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Abstract 
 
   The motive of this paper is, to develop accurate and parameter uniform numerical method for solving singularly perturbed 
delay parabolic differential equation with non-local boundary condition exhibiting parabolic boundary layers. Also, the delay 
term that occurs in the space variable gives rise to interior layer. Fitted operator finite difference method on uniform mesh that 
uses the procedures of method of line for spatial discretization and backward Euler method for the resulting system of initial 
value problems in temporal direction is considered. To treat the non-local boundary condition, Simpsons rule is applied. The 
stability and parameter uniform convergence for the proposed method are proved. To validate the applicability of the scheme, 
numerical examples are presented and solved for different values of the perturbation parameter. The method is shown to be 

accurate of 2( )O h t+ ∆  .  Finally, conclusion of the work is included at the end.  
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1. Introduction 
 
Over the last few years, the development of numerical methods for the solution of singularly perturbed delay differential equations 
with non-local boundary conditions has been an important research topic in the mathematical modeling of: epidemiology and 
population dynamics (Kuang, 1993), physiological kinetics (Baker et al., 1999), production of blood cell (Mahaffy et al.,1999) 
etc., that take in to consideration the effect of present situation as well as the past history of the physical system.  As the 
characteristics problem when perturbation parameter ε  are parallel to the boundary of the domain parabolic layers exhibit in the 
solution. Also, the delay term that occurs in the space variable gives rise to interior layers.   
    Most of the traditional numerical methods are not suitable for solving singularly perturbed problems (SPPs) because the 
presence of the perturbation parameterε , leads to occurrences of divergence in the computed solution (Kumar and Kadalbajoo, 
2011). To overcome these divergence, a large number of mesh points are required when ε is very small. This is difficult and 
sometimes impossible to handle such cases. Therefore, it is necessary to develop suitable numerical methods which are uniformly 
convergent to solve this type of differential equations.     
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    There are many papers in the literature dealing with the numerical approximation of the solution for singularly perturbed 
parabolic differential equations (SPPDEs) without delay (see [Miller et al., 1996; Miller et al., 1998; Clavero et al., 2000; Ansari 
et al., 2003;  Aga et al., 2020) and the references therein) and with delay (see Patida and Sharma, 2006; Ansari et al., 2007; 
Bashier and  Patidar, 2011a; Singh. et al., 2018; Bansal and Sharma, 2017 and 2018;  Kumar et al., 2020; Mekonnen and File, 
2021; Woldaregay and File, (Kragujevac Article in press), Daba and File, 2020 and the references therein). The existence and 
uniqueness of the second order parabolic delay differential equations with integral boundary conditions and its applications is 
discussed in Bahuguna and Dabas (2008). But, in recent years, uniformly convergent numerical methods for solving singularly 
perturbed delay ordinary differential equations with integral boundary conditions have been developed extensively in literature 
(see [Amiraliyev et al., (2017), Amiraliyev et.al., (2017), Habtamu.G. and File .G.(2020), Debela and Duressa.(2020), Sekar.E 
Tamilselvan.A (2019), Habtamu.G. and File .G.(2019), Amiraliyev GM and Ylmaz B.(2014),and Kudu, and  Amiraliyev, (2015)] 
and the references therein). However, up to the best of our knowledge, except the work in [Elango et al., (2021)] not much work 
has been done to solve the problem under consideration.  Hence, in this paper, motivated by the works of [Elango et al., (2021)], 
we construct and analyze a parameter uniform numerical method. The proposed method uses fitted operator finite difference 
method based on the procedures of method of line, which consists of non-standard finite difference operator for the spatial 
discretization and classical backward Euler method for the time discretization, which treat the problem and first being considered. 
The basic idea behind the method is to replace the denominator functions of the classical derivatives with positive functions 
derived in such a way that they capture some notable properties of the governing differential equation and hence provide the 
reliable numerical results (Patidar and Sharma, 2006).   
    The structure of the paper is as follows: In Section 2, the problem under study, some bounds for the analytical solution and its 
partial derivatives and the continuous maximum principles are given. In Section 3, discretizing the spatial domain and techniques 
of non-standard finite difference is discussed, and the ε -uniform convergence of the semi-discrete problem is proved. Next, 
classical backward Euler method used for the system of initial value problems resulted from spatial discretization and discuss the 
convergence of the discrete scheme. In Section 4, numerical results and discussion are given to validate the theoretical analysis. 
Finally, conclusion are included in Section 5, the conclusion of the work done is presented. 
    
2.  Statement of the Problem 
 
Consider the following singularly perturbed delay parabolic second order differential equation with non- local boundary condition 

      

2

2
( , ) ( , ) ( , ) ( , ) ( 1, ) ( , ),   ( , )

u u
Lu x t a x t u x t b x t u x t f x t x t

x t
ε ∂ ∂≡ − + + − + = ∀ ∈Ω

∂ ∂      (1)
 

Subject to initial condition  

                           
( , ) ( , ),     ( , ) ,b bu x t x t x tφ= ∈Γ

                 (2)
 

and boundary conditions  

                           

2

0

( , ) ( , ),     ( , ) ,

( , ) (2, ) ( ) ( , )  ( , ),  ( , ) .

l l

r r

u x t x t x t

u x t u t g x u x t dx x t x t

φ

κ ε φ

= ∈Γ

 = − = ∈Γ


∫
                                                            (3) 

On (0, ]D TΩ = × , in space-time plane, where (0,2)D = , T is some fixed positive number and .l b rΓ = Γ ∪Γ ∪Γ  where 

{( , ); 1 0 and 0 }l x t x t TΓ = − ≤ ≤ ≤ ≤  and {(2,0);0 }r t TΓ = ≤ ≤  are the left and the right sides of the rectangular 

domain Ω  corresponding to 0x =  and 2,x =  respectively, and the base of the domain is given by {( ,0);0 2}b x xΓ = ≤ ≤ .   

Where ( , ) ,  [0, ]x t D T∀ ∈Ω Ω = × and (0,1)ε ∈ is given constant, ( ) ( ) ( ), , , , ,  on  a x t b x t f x t Ω and ( , ),l x tφ
 

( , ), ( , ),l rx t x tφ φ ( , ) on b x tφ Γ
 
are sufficiently smooth, bounded functions that satisfy  ( , ) 0,  ( , ) 0,a x t b x tα β≥ > ≤ <  

0α β+ > , on Ω .  Furthermore, ( )g x  is non-negative function, monotonic and satisfy  
2

0

1 ( ) 0.g x dx− >∫  

The problem (1) and (3) can be rewritten as,  
( , ) ( , ),Lu x t G x t=                                           (4) 



Gobena and Duressa /International Journal of Engineering, Science and Technology, Vol. 13, No. 2, 2021, pp. 57-71 

 

59 

 

          

2

12

2

22

( , )
( , ) ( , ) ,                              ( , ) ,

( , )
( , )

( , ) ( , ) ( , ) ( 1, ) ,  ( , ) .

u x t u
a x t u x t x t

x tLu x t
u x t u

a x t u x t b x t u x t x t
x t

ε

ε

 ∂ ∂− + + ∀ ∈Ω ∂ ∂= 
∂ ∂− + + − + ∀ ∈Ω

 ∂ ∂

                  (5) 

                  

( , ) ( , ) ( 1, ),  ( , ) (0,1) (0, ],
( , )

( , ),                                ( , ) (1,2) (0, ].
lf x t b x t x t x t T

G x t
f x t x t T

φ− − ∀ ∈ ×
=  ∀ ∈ ×

                                                        (6) 

with boundary conditions 

2

0

( , ) ( , ),     ( , ) ,

(1 , ) (1 , ),     (1 , ) (1 , ),

( , ) ( , ),     ( , ) ,

( , ) (2, ) ( ) ( , )  ( , ),     ( , ) .

l l

x x

b b

r r

u x t x t x t

u t u t u t u t

u x t x t x t

u x t u t g x u x t dx x t x t

φ

φ

κ ε φ

− + − +

= ∀ ∈Γ
 = =
 = ∀ ∈Γ

 = − = ∀ ∈Γ


∫
   

                              (7) 

where 1 2 1 2 (0,1) [0, ],  (1,2) [0, ],  .T T ∗Ω = × Ω = × Ω = Ω ∪Ω
 

    
3.  Bounds on the Solution and its Derivative 
 
The existence and uniqueness of a solution for problem (5)-(7) can be established by assuming that the data are Holder continuous 
and imposing appropriate compatibility conditions at the corner points (0, 0), (2, 0), (-1, 0) and (1, 0) (see [Ladyzhenskaya O.A., 
et.al., (1968)]). Then, the required compatibility conditions are 
               (0,0) (0,0) and (2,0) (2,0).b l b rφ φ φ φ= =                  (8) 

and  

         

2

2
(0,0)(0,0)

2

2
(2,0)(2,0)

(0,0)
(0,0) (0,0) (0,0) ( 1,0) (0,0),

(2,0)
(2,0) (2,0) (2,0) (1,0) (2,0).

b l
b l

b r
b b

a b f
x t

a b f
x t

φ φε φ φ

φ φε φ φ

 ∂ ∂− + + − + = ∂ ∂


∂ ∂− + + + = ∂ ∂

         (9) 

so that the data matches at the corner points. 
The following theorem gives sufficient conditions for the existence of a unique solution of the problem (5)-(7). 

Theorem 3.1 Let 1 1 1 1 1( , /2) 1 2 (2 ,1 /2)
1, , ( ),  , ([0, ]), ( ), (0,1)l r b ba b f C C T Cβ β β β βφ φ φ β+ + +∈ Ω ∈ ∈ Γ ∈ . Then, the problem (5)-

(7) has a unique solution  1 1(2 ,1 /2)( , ) ( ).u x t C β β+ +∈ Ω   In particular, when the compatibility conditions (8) and (9) are not 

satisfied, a unique standard solution still exists but is not differentiable on all of∂Ω .  
Proof: One may refer (see (Ladyzhenskaya et al., 1968)). 
The reduced problem corresponding to singularly perturbed delay parabolic PDE (5)-(7) is given as: 

                   
0 0 1

0

( ) ( , ) ( , ) ( , ) ( , ) ( 1, ),   ( , ) ,

( , ) ( , ),     ( , ) .
t l

b b

u a x t u x t f x t b x t x t x t

u x t x t x t

φ
φ

+ = − − ∀ ∈Ω
 = ∀ ∈Γ

          (10) 

                   
0 0 0 2

0

( ) ( , ) ( , ) ( , ) ( 1, ) ( , ),   ( , ) ,

( , ) ( , ),     ( , ) .
t

b b

u a x t u x t b x t u x t f x t x t

u x t x t x tφ
+ + − = ∀ ∈Ω

 = ∀ ∈Γ
          (11) 

As 0( , )u x t  need not satisfy 0(0, ) (0, )u t u t= and 0(2, ) (2, )u t u t= , the solution ( , )u x t exhibits boundary layers at 

0 and 2.x x= =  Further, as 
0 (1 , )u t−  need not be equal to 

0 (1 , ),u t+  the solution ( , )u x t  exhibits interior layers at  1.x =   

Lemma 3.1 The solution ( , )u x t  of (5)-(7) satisfies the estimate 
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   ( , ) ( ,0) ,  ( , ) .bu x t x Ct x tφ− ≤ ∀ ∈Ω                                                          (12) 

Where C  is a constant independent ofε . 
Proof.  The result follows from the compatibility condition. The detailed proof in [Roos.M. et.al, 2008] 

Let L be a differential operator that denotes the differential equation in (1)-(3) satisfies the following continuous maximum 
principle. 

Lemma 3.2 (Continuous maximum Principle) Let 
* (0,0) (1,0) (2,1) *( , ) ( ) ( )x t U C C Cϒ ∈ = Ω ∩ Ω ∩ Ω  

such that  (0, ) 0,  ( ,0) 0,t xϒ ≥ ϒ ≥  1 1(2, ) 0,  ( , ) 0, ( , ) ,t L x t x tκϒ ≥ ϒ ≥ ∀ ∈Ω
 

2 2( , ) 0, ( , ) ,L x t x tϒ ≥ ∀ ∈Ω and [ ](1, ) (1 , ) (1 , ) 0x x xt t t+ −ϒ = ϒ −ϒ ≤  then, ( , ) 0, ( , ) .x t x tϒ ≥ ∀ ∈ Ω  

Proof:  For the proof one can refer [Elango.et.al, 2021] 
Lemma 3.3 (Stability Result) The solution ( , )u x t of the problem (5)-(7), satisfies the bound  

                  { }max , , , , ( , ) .
l b r

u C u u u Lu x tκ ∗Ω Γ Γ Γ Ω
≤ ∈ Ω

 
Proof: For the proof one can refer [Elango.et.al, 2021]     
 

Theorem 3.2 Let 1 1 1 1(2 ,1 /2) (2 2) (2 2)( , ), ( , ), ( , ) ( ),  ([0, ]), ([0, ])l ra x t b x t f x t C C T C Tβ β β βφ φ+ + + +∈ Ω ∈ ∈
 

 1 1(4 ,2 /2)
1( ), (0,1).b bC β βφ β+ +∈ Γ ∈ Assume that the compatibility conditions (8) and (9) are fulfilled. Then, the problem (5)-(7) 

has a unique solution ( , )u x t
 
and 1 1(4 ,2 /2)( )u C β β+ +∈ Ω . Furthermore, the derivatives of the solution u  satisfy: 

             

( )
2( , )
,    , 0

i j
i

i j

u x t
C i j

x t
ε

+
−

Ω

∂ ≤ ∀ ∈ ≥
∂ ∂

�  Such that 0 2 4,i j≤ + ≤  

where the  constant C is independent of ε .
 Proof: For the proof, refer to [Elango.et.al, 2021]  

The following theorem provides the bound for the derivatives of the regular and the singular components respectively.  

Theorem 3.3 Let the data 1 1 1 1 1(4 ,2 /2) 3 2 (6 ,3 /2), , ( ),  , ([0, ]),  ( ),l r b ba b f C C T Cβ β β β βφ φ φ+ + + + +∈ Ω ∈ ∈ Γ
 

1 (0,1)β ∈ . Assume that the compatibility conditions (8) and (9) are satisfied.  Then, we have 

             
( )

1 2(1 ),
i j

i
i j

v
C

x t
ε

+
−

Ω

∂ ≤ +
∂ ∂

                                                              (13) 

          
( )
( )

2
( ) 1

2
2

exp( )        ( , ) ,( , )

exp( ( 1) ) ( , ) .

i
i j

l
i j i

C x x tw x t

x t C x x t

ε ε

ε ε

−
+

−

 − ∈Ω∂ ≤ ∂ ∂ − − ∈Ω

                              (14) 

         
( )
( )

2
( ) 1

2
2

exp( (1 ) ) ( , ) ,( , )

exp( (2 ) ) ( , ) .

i
i j

r
i j i

C x x tw x t

x t C x x t

ε ε

ε ε

−
+

−

 − − ∈Ω∂ ≤ ∂ ∂ − − ∈Ω

                             (15) 

where C is constant independent of ,  ( , ) ,  , 0,  0 2 4.x t i j i jε ∈Ω ≥ ≤ + ≤
  Proof: One may refer [Elango.et.al, 2021] for the details.   

    
4.  Formulation of the Numerical Scheme 
 
The theoretical basis of non-standard discrete modeling method is based on the development of exact finite difference method. In 
[28], Micken’s presented techniques and rules for developing non-standard FDMs for different problem types. In Mickens’s rules, 
to develop a discrete scheme, denominator function for the discrete derivatives must be expressed in terms of more complicated 
functions of step sizes than those used in the standard procedures. This complicated function constitutes a general property of the 
schemes, which is useful while designing reliable schemes for such problems. On the spatial domain [0, 2], we introduce the 

equidistant meshes with uniform mesh length h  such that  
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0 /2

2
0 , , 1(1) 1, 1, 2, .N

x i N Nx x ih i N x x h
N

 Ω = = = = − = = = 
 

  

whereh  is the step size and N  is the number of  mesh points in the spatial direction. Let we consider, the domain [0,1]  which is 

discretized into 2N  equal number of subintervals, each of lengthh . For problem (1)-(4), in order to construct exact finite 

difference scheme we follow the procedures used in [Mickens.R.E 2005].  
 
 
Consider the constant coefficient sub equations given in (16) by ignoring the time variable for as

 

       
2

2

( )
( ) 0,

d u x
u x

dx
ε α− + =                                                                  (16) 

where ( , ) 0.a x t α≥ >  Thus the problem (16) has two independent solutions namely 1 2exp( ) and exp( )x xλ λ
 
with  

   

1,2 .λ α ε= ±
   

                                                           (17) 

we denote the approximate solution of ( )u x at ix s′  by .iU  Now our objective is to calculate a difference equation which has the 

same general solution as the problem (16) has at the grid point ix  given by ( ) ( )1 2exp expi i iU A x B xλ λ= + . Using the 

procedures used in [Mickens.R.E 2005] we have 

                             

( ) ( )
( ) ( )

( ) ( )

1 1 1 2 1

1 2

1 1 1 2 1

exp exp

det exp exp 0.

exp exp

i i i

i i i

i i i

U x x

U x x

U x x

λ λ
λ λ

λ λ

− − −

+ + +

 
  = 
 
 

                                             

(18) 

Simplifying the determinant in (18), we obtain that 

  

1 12cosh  0.i i iU h U U
α
ε− +

 
− + =  

     

                                                          (19) 

is an exact difference scheme for (16). After doing the arithmetic manipulation and rearrangement on (19) for the variable 
coefficient problem, we obtain 

2
1 1

 ( , , )

2
( ) 0.i i i

i i
i h t

U U U
a t U

ω
ε

ε
− +− +− + =

                     

(20) 

where 

                                                          

2
sinh ,

2
i

i
i

hηω
η

 
 
 

=            (21) 

        with 
( )

.i
i

a tη
ε

=  

Consider (5)-(7) on the domain  (0,2) [0, ],    fo 1 ., 1r ,.i NT =Ω = −×   

Let ( )iU t  denoted for the approximation of( , )iu x t . By using the non-standard finite difference approximation (NSFD), at this 

stage the problem in (5)-(7) reduces to semi- discrete form as      

      ( ) ( ),  for  1,2,..., -1.N
i iL U t G t i N= =

                                     
(22) 

where

1 1
2

1
2

1

1

22

( ) ( ) ,                              
( ) 2 ( ) ( ) ( )

( , , )

( )

( , ) (0, ],

( )

( ) ( ) ( ) ( , ) ,  ( , ) (0, ].
2 ( ) ( ) ( )

( , , )

N
i i i

N
i

N
i i i i

i i i i

i

i i i i
i

i
N

U t U t U t dU t

h t dt

U

a t U t x t T

L U t

a t U t b t U x t x t T
t U t U t dU t

h t dt

ε
ω ε

ε
ω ε

+ −

+ −
−

+ + ∀ ∈Ω− +−

− +−

×
=

+ + + ∀ ∈Ω ×






      

(23)       

                                   

             

2 1

2

( ) ( ) ( , ), ( , ) (0, ],
( )

( ),                                ( , ) (0,].

N
i i l i N i

i N
i i

f t b t x t x t T
G t

f t x t T

φ − − ∀ ∈Ω ×
=  ∀ ∈Ω ×

                                        

(24)
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For ,i N=  the composite Simpson’s integration rule approximates the non-local boundary condition in (3) as follows: 

           

2

00

(2, ) ( ) ( , ) ( ) ( ) ,      0 ,
N

N i i i r
i

u t g x u x t dx U t h c g U t t Tε ε φ
=

− = − = < ≤∑∫
      

                           (25)

 

where 0 2 1 2

1 4 2
,  ,  for 1,2,..,  and ,  for 1,2,.., 1

3 3 2 3 2N k k

N N
c c c k c k−= = = = = = − ,  

Now, using (25) and left boundary condition, we can obtain the following formula for ( )NU t
                        

           

1

0

1

0 0
1

1
( ) ( ) ,

(1 )

1
         (0, ) ( ) .

(1 )

N

N i i i r
iN N

N

l i i i r
iN N

U t h c g U t
hc g

hc g t h c g U t
hc g

ε φ
ε

ε φ ε φ
ε

−

=

−

=

 = + −  

 = + + −  

∑

∑                                                    

(26)

 

At this stage the time domain is continuous and the system of IVPs in (23), (24) and (26) can be written in compact form as    

    ( ) ( ) (
)

),
(i

i it U t G
dU t

H
dt

t+ =                          (27) 

where ( )H t  is a matrix of size NxN  and ( ) and G ( )i iU t t  are vectors of size N . The entries of the coefficient matrix ( )H t  

are respectively given by  

                                    

1 2

2

1 2

2

( ) ,          for  2,3,..., 1,
( , , )

2
( ) ( ),  for  1,2,..., 1,

( , , )

( ) ,          for  1,2,.., 1,
( , , )

( ) (t),                 for  2 1,..., 1.

ii
i

ii i
i

ii
i

ii N i

H t i N
h t

H t a t i N
h t

H t i N
h t

H t b i N N

ε
ω ε

ε
ω ε

ε
ω ε

−

+

−

−= = −

= + = −

−= = −

= = + −













 

and the corresponding right-hand side vector in the equation system has the entries 

    

1 1 1 1 2 2
1

2

( ) ( ) ( ) ( , ) (0, ),  
( , , )

( ) ( ) ( , ),   for  2,3,.., 2,
( )

( ),                               for  2 1,..., 1.

l N l

i i l i N

i

i

G t f t b t x t t
h t

f t b t x t i N
G t

f t i N N

εφ φ
ω ε

φ

−

−

  
= − +  

 
 − = =  = + −

 

Before we proceed with the convergence analysis, we highlight some properties of the discrete problem to the original (1)-(3) in 
the form of lemma which play a major role in the said analysis.   

For 1,2,..., 2 ,i N=  

    1 2( ) ( ) ( ) ( , ).N
i i i l i NL U t f t b t x tφ −= −

 

For 2 1,..., 1,i N N= + −   

     2 ( ) ( ).N
i iL U t f t=  

Subject to the boundary conditions:  

               

 

2 2

( ) ( , ),    2 2 1,...,0 and [0, ],

( , ) ( , ),

( ) ( , ),     1,2,..., 1. 

i l i

x N x N

i b i

U t x t i N N t T

D U x t D U x t

U t x t i N

φ

φ

− +

= = − − + ∈
 =
 = = −

 For i N= ,

 

1 1 1 1

1

( ) 4 ( ) ( )
( , ) ( , ) .

3

N
N i i i i i i

N N i
i

g U t g U t g U t
U x t U x t hκ ε − − + +

=

+ += − ∑  
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where, 2
1 ( ) ( )( ( ).) ( )ii ii
N

iL U t a t U tU t U tεδ= +′ −

 

        

2 2
2( )( ) ( ) ( ) ( ( ).( ) )N

i i i i i Ni iL U t aU t U t t U t b t U tεδ −− + +′=
 

 

5. Convergence Analysis 
 

   The problem (23), (24) and (26), satisfies the following well-known semi-discrete maximum principle on [0, ].
N

TτΩ ×   
Lemma 5.1 (Semi-discrete maximum principle) Assume that 

1 1

1

4
1

3

N
i i i

i
i

g g g
h ρ− +

=

+ + = <∑  

and mesh function ( )i tΘ satisfies 0( ) 0,  ( ) 0  and ( ) 0,N
i Nt t tκΘ ≥ Θ ≥ Θ ≥  Then 1 ( ) 0,N

iL tΘ ≥
 

1( , ) [0, ],N
ix t T∀ ∈ Ω ×

2 2( ) 0, ( , ) [0, ],N N
i iL t x t TΘ ≥ ∀ ∈ Ω × and[ ] 2 2 2( , ) ( , ) ( , ) 0x N x N x ND x t D x t D x t+ −Θ = Θ − Θ ≤  

imply that  ( ) 0, ( , ) [0, ].
N

i it x t TΘ ≥ ∀ ∈ Ω ×  

Proof: Define a test function ( , )iS x t as 

   
1

2

1
,  ( , ) [0, ]

8 2( , )
3

,  ( , ) [0, ]
8 4

Ni
i

i
Ni

i

x
x t T

S x t
x

x t T

 + ∈ Ω ×= 
 + ∈ Ω ×


           (28) 

Note that  

1 2 0( , ) 0, ( , ) [0, ],  ( , ) 0, ( , ) ( ) [0, ],  ( , ) 0,  ( , ) 0,
N N N N

i i i i iS x t x t T L S x t x t T S x t S x t> ∀ ∈ Ω × > ∀ ∈ Ω ∪ Ω × > >

( , ) 0,N
Nk S x t >

 
and [ ] 2( , ) 0.x ND S x t <  Let 

  
( , )

max : ( , ) [0, ] .
( , )

N
i

i
i

x x t
x t T

S x t
γ

 −= ∈ Ω × 
 

   

Then, there exists *( , ) [0, ]
N

x t T∈ Ω ×  such that
* *( , ) ( , ) 0x t S x tγΘ + =  and  ( , ) ( , ) 0,i ix t S x tγΘ + ≥   

( , ) [0, ].
N

ix t T∀ ∈ Ω × Therefore, the function
 
attains its minimum at 

*( , ) ( , ).x t x t=
 
suppose the theorem does not hold true, 

then
 

0,γ >  

Case (i): 
*

0( , ) ( , )x t x t= , 0 0 00 ( )( , ) ( , ) ( , ) 0,x S x t x t S x tγ γ< + = Θ + =
 
It is a contradiction.  

Case (ii):
*

1( , ) [0, ]Nx t T∈Ω × ,
* 2 *

10 ( )( , ) ( )( )( , ) 0,N
x tL x S x t D a x S x tγ εδ γ< + = − + + ≤

 
It is a contradiction.

           
 

Case (iii): 
*

2( , ) ( , )Nx t x t= , [ ] 20 ( ) ( , ) 0,x ND x S x tγ≤ + <
  
It is a contradiction.  

Case (iv): 
*

2( , ) [0, ]Nx t T∈Ω ×  
* 2 * *

2 20 ( )( , ) ( )( )( , ) ( )( , ) 0N
x t NL x S x t D a x S x t b x S x x tγ εδ γ γ< + = − + + + + + − ≤

 
 

    It is a contradiction.  

Case (v): 
*( , ) ( , )Nx t x t=   

      

1 1 1 1

1

( ) ( ) 4 ( ) ( ) ( ) ( )
0 ( )( , ) ( )( , ) 0.

3

N
N i i i i i i

N N i
i

g x S t g x S t g x S t
k x S x t x S x t h

γ γ γγ γ ε − − + +

=

+ + + + +< + = + − ≤∑
             

It is a contradiction.
 Hence, the proof of the theorem 

Lemma 5.2 Let ( )i tΘ be any mesh function then, 

            
{ }

1 2
[0, ] [0, ] [0, ] [0, ] ( , ) ( ) [0, ]

( ) max ( ) , ( ) , ( ) , max ( ) ,N N N N N Nl b r i

N N
i i i i iT T T T x t T

t C t t t L tκ
Ω × Γ × Γ × Γ × ∈ Ω ∪Ω ×

Θ ≤ Θ Θ Θ Θ
        

Proof: Consider the barrier functions           



Gobena and Duressa /International Journal of Engineering, Science and Technology, Vol. 13, No. 2, 2021, pp. 57-71 

 

64 

 

                     ( , ) ( , ) ( , ),  ( , ) [0, ],
N

i i i ix t CMS x t x t x t Tϑ ± = ± Θ ∈ Ω ×              (29)
   

where  

                   
{ }

1 2
[0, ] [0, ] [0, ] ( , ) ( ) [0, ]

max , , , maxN N N N Nl b r i

N N

T T T x t T
M Lκ

Γ × Γ × Γ × ∈ Ω ∪Ω ×
= Θ Θ Θ Θ    

  and ( , )iS x t is the test function as in Lemma 5.1.   

From (31) it is clear that 0( , ) 0, ( , ) 0ix t x tϑ ϑ± ±≥ ≥ and ( , ) 0.N
Nx tκ ϑ ± ≥ 1 1( , ) 0, ( , ) ,N N

i iL x t x tϑ± ≥ ∀ ∈Ω  

2 2 2 2 ( , ) 0,  ( , ) , ( , ) ( , ) 0.N N
i i x N x NL x t x t D x t D x tϑ ϑ ϑ± + ± − ±≥ ∀ ∈Ω − ≤ using lemma5.2, ( , ) 0,ix tϑ ± ≥

 

 
( , ) [0, ].

N

ix t T∀ ∈ Ω ×
 

Now, let us analyze the error estimate of the spatial discretization. We proved above the discrete problem satisfy the maximum 

principle and the uniform stability estimate. Note that ( )iU t  is denoted for the spatial discretization approximate solution to the 

exact solution ( , )u x t  at ,  0,1,...,ix x i N= =
 

Lemma 5.3 For a fixed mesh and 0ε → , it holds:  

                     
20  1 2

exp( )
lim max 0,    1, 2,...,i

mi N

C x
m

ε

ε
ε→ < <

− = =
            (30)

 

 and  

          
20  1 2

exp( (1 ) )
lim max 0,     1,2,...,i

mi N

C x
m

ε

ε
ε→ < <

− − = =  

where    2      1,2,..., 2.ix ih h N for all i N= = =  

Proof: One may refer [Woldaregay.M and File.G. Kragujevac Article in press] for the details 

Now, the truncation error of the scheme (23), (24) and (26) for 1( , ) [0, ]N
ix t T∈ Ω ×  is given by   

( )

( )

( )

2

1

1 12

1 1

1

( ) ( ) ( ) ( ) ( , ) ( ),

                           ( ),  1(1) ,
2

                           ( ( )) ( ) 2 ( ) ( ) ,    1(1) . 
( , , ) 2

i i i i
N

l i
N

N

N i

i

xx i i i i
i

U t u t f t b t x t u t

N
u t i

N
u t u t u t u t i

L

t

L L

h

L

φ

εε
ω ε

−

+ −

− = − −

= − =

= − + − + =

                               (31)  

Using the truncated Taylor series expansions of the terms 1 1( ) and ( )i iu t u t+ − yields 

    

( ) ( ) ( )
4

2
1 11 2

( ) ( ) ( ) ( ) ( ) ( , ).
( , , ) 12i i xx xx xxxx

N
i i i ii i

i

h
U t u t u t h u t u tL u u

h t

εε ξ ξ
ω ε − +

 
− = − + + ∈ 

                 

(32)
  
  

Next we use a truncated Taylor series expansion of the denominator function, 21/ iω of order five gives 

    
2 4 2

2 2

1 1
.

12 240
i i

i

h

h

ρ ρ
ω

= − +
            

(33)
    

Now, substituting (33) in to (32), we obtain
 

( ) ( ) ( )( ) ( ) ( )

( )

2
2 4

6

1

2
2

4

1
( ) ( ) ( ) ( ) ( ) ( )

12 48 5 3

                           ( )
2880

i i
i i xxxx i i xx xx xxxx ii i ii

i
xxx

N

x ii
i

U t u t u t u t h u t u t h

u t

L

h

ερ ρε ξ ρ ξ

ρε ξ

  − = − + −  
   

 
+  
 

 

Using the bounds on the derivatives and Lemma 5.3 gives 
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( ) ( )
2 2 4

2 2 4
1

6 21
( ) ( ) 1  .

12 48 3 5 2880
N i i i

i i iU t u t hL h h Ch
ερ ρ ερε ρ    

− ≤ − − − + ≤   
   

 

where we have used the relation   2 4 6...h h h> >  with lemma (5.2) gives 

                                           
( ) 2

1 ( ) ( ) .i i
N U t u tL Ch− ≤   

Hence, by discrete maximum principle, we obtain:  

                               

2( ) ( ) .i iU t u t Ch− ≤
                   

(34)

 
Remark: Similar analysis may be carried out for the finite difference scheme for 2( , ) [0, ]N

ix t T∈ Ω × , and for the right boundary 

condition. 
 
6. Discretization in Temporal Direction 
 
We discretized the IVPs (23), (24) and (25) with the classical Backward Euler method on a uniform mesh. Now denote the 

approximation of ( ) : j
i j iu t u=  by

j
iU . We perform the time discretization as follows: 

 Let M
 
be a positive integer and0 0 10,  ,  ,j j jt t t j t t t t −= = + ∆ ∆ = −  1(1) 1,  Mj M t T= − = , where M  denotes the 

number of mesh points in time direction, then
 

                           

1

( ) ( ),   for 1,2,..., ,
j j

j
j j

U U
H t U G t j M

t

−− + = =
∆

            
(35)

 

with initial condition (0) ( ).l jU tφ=   and rearranging equation (35) gives   

           

( ) ( )1 1( ) ( ) .j j
j jU I tH t tG t U

− −= + ∆ ∆ +
                               

(36)
 

Lemma 6.1 The local truncation error associated with the time integration satisfies 

   
2( )je C t≤ ∆

 
where C  is a constant independent of the perturbation parameter  ε  and M .

 Proof: The local truncation error is defined as  

             ( )1
1

( )

   ( ) [ ( )] ( ) ( ) .

j
j j

j j j j

e u t U

u t I tH t tG t u t−
−

= −

= − + ∆ ∆ +  
 

a Taylor series expansions of 1( )ju t −  takes the form  

          

2 3
4

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 6j j t j tt j ttt j

t t
u t u t tu t u t u t O t−

∆ ∆= − ∆ + − + ∆
                          

(37) 

and   

        
    ( ) ( ) ( ) ( ),t j j j ju t G t H t u t= −

   
                                    

(38) 

           ( )
2 3

4
1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 6j j j j j tt j ttt j

t t
u t u t t G t H t u t u t u t O t−

∆ ∆= − ∆ − + − + ∆
          

(39) 

The local truncation error Subtracting je  yields   

       

( )
2 3

1 4( ) ( )
( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )

2 6j j j j j tt j ttt j

t t
e u t I t H t I t H t u t u t u t O t−  ∆ ∆= − + ∆ + ∆ + − + ∆ 

   

           

2 3
1 4( ) ( )

[ ( ) ( )] ( ) ( ) ( )
2 6j tt j ttt j

t t
I t H t u t u t O t−  ∆ ∆= + ∆ − + ∆ 

          
 

Since the matrix ( )H t  is invertible, using the relation 2 3( ) ( )t t∆ > ∆  for small ( )t∆  and ( ) ,ju t C≤ we obtain  
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      ( ) 1 2 2( ) ( ) ( ) ( )j je I t H t t C t

−
= + ∆ ∆ ≤ ∆

 
which completes the proof

 
Lemma 6.2 The global error estimates in this temporal direction is given by 

     
max ( ) ( ),

N M
x t

j
j i j i

j
TE U t U C t

Ω ×Λ
= − ≤ ∆  

where jTE  is the global error in the temporal direction at( )th
j  time level. 

Proof: One may refer [Woldaregay. M and File.G Kragujevac Article in press] for the details. 
Since C and ( )t∆ are independent of the perturbation parameterε , taking the suprimum for all (0,1]ε ∈ we obtain. 

   
0 1
sup max ( ) ( ),

N M
x t

j
i j i

j
U t U C t

ε Ω ×Λ< ≤
− ≤ ∆

                                                          (40) 
This shows that the discretization in time direction is consistent and global error is bounded, with the error bound t∆ . Now, we 
use (34) and (40) to prove the parameter-uniform convergence of the fully discrete scheme as  

, ,0 1 0 1

, ,0 1 0 1

sup max ( , ) sup max ( , ) ( ) ( ) ,

                                     supmax ( , ) ( ) sup max ( ) .

j j
i j i i j i j i j i

i j i j

j
i j i j i j i

i j i j

u x t U u x t U t U t U

u x t U t U t U

ε ε

ε ε

< ≤ < ≤

< ≤ < ≤

− = − + −

≤ − + −  

Hence, we obtain the required bound as follows 

                      

2

0 1
sup ( , ) (( ))

N M
x t

j
i j i C hu x t U t

ε Ω ×Λ< ≤
− ∆+≤

                                                                    (41) 
Thus, the inequality in (41) shows the parameter uniform convergence of the proposed scheme with order of convergence: second 
order in spatial direction and first order in temporal direction. 
 
7. Numerical Examples and Results 
 
To validate the established theoretical results, we perform numerical experiments using the proposed numerical scheme on the 
problem given in (1)-(3). We consider two numerical examples to verify the parameter uniform convergence of the proposed 
scheme. Exact solution is not available for these two problems, therefore maximum nodal errors are calculated by using the double 
mesh technique as 

, , 2 , /2
, ,

,
maxN t N t N t

i j i j
i j

E U Uε
∆ ∆ ∆= −  

For any values of mesh points N and t∆ , the parameter uniform error estimate are calculated by 
, ,maxN t N tE Eεε

∆ ∆= . 

The rate of convergence of the scheme is calculated by the formula  
, 2 , /2

, , 2 , /2
2

2

log( ) log( )
log ( )

log

N t N t
N t N t N t E E

r E E ε ε
ε ε ε

∆ ∆
∆ ∆ ∆ −= =

 
and the parameter-uniform rate of convergence is calculated by: 

, 2 , /2
, , 2 , /2

2
2

log( ) log( )
log ( )

log

N t N t
N t N t N t E E

r E E
∆ ∆

∆ ∆ ∆ −= =  

The numerical results are presented for the value of the perturbation parameter  

{ }6 7 1010 ,10 ,...,10ε − − −∈  

Example 1:  Consider the following singularly perturbed problem [Elango.et.al, 2021] 

                
2

2
5 ( , ) ( 1, ) ,   ( , ) (0,2) (0,2],xu u
u x t u x t e x t

x t
ε −∂ ∂− + − − + = ∈ ×

∂ ∂
  

 
Subject to initial and boundary condition 
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2

0

( , ) 0,     ( , ) ,

(2, ) (2, ) ( , )  0,     ( , ) ,
3

( , ) 0,     ( , ) ,

l

r

b

u x t x t

x
u t u t u x t dx x t

u x t x t

κ ε

= ∀ ∈Γ

 = − = ∀ ∈Γ

 = ∀ ∈Γ

∫  

 
Example 2:  Consider the following singularly perturbed problem  

                 
2

2
5 ( , ) ( 1, ) 1,   ( , ) (0,2) (0,2],

u u
u x t xu x t x t

x t
ε ∂ ∂− + − − + = ∈ ×

∂ ∂
 

  

Subject to initial and boundary condition

   2

0

( , ) 0,     ( , ) ,

1
(2, ) (2, ) ( , )  0,     ( , ) ,

6

( , ) sin( ),     ( , ) .

l

r

b

u x t x t

u t u t u x t dx x t

u x t x x t

κ ε

π

= ∀ ∈Γ

 = − = ∀ ∈Γ

 = ∀ ∈Γ

∫  

Table 1: Maximum absolute errors and rate of convergence for Example 1 at number of mesh points N and t∆  
 

ε ↓  16N =  

0.1 2t∆ =  

32N =  
20.1 2t∆ =  

64N =  
30.1 2t∆ =  

128N =  
40.1 2t∆ =  

256N =  
50.1 2t∆ =  

    
610−

 3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

710−  3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

810−  3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

910−  3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

1010−  3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

 
Table 2: Comparisons of maximum absolute errors and rate of convergence for Example 1 at number of mesh 

 points N and t∆  with T=2, for 10 9 6{10 ,10 , ...,10 }ε − − −∈ .  

 16N =  

0.1 2t∆ =
 

32N =  
20.1 2t∆ =  

64N =  
30.1 2t∆ =  

128N =  
40.1 2t∆ =  

256N =  
50.1 2t∆ =

 
resent Method      

,NE τ
 

3.5045e-03 2.0026e-03 1.0723e-03 5.5505e-04 2.8241e-04 

,Nr τ
 

0.80733 0.90117 0.95002 0.97483 0.98734 

Results in Elango et al., (2021)    
,N tE ∆

 
2.0615e-02 1.2534e-02 6.9738e-03 3.6873e-03 1.8972e-03 

,N tr ∆
 

0.71783 0.84584 0.91937 0.95873 0.97912 
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(a)                                                                            (b) 

Figure. 1  Surface plot of the numerical solution for Example 1 on the left side and Example 2 in the right side for 32N M= =  
with boundary layer formation when 310ε −=  

 
   (a)                                  (b) 

Figure. 2 Surface plot of the numerical solution for Example 1 on the left side and Example 2 in the right side for 

64N M= = with boundary layer formation when 1010ε −=  

 
                                                                (a)         (b) 

 
Figure. 3 The Log-Log plot of the maximum error for Example 1 on the left and Example 2 on the right side 
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Table 3: Maximum absolute errors and rate of convergence for Example 2 at number of mesh points N and t∆  

ε ↓  16N =  

0.1 2t∆ =  

32N =  
20.1 2t∆ =  

64N =  
30.1 2t∆ =  

128N =  
40.1 2t∆ =  

256N =  
50.1 2t∆ =  

    
610−

 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

710−
 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

810−
 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

910−
 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

1010−
 2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

 
Table 4: Comparison of Maximum absolute errors and rate of convergence for Example 2 at number of mesh  

points N  and t∆   with T=2, for 10 9 6{10 ,10 , ...,10 }ε − − −∈ . 

 
 16N =  

0.1 2t∆ =
 

32N =  
20.1 2t∆ =  

64N =  
30.1 2t∆ =  

128N =  
40.1 2t∆ =

 

256N =  
50.1 2t∆ =

 
Present method      

,NE τ
 

2.9520e-02 1.5980e-02 8.3421e-03 4.2681e-03 2.1581e-03 

,Nr τ
 

0.88543 0.93778 0.96682 0.98383 0.99180 

Result in Elango et al., (2021)    
,N tE ∆

 
1.8765e-01 1.4776e-01 9.7571e-02 5.7092e-02 3.1057e-02 

,N tr ∆
 

0.34479 0.59873 0.77316 0.87837 0.93697 

 

From Tables 1 and 3, it can be observed that the computed maximum point wise errors ,N tEε
∆  after a certain value of 610ε −=  

(for both problems) are stable, and uniformly convergent. From Tables 2 and 4, the performance of the proposed scheme is 
investigated by comparing with recently published paper in Elango et al. (2021). As one sees, the proposed method gives more 
accurate results. To observe the changes in the boundary layer width with respect toε , and to show the physical behavior of the 
solution, the surface plots of the numerical solution (Figs. 1 and 2) have been plotted.  From the figures, for smallε close to zero 

twin boundary layers at 0 and 2x x= =  further an interior layer at 1x =  can be seen from the solution. The numerical 
solutions obtained by the present method have been log-log plotted for singular perturbation parameter ranging 

from 6 1010  to 10ε − −=  in Figure (3) to indicate the maximum absolute errors decrease as the number of the mesh points increases 
and maximum absolute errors increases as the perturbation parameters decreases.  This is one of the main results to be shown in 
this paper. 

 

4. Conclusions  
 
   In this work, parameter uniform numerical method has been developed for solving singularly perturbed delay parabolic 
differential equation with non-local boundary condition exhibiting parabolic boundary layers and an interior layer. The developed 
method is based on the method of a line that constitutes the non-standard finite-difference (NSFDM) for the spatial discretization 
and a classical backward Euler method is used in the temporal direction for the system of initial value problem resulting from the 
spatial discretization.  To treat the non-local boundary condition, Simpson’s rule is applied. The stability and convergence of the 
proposed scheme are analyzed. Two model examples have been considered to validate the applicability of the scheme by taking 
different values for the perturbation parameterε and mesh points. The computational results are presented in terms of tables and 

figures. The proposed numerical scheme is shown to be accurate of order
2( )O h t+ ∆ . And the performance of the proposed 

scheme is investigated by comparing with prior study; it also improves the results of the methods existing in the literature.  
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