the WTs(Nwulu arid,>2017)is given as:
G/t = 0.5n,pC,AV? )
h = L 3
where U = Uper . ()

As the hourly solar power generation depends ocar satliation §;) and area of PV arrayley), it is given as:
Gig,t = NsApySt (4)
The cost associated with power exchaége (G{")between grid and MiGis represented as:

§-Gfr G >0
Cert (GET) = 0 Gi" =0 (5)
—-8-G{" G <0
As the operating cost of RES is meager in coisparto the operating cost of CGs, hence it is awtsidered in the total
operating cost calculation of microgrid (Nwulu axXid, 2017). Therefore, the objective function thambines the fossil fuel cost
of CGs and transactional cost of transferrable piswggven as:
; — 3 CG
minC = Y72, %7, Ci(Gi,t ) + X Ctr,t(Git,: (6)

2.2Demand response model

This model assumes that customers are willinglter the energy consumption pattern based omiives paid for it by the
utility. Accordingly, customers are classified bais@n willingness facté¥ € (0,1). ¥ = 1 signifies the most willing customer
who wishes to change the energy consumption patesalu and Xia, 2017).
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The cost incurred by B*customer at tim&’, when he/she decreases his/her power consumptitmé’g’ kW is given as:

Cre(Wn gie) = kaygue® + kopge(1— ) (7
Therefore, the customer benefit earn€f; () by ™ customer at timé&' is represented as:
CBie =1 — Cpr (W 910) (8)

where'l; " is the incentive paid td" customer by the utility for adjusting their enepnsumption pattern at the tirft
Utility benefit (UB) is the difference in cost associated with powetailment to the utility and incentive paid to tbestomer. It
is represented as:

UBit = teGie — It 9)
The objective of DR in a MiG is to maximize thelitibenefit(UB)over 24 hours. It is represented as:
maxUB = ¥22, Y7, UB,; (10)

The grid-connected MiG with DR model has the oliyecto minimize the objective functiofF) which is given below (Nwulu
and Xia, 2017):

min F = [w{X#2, 37, C(GLF) + X724 Core(GID)} + (1 =W {BE2 X2y Le — 191} (11)
subject to the following constraints:
i1 GthG + Gf? + Gj‘% + Glf,t =PD; — Y1 91t (12)
Gi(fr(r;lin < GftG < Ggglax (13)
0 < G/t <Gl atea (14)
0< Glf,t =< Glf,rated (15)
_Git,:nax = Glt,; = Git,:nax (16)
—DR; < G{f,1 — GIf < UR; (17)
CB must be greater than zero to encourage custometiselir active participation in demand response.
28 CB, =0 form=1.2....1 (18)
Y22 CBy = Y22 CBpq form=2....1 (19)

As DR is carried out daily, to make the model mpractical from a market perspective, there is adixwtility daily budget
(UDB) for the incentive paid to customers. Foritytibenefit, the sum of incentive paid to custonfersa day must be less than or
equal to the allotted UDB. This constraint is reygrgted as:

Y4 ¥ I, <UDB (20)
Similarly, it is assumed that there is a fixed powrtailment limit OL) for a day of each customer. The total power deday
a customer over 24 hours must be less than theaifsgd DL, which is represented as:

0< ¥#,9,: < DL (21)

3. Optimization Algorithms

3.1 Grey Wolf Optimizer

Grey wolf optimization (GWO) comes under the wetla of swarm intelligence-based algorithm progbbg Mirjalili et al. in
2014 (Mirjalili et al., 2014). Its analytical modighitates the leadership hierarchy of grey wolved their organizedbehavior for
hunting prey. GWO has four types of members nanhgldha beta, delta, and omega. In the optimizatiwtegss, the grey wolf
position represents different position variableg] the distance from the prey to the wolf helpsdeine the fitness of objective
function. Iteratively grey wolf will alter its pasdn to move closer to the best position.
The disciplined group behavior of GWO is modeledhiree phases of hunting mechanism as entrapmemegf hunting of prey,
and attacking the preyto reach prey by the shoresée.

|. Entrapment of prey

Like other metaheuristics, the initial populatie generated randomly within the upper lintLj and lower limit [L). In the
first phase, ifX' (t) represents the current position of a wolf, thewilit update its position to encircle prey positamhatX, (t)by
adjustingA and®. The random vectorg; and », eache (0,1) allow wolfs to adjust values aff andC, respectively. The
updated position of the grey wolf is represented és+ 1) and the first phase of GWO is governed by (22)-(25

Xt+1)=Xp(t)—AXD (22)
where A=2ar —a (23)
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D = |Cx Xp(t) — X(t)] (24)
and C =27 (25)

[1. Hunting of Prey

To simulate the leadership hierarchy of greywss] it is assumed that alpha, beta, and gamma Walfe better knowledge
about the possible prey location. The Alpha wolSigpposed to be the nearest one (best solutiae); thiat, the beta wolf and
gamma wolf. The position of omega wolf will varycacding to the current best position during theirojtation process. The
final position of the grey wolf is defined with pesct to the position of alpha, beta, and deltaarch space and represented as:

X(t+1) = § X (X, + Xy + X3) (26)
where, X; = X, (t) — Ay X Do, Xy = Xg(t) — Ay X Dg , X5 = Xs(t) — Az X Dg 27)
and D, =1C;. X, — X|,Dp = |Cp. X — X|, D5 = |C5. X5 — X| (28)
[11. Attacking the Prey

This is the last phase of GWO, which occursrafie prey location has been identified, and they gvolfs approach the prey to
attack it. This approach method is mathematicailiyutated by varying parametés’, according to (29)’ is a main control
parameter of GWO that controls the exploration argloitation phase. It decreases linearly from Dtover the course of
iterations, which mimics the grey wolf's approachbrehavior from the far end to the prey. Variatiorvalues of ‘a’ is mainly
responsible for the exploration and exploitatiorsolutions in the search space.

a=2—t (%) (29)
The steps of GWO involved during the optimizatare as below:
e The position vector of the search agent is initidi randomly within its lower and upper limits.
e The fitness value of each search agent is evaluatethe basis of which three wolves are identif@mdong the
population; they are categorized as alpha, beth,daita. They modify their position to catch theybyD,, Dg
andDg as in (28).
» Search agents update their position by (27).

* The above two steps (fithess calculation & updaezhmnism) are repeated until termination critedaspecified
isreached.

3.2 Intelligent Grey Wolf Optimizer

Intelligent Grey Wolf optimizer (IGWO) is a varit of GWO proposed in (Saxena et al., 20%8)ere two new mathematical
frameworks are employed. (i) An opposition-basediniasng (OBL) approach for the better exploratiod amploitation and (ii) use
of the sinusoidal truncated function for variakié
OBL approach helps to improve the convergence @lufation-based algorithm (Shast al., 2012; Tizhoosh, 2005; Xet al.,
2014). The OBL utilizes the opposite number andosfip points. The opposite number is a mirror pofrthe solution in terms of
extreme points; the lower limit (LL), the upper ItrlUL), and the search space center. It is repiteskas:

x°=LL+UL—-y (30)
For pointP (x1, xa, - Xi-- Xa), its opposite poin®P (x?, x3 ... x{ ... x3)expressed as (Mandal and Roy, 2013):
x? =LL;+UL;—y; Vx; €[LLLUL] ,i=12,....d (31)

whered is the dimension of search space.
In IGWO, positions are initialized by consideyihalf of the population as random and remainingpyosite population. The
movement of the wolf is governed by the definitimhparametefa’. Here truncated sinusoidal function to controlipos and
direction control is used, which is represented as:

a=2x (1 — sin? g) (32)

Current iteration

where @ = m X (33)

Max iteration
3.3 Quasi-opposed Grey Wolf Optimizer
Here, two mathematical frameworks are knit thgetto enhance the searching capability of GWO.yTaee (i) quasi-
oppositional based learning concept and (ii) aineakr decreasing functida’.

(i)Quasi-oppositional based learning
Quasi opposition-based learning (QOBL) is a modifiersion of OBL, and it is found to be more effeetthan OBL (Mandal
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and Roy, 2013; Rao, 2018). The quasi-opposite nuip®’), which is a number between the center of thecbespace and the
opposite number is represented as:

X% =rand(===,x°) (34)
Similarly, quasi opposite poing{°) in thed dimensional search space is represented as:
X = rand (%,){{’) fori=123.......d (35)

(i) Non-linear decreasing functidn’
Instead of using linearly decreasif as given in (29), a nonlinear decreasing contrtegy is adopted in this proposed

algorithm. This newly updated functi@ris represented below:
n

a=2x (1 . (Current iteration)m) (36)

Max iteration
For simulation purpose®,=3.98 andn =3.9 are considered here, as suggested in ¢ald 2018).Three different patterns of
parameteta’ for GWO and its variants IGWO and QOGWO over 286fations are illustrated in Figure 1.

3.4 Seps to implement QOGWO for Solution of incentive-based DR in microgrid

Step 1. Specify the population siz@dp), no. of customerd), dimension for DR variableglifnl), dimension for load dispatch
variables ¢im2), customer cost function coefficients,(k,), customer type factof¥,), generator fuel coefficientsaf, b;) and
maximum iteration (T) as stopping criteria.

Step 2: Initialize population matrixe§M7™4"4°™)and (GT4"4°™) of size pop X diml] and pop X dim2] respectively using
randomization. Here, each elementMif*"4°"signify the load curtailed by individual customés ,) at a particular timé&’ and
each element ilG™*"4°om represents the real power of generators. Make thateM™*"4°™m and G"*"4°™does not violate the
operational constraints given in (12)-(21).

[ M1t M2t ve oo Mdim1?

M1%> M?2? v o Mdim1? ]

Mrandom :| M.]_3 M23 MdiTn13 | 37)
L/[l'pov M2POP e e o Mdim1PoP
[ G1t G2t Gdimzl]

G1?> G2? v oo Gdim22

Grandom :| G.13 623 Gdim23 | (38)

Ll'zwp GZ.POP de.lzpop

Step3: Combing"@mdom gndGrandom tg form a matrixP™4"4°™ of size pop X (diml+ dim2)] as given below

M1t M2' .. Mdim1' G1' . Gdim2? ]
M12  M2%? .. Mdim1? G1% .. Gdim?2?

prandomzl : P : : P : (39)
M1P°P  M2P°P.. Mdim1P°PG1PoP ... Gdim2P°p

Step 4: Repeat step 2-3 to form population matrix@g?®) and G4°)by using quasi-opposite learning as defined by {@fout
violating (12-21). MatrixP?° thus, generated has siz@p X (diml+ dim2)].

Mlqol M2q01 Mdim1q°1
[ M19°2  M2902 e Mdimlqoz]
Mo = | M199%  M2993 e Mdim199% | (40)

Mltiopop qu'opop Mdim'lq"p"p
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B quol quol GdiquOl
G102 G29°%2 -+ .. . Gdim29°2 ]
a0 = Gl_‘1°3 62703 Gdim2q03 (41)
_qu;)pop Gchopop Gdiméqopop
 M19°1 M29°1 . Mdim19°t G19°t .. Gdim?24°t ]
M19°2 M29°%2 . Mdiml1%° (G19°2 .. Gdim?24°?
pao — : : : : : P : (42)
LM 1‘7'01’01’ M 2‘1.01’0?’ M dim.lq opop i 1q}’p0p Gdiméq opop

Step 5: Calculate the fitness function value as mentiome¢l1) for each vector in matrixg®d®*4°™ and P4° , formed in the
above steps. Arrange all the vectors Bf{*@°™ y p4°} in ascending order of their fitness value andtBelect the vectors with
best-fit values to form a new matr(R™tialize) of size pop X (diml+ dim2)].

Step 6: Find the first, second, and third best vectorshef matrix (Pitialize)which represent the positions of alpha, beta and
gamma grey wolfs.

Step 7: The position of each grey wolf is modified accoglio the concept of entrapment, hunting, and kittgcas discussed
insection 3.1. Here each grey wolf position spesifi potential solution of problem.

2 T ! ! I
' ' ' ——GWO
, , : —— QO-GWO
. AU b N . N S —IGWO [
5
A1 e _
£
=
=
s}
O_S_ ________________________________________________________________________________ -
0 | | i i
0 500 1000 1500 2000 2500

Iterations

Figure 1 Variation in Parameteta" for different algorithms

Step 8: Check after each iteration if all the constraimsntioned in (12-21) are entirely fulfilled or ndftthere is a violation of
constraints, add a penalty to the fitness valuextbude the solution set's infeasible solution.

Step 9: Step 4 will be followed until the termination eita are met. The QOGWO stops executing when textioim criteria
specified as maximum iteratiom)(is reached.

4. Simulation results and Discussion

4.1 Explanation of Test case

A grid-connected MiG system that combines theéxs, a solar PV unit, and a WT is considered hereptimum generation
scheduling assuming three rural customers partiogpain DR. The details of cost coefficients of gentional (diesel)
units(a;, b;), minimum and maximum operational imi{G<S,;,,, G<5,,, )are listed in Table Al. Hourly load demand of the
system(PD,), values of power interruptibility factgp,), and outputs of windG}%;) and solar unit¢G; ,)are presented in Table
A2.The solar radiation and wind speed used in ¢afitlg the microgrid output are calculated from esimental data given in
(Taxvinga et al., 2014) and the demand responsehi®dcorporated in MATLAB, which gives simulatedlues.
The customer cost function coefficients  k,,;), customer type¥;) and customer power limit on a daily bag§i¥., ) are listed
in Table A3. For analysis purpose, it is assumed () the maximum power limit that can be transfdrbetween the main grid
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and MiG is assumed to be 12 KW, (ii) the microgojgerator knowsDL,; of each customer, which is then utilized to rané& t
customer to their willingness to curtail the elecpower, (iii) The daily budgetDB) of microgrid operator is taken as $ 500.
For simulation analysis purposes; 0.5 is considered in (11), representing equagtage to both the objectives. The above test
case is analyzed for three cases,which are deddrilfarther subsections.

4.2 Casel: Analysisfor a fixed value ofpower interruptibility factor (u,) and DL,

In this case, all three customers are assigrittdagual values of power interruptibility fact@r,)and the fixed value iDL;) as
given in Table A2 & A3, respectively.Tablel comgilthe results obtained by three algorithms in teofnsonventional power
cost ($), transfer power cost ($), total operatingt ($), utility benefit ($), customer incentiv&),(conventional power generated
(kWh), total power curtailed (kwh) and transferpamver (kwh) for a particular day.

Here the total operating cost obtained by QOGM/f@und to be about 143 $ (24%) lesser as compar&WO and 44 $ (9%)
lesser than IGWO. Therefore, it helps to maximime grofit of utility under IBDR. The utility benéfivas increased by 114 $ (109
%) compared to GWO and 23 $ (12 %) compared to IGWO

The QOGWO is found to be more efficient whilemaging the power economically. It takes less pdwan the grid to manage
customer load demand, and the operational contgrame fully satisfied. The simulation outcomeeénns of optimal generation
schedule of CGs and hourly transferred power frbengrid over 24 hours is presented in Figurél2o, the customers' curtained
power and incentive on an hourly basis is illugtdain Figure 3.

4.3 Case 2: Analysisfor variation in u, and fixed value of DL,

In this case, impact analysis by the changejhas been investigated. For analysis purpose, theuptibility factor for three
customers participating in DR is set18t=0.9u;, u,=p; and us.=1.1u, respectively (Nwulu and Xia, 2017). The outcome of
simulation results obtained by GWO and its variamesssummarized in Table 2. After comparing theltesvith Case 1, it can be
observed that there is a decrease in intensivedstomer 1, a minor change in incentive for custofjeand an increment in
intensive for customer 3. The incentive compatipitionstraint, as in (18) and (19),is satisfiedisTdase also similarly affects UB.

Table 1 Result after implementation of algorithms on tiistem

S.No. | Parameter g/Algorithms GWO IGWO | QOGWO

1 Conventional power cost ($) 213.9999| 229.65 225.18

2 Transfer power cost ($) 394.1765| 280.05 240.03

3 OBJECTIVE 1 Total Operating Cost ($) | 608.18 509.70 | 465.21

4 OBJECTIVE 2 Utility Ben€fit ($) 104.64 195.22 | 218.93
Customer 1 32.37 59.99 | 67.32
Customer 2 34.22 62.19 | 71.67
Customer 3 38.05 73.05 | 79.93

5 Customer Incentive ($) 337.66 253.86 228.51
Customer 1 88.49 5459 | 53.51
Customer 2 108.70 75.24 | 73.10
Customer 3 140.47 124.04 | 101.89

6 Conventional power (KWh) 373.32 383.14 390.9464

7 Transferred power (KWh) 66.8707 | 55.46 | 47.53

8 Total Power curtailed (KWh) 78.71 79.70 80.42
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Table 2 Incentive to be paid and Company Profit after iragy,
S. No. Parameter gAlgorithms GWO IGWO | QOGWO
1 Customer Incentive ($) 330.1044| 254.0936| 230.159
Customer 1 77.4404 50.933 48.9532
Customer 2 107.4162 74.1346 72.3083
Customer 3 145.2478 129.026 108.8975
2 Utility Benefit ($) 106.277 | 203.898 | 240.626
Customer 1 27.4749 53.4446 65.0352
Customer 2 34.4607 62.2216 72.4618
Customer 3 443414 88.2318 103.129
3 Total Power curtailed (KWh] 78.37 79.07 80.12
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Table 3 Effect on the system after variationli,;

S. Parameters/ DL, (KW) DL; (KW) DL, (KW)

No. Algorithms GWO | IGWO | QOGWO| GWO| IGWO QOGWO GWQO IGWO QOGWO
1 | Conventional power cost ($) | 225.06 | 230.67 | 231.19 | 214.00| 229.65| 225.18 | 205.39| 225.24| 225.60
2 | Transfer power cost ($) 430.22 | 315.72| 250.50 | 394.18| 280.05| 240.03 | 388.00| 265.61| 216.80
3 | Total Operating Cost ($) 655.27 | 546.40| 481.69 | 608.18| 509.70| 465.21 | 593.39| 490.85| 442.40
4 | Total Power curtailed (KW) 7499 | 76.34 78.78 78.71 | 79.70 80.42 81.52 | 85.59 87.32

Customer 1 1943 | 20.27 22.27 20.87 | 1965 | 20.86 19.83 | 20.08 | 21.09

Customer 2 2555 | 26.75 26.73 2800 | 2753 | 2831 | 2735 | 3225 | 3232

Custormer 3 3001 | 29.32 29.78 30.83 | 3353 | 3125 | 3434 | 3326 | 33.90
5 | Conventional power (KW) 376.10 | 377.47| 390.52 | 373.32| 383.74| 390.95 | 371.40| 384.67| 388.65
6 | Transferred power (KW) 67.81 | 65.09 | 4960 | 66.87 | 55.46 | 47.53 | 6599 | 48.64 | 42.93

It is observed that the total power curtailedbisnd to be approximately the same as in casdlthkuotal utility benefit for all
the three customers is found to be more. A sintitamd is observed for all three algorithms congdeunder analysis. However,
QOGWO is found to be most sensitive to changg, iwith respect to the other two.

4.4 Case 3: Analysisfor a fixed value of power interruptibility factor (1) and variationin DL,
In this case impact of variation in daily cul@@nt limit on power generation and its operatioca$t are investigated. For

analysis purpose, the variation in power curtailtrenit is considered to be more thdr,, (DL;) and less thaPL, (DL, ) as

compared to case 1. These limits are listed in&&dl. Change inDL, affects the energy generated by CGs. As the custm
agree to curtail more load, the power generate@®yg decreases, thereby decreasing the operatiostal ¢

Under this analysis scenario, the outcome of sitimreby three algorithms is compiled and preseimiefiable 3. Comparing the
two scenarios of power curtailed on demand-sige, comparingdL; with DL,. it can be observed that there is a decrementein th

power curtailment of each customer. Curtailed 16ad) has decreased to 3.72 kW (5%), 3.37 KW (4%), a68 kW (2%) for
GWO, IGWO, and QOGWO algorithm, respectively, aimel torresponding increase in the operating cahasit 47 $ (8%), 37 $
(7%), 16.5 $ (4%).

On the other hand, an increaseDif; to DL, , makes DR more productive by reducing the loaghatel for power generation
resources. In this scenario, results show thaetkean increase in curtailed power of 2.8 $ (484,$ (7%), and 7 $ (9%), and
hence operational cost are reduced by 14.7 $ (2803 $ (4%), and 22.8 $ (5%), as obtained for GWEWO, and QOGWO
respectively.

5. Conclusion

In this paper, a new variant of GWO utilizes asjtopposition-based learning approach, and heraseed QOGWO, it has been
proposed to manage a grid-connected MiG. For @eniive-based demand response model of MiG, optigealeration
scheduling hasbeen carried out using QOGWO. Tadtimore customers to participate in demand regp@ndirect relationship
between the power interruptibility factor and intea given to each customer has also been incomgdrim the model. The
implication of power interruptibility factor and mianum daily curtailment limit on DR program are &mzd in the demand
response model. For comparison and validation magdhe above model is also implemented and sietissing classicalGWO
and its recent variants called IGWO. Based on obtiiesults, the following conclusions are drawn:

e There is a direct relationship between the powtgriaptibility factor and the incentive given tockacustomer.
Decrease in,,leads to a decrease in incentives paid to cusarat vice-versa. Also, changeunaffects the utility
benefit in a similar manner.

e The maximum power curtailment limit affects theatabperating cost of the grid-connected MiG. Mdre power
iscurtailed on the demand side, lesser will bectist of operation and vice-versa.

* IBDR model is found to be effective in managingbttie supply and the demand response for a MiGieffiily
whensolved using metaheuristic techniques.

It can also be concluded that the prescribedateimmesponse model can be solved using metaheusstiniques like GWO,
IGWO and QOGWO. Overall observation shows the damie of QOGWO over IGWO as well as GWO in termsalfition
quality. The simulated demand response model vhighexperimental data of microgridscan satisfy alistraints. The multi-
objective demand response model is beneficial fastakeholders. The distribution companies andarusrs are simultaneously
benefited by incorporating the described IBDR model



11 Dubey et al./ International Journal of Engineering, Science and Technology, Vol. 13, No. 2, 2021, pp. 1-14

Acknowledgment
The authors also sincerely acknowledge the &ishn support provided by
228/RIFD/RPS/POLICY-1/2018-19 dated 20 March 2020.

Nomenclature

C,(GEf Cost ofi*"conventional generator at timg
a;, b; Fuel coefficients oft"conventional generator
GLT Transferred power from the grid at tirf#é
v Velocity at any time
h Height of wind turbine
G/ Power output of " wind turbine at timét’
p Density of air
A Area swept by the wind turbine rotor
N The efficiency of the solar PV generator/array
N Solar irradiation incident on the solar PV arrayime 't’ (kWh/n)
gt Load curtailed byt" customer at timé&'
by kay Cost function coefficients df" customer
UB, . Utility benefit function fromi** customer at timé&’
I: Incentive paid td" customer at timé&’
PD, Power demand at tinie’
G atea Rated power output gf* wind turbine
Gimax Maximum transferrable power limit between grid anitrogrid
UDB Utility Daily Budget (500 $)
a Main control parameter of GWO.IGWO and QOGWO
A,C Coefficient vectors
X(t) Vector position of a grey wolf at t tinie’
X1,X5,X5 Best position of alpha, beta and delta respectively
t Current iteration
GEf The power output off*conventional generator at tine
Cer e (GET) Cost of transferred power from the grid at tittfe
1) Rate of transferred power from the grid (5 $/kWh)
hyes Reference height of wind turbine
Vref Reference velocity ah,.. ¢
Nw The efficiency of the wind energy conversion system
Cp Power coefficient of the wind turbine
Gie The power output of‘" solar PV unit at tine’
Apy Area of the PV array
o Customer type factor df*customer normalized in [0,1]
(O Cost incurred after load curtailed B} customer at tinfe’
CB,; Customer benefit function éf*customer at timé’
w Weight factor

¢ Power interruptibility factor at tirre’
G, ,GES Minimum & Maximum output limit ofi*conventional generator

imin’ Yimax

Gi ratea Rated power output df*" solar PV unit
UR;, DR; Up ramp and Down ramp limit faf*conventional generator
DL; Daily load curtailment limit for of*" customer
LL, UL Lower limit and Upper limit of a variable
Xp(t) Vector position of the prey at tinle
Y, T Random vectorg[0, 1]

Xit+1 Updated position vector of a grey wolf at tinter 1
T Maximumiteration

AICTE-RPS project File N@&-
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Appendix

Table Al: Conventional generator parameters

CG No. | a; (§kWh?) | b; ($/kWh) | G55, (kW) | ¢, (kW) | UR; | DR,
1 0.06 0.5 0 4 3 3
2 0.03 0.25 0 6 5 5
3 0.04 0.3 0 9 8 8

Table A2: Hourly load demand, power interruptilyiliactor, outputs of wind and solar units

Hour | G} (kW) | G, (kW) | PD, (KW) | p, ($/kWh)
1 7.56 0 31.83 1.57
2 7.5 0 31.4 1.4
3 8.25 0 31.17 2.2
4 8.48 0 31 3.76
5 8.48 0 31.17 4.5
6 9.42 0 32.1 4.7
7 9.82 0 32.97 5.04
8 10.35 7.99 34.1 5.35
9 10.88 10.56 37.53 6.7
10 11.01 13.61 38.33 6.16
11 10.94 14.97 40.03 6.38
12 10.68 15 41.17 6.82
13 10.42 14.78 39.67 7.3
14 10.15 14.59 41.7 7.8
15 9.67 13.56 421 8.5
16 8.98 11.83 41.67 7.1
17 8.37 10.17 40.7 6.8
18 7.61 7.66 40.07 6.3
19 6.7 0 38.63 5.8
20 5.72 0 36.4 4.2
21 7.21 0 34.1 3.8
22 7.75 0 32.8 3.01
23 7.88 0 32.5 2.53
24 7.69 0 32 1.42

Table A3: Rural Customer Details

l kl,l ($/kW) kZ,l ($/kW) ‘Pl DLI (kW)
1 1.079 1.32 0 30
2 1.378 1.62 0.45 35
3 1.847 1.64 0.9 40

Table A4 Variation iDL,

Customer No. | DL; | DL; | DL,

o1

Customer 1 275% 30 32
Customer 2 328 35 37.
Customer 3 35 40 45

Total 95 | 105 | 115

o1
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