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Abstract 
 

A large-scale trial embankment provided with partially penetrating prefabricated vertical drains (PVD) was installed in 
consolidating marine clay deposits at East-Port said industrial zone project in Egypt. The trial embankment was constructed with 
a bottom area of 150x150m and a height of 5.5m to evaluate the efficiency of the improvement system and verify the design 
parameters. An intensive instrumentation system was built-up including shallow settlement indicators, vibrating wire 
piezometers, extensometer, and inclinometers. Two and three-dimensional finite element analyses (FE) were performed to study 
the effect of the preloading system provided with partially PVD in consolidating marine clay deposits. FE models were validated 
and showed good agreement with the field observations in terms of vertical displacement of embankment center, and lateral soil 
deformation beneath the embankment toe. 
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1. Introduction 
 

Many coastal regions worldwide contain very soft deposits that have unfavorable geotechnical properties. One of these areas is 
East-Port said which   is located in the northeast sector of Egypt and widely known for soft soil deposits encountered along the 
Mediterranean coast. The soil formation within this area provides a geotechnical challenge due to the existence of soft soil deposits 
that have thicknesses over 40.0m. These deposits are normally characterized by low shear strength and high compressibility 
characteristics which make them a difficult engineering exercise. Many improvement techniques are used to mitigate unacceptable 
total and differential settlements of underlying soft soil (Indraratna et al., 2005) such as Vibro-replacement, electro-osmotic, and 
deep mixing but the associated cost may become excessive when the soft deposits layer extends to lower depths. Indeed, the low 
vertical permeability of the soft clay deposits requires a too long time to achieve the target settlement compared to the available 
construction period. Furthermore, the horizontal permeability of these deposits is much higher than its vertical permeability. Thus, 
using vertical drains in soft soils deposits reduces the drainage path from the total thickness of the soil layer (in case of vertical 
consolidation) to the half of the drain spacing (in case of horizontal consolidation) (Indraratna et al., 2012 & 2015).   
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Preloading system provided with partially penetrating prefabricated vertical drains (PVDs) is one of the effective techniques 
used effectively to reduce the post-construction settlement, mitigate the effects of differential settlement on structures, and 
increase the shear strength of the soft soil deposits as well. In this method, a surcharge load, usually in the form of an embankment 
that is equal to or greater than the anticipated foundation stress, is applied to the soft soil layer until most of the primary 
consolidation has been achieved. lndraratna et al. (2005) stated that vertical drains combined with pre-loading are amongst the 
most effective techniques known for accelerating consolidation and stabilizing ground. Vertical drains reduce the drainage path 
and accelerate the dissipation of excess porewater pressure generated from the application of surcharge loads. This paper uses the 
trial embankment vertical and lateral displacement records to compare the accuracy and appropriateness of predictions made using 
two and three-dimensional finite element analysis. 
 
2.  Ground condition and trial field zone 
 
2.1 Site topography: The site topography comprises a relatively flat area with an average elevation of around +0.5 meters above 
mean sea level. To establish a stable working platform, the entire construction area was reclaimed with a sand blanket up to an 
elevation of +1.00 meters above mean sea level. the subsurface condition in the site area can be classified mainly into five distinct 
soil layers, as shown in (Figure 1): on top is 1.0m fill layer (sand blanket) followed by 15m of soft silty clay with interlayers of 
silty sand followed by 30m layer of very soft clay to stiff clay layer, which is underlain by a dense to very dense sand layer 
followed by stiff to hard clay layer. The ground-water table is located close to the ground surface. 

 

 

 

  

Figure 1. Subsoil stratigraphy 
 

2.2 Trial Embankment: A large-scale trial field zone (trial embankment) was constructed with a bottom area of 150x150m and a 
height of 5.5m. Vertical drains with an average width of 100mm and thickness of 4mm were installed from the fill top layer down 
to a depth of 25.0m and arranged in a triangular pattern with a spacing of 1.50m. The embankment was constructed using a sand 
fill with an average density of 17 kN/m3. Settlement plates, inclinometers, extensometers were installed beneath the embankment 
to measure settlement, lateral displacement and, pore water pressures. The sequence of erection for instrumentation points had in 
carried out in the arrangement shown in (Figure 2) while (Figure 3) shows the trial embankment and the monitoring system 
arrangement. 
 

 
Figure 2. Sequence of erection for instrumentation points (Keller Holding GmbH) 

Interlayers of silty sand 
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The trial zone filling process was carried out for 50 days while the instruments were installed immediately after installation of the 
vertical drains and the measurements continued for 450 days. The surcharge history and the correspondent vertical displacements 
for the trial embankment center is shown in (Figure 4) while (Figure 5) shows the variation of vertical displacement and lateral 
displacement for the trial zone center and toe. These figures show that after 450 days of surcharge loading, the vertical 
displacement of the embankment ranges between 180cm to 215cm with an average value of 198 cm while the lateral displacement 
reached to 16cm. 

 

 

(a) (b) 
 

Figure 3. Trial embankment and location of the monitoring system (a) Layout (b) Cross-section (Keller Holding GmbH) 
 

 
Figure 4. Surcharge history and the correspondent vertical displacements for the trial embankment for all measuring points 
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(a)  (b) 

Figure 5. Variation of displacement with level (a) vertical displacement for embankment center (b) lateral displacement for 
embankment toe 

 
3. Verification and selection of analysis parameters 

 
3.1 Coefficient of horizontal permeability: By considering the methods for evaluating the coefficient of horizontal permeability 
(Kh) introduced by Jamiolkowski et al. (1985), Parez &Fauriel (1988); Houlsby and Teh's (1988), (Figure 6) shows the variation of 
the coefficient of horizontal permeability with level for all used methods. From this figure, the design value can be taken as 0.015 
m/year down to level -7.50 followed by 0.04 m/year down to level -15.00 followed by 0.01 m/year for the rest of the layer. 
 
3.2 Coefficient of horizontal permeability: The soil permeability changes during the consolidation analysis according to the 
following relationship as stated by Taylor (1948): 

log
kc

e

k

k ∆=








0

 (1) 

 
In practice, Cc/Ck ranges between 0.5 and 2.0 (Berry and Wilkinson, 1969; Mesri and Rokhsar, 1974), with Ck taken from the 
empirical relation Ck = 0.5e0 while Tavenas et al. (l983) defined it as the slope of the void ratio vs log k. the effect of permeability 
change index Ck had been investigated on the vertical displacement using PLAXIS 2D with a different value of Ck as follows: 

05.0 eck ≈ ss (2) 

0.10~5.0/ =kc CC ss (3) 

 
The results of the study are shown in (Figure 7) which clearly prove that permeability change index Ck with value higher than 
Ck=3Cc has a minor effect on the final displacement value. 
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Figure 6. Variation of coefficient of horizontal permeability (Kh) with level 

 

 
Figure 7: Total vertical displacement for all studied cases 

 
3.3 Consolidation parameters: The consolidation parameters (Cc, Cr, eo, OCR) used to calculate soft soil model parameters and 
concluded from the laboratory odometer tests had been verified using lab-test module included in PLAXIS software considering 
the following steps: 
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• The stress–strain curve had been concluded from the PLAXIS software for the case of odometer test. The results of the 
analysis are shown in (Figure 8). 
 

• Using PLAXIS Stress–strain relationship, the equivalent Stress–void ratio relationship had been concluded by estimating 
the void ratio from the relation:  

00)1( eee ++= ε  (4) 

 
•    Finally, the Stress–void ratio relationship concluded from the PLAXIS lab-test module had been compared to the actual 

laboratory oedometer results as shown in (Figure 9). The analysis results show close agreement between the concluded 
stress-strain curves from PLAXIS and laboratory odometer test results. 

 
 

  
Depth 15.5m Depth 25.5m 

 

  

Depth 36.0m Depth 44.5m 

Figure 8. Stress–strain curve as concluded from PLAXIS analysis 
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Depth 15.5m Depth 25.5m 

 

 
 

Depth 36.0m Depth 44.5m 
Figure 9. PLAXIS soil test results using SSM with respect to laboratory odometer test results 

 
4. Numerical modeling  

 
   Two and three-dimensional Numerical models using the finite element-based software PLAXIS 2020 were generated to analyze 
the case under study. The plain-strain analysis was chosen for two-dimensional modelling to simulate the half of the embankment 
with a total number of elements (15-noded triangles) in this model is 1343. For the soil models used in this study, the fill surcharge 
was modelled using the Mohr-Coulomb model (MC) while the clay layers were modelled using the soft Soil model (SSM). (Table 
1) summarizes the geotechnical parameters used in the finite element analysis.  
 

Table 1. Geotechnical parameters for finite element modelling 

Consolidation Parameters 
Time-Settlement 

Parameters  
Layer Description 

Soil 
Model 

Φ’ 
Cc Cr eo OCR 

K h 

(m/y) 
K v 

(m/y) 
*C k 

Platform/Embankment Fill MC 36° -- -- -- -- 365 365 -- 

SSM 26° 1.2 0.12 1.80 2.25 0.015 0.0015 2.4 Silty Clay/Clayey Silt with 
interlayers of Sand SSM 26° 1.2 0.12 1.80 1.10 0.04 0.004 2.4 

Silty Clay SSM 26° 0.9 0.09 1.90 1.10 0.01 0.0033 1.8 

* Permeability change index Ck had been selected as 2 Cc as per recommended Berry and Wilkinson (1969). 
 

The soil parameter for the soft soil model (SSM) includes the modified compression index λ* and the modified swelling index 
κ* which are defined in (PLAXIS user’s manual) as:  
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4.1 Model dimensions: To accurately compare the behavior of trial field embankment records with the finite element results, a 
sensitivity analysis had been performed to select the appropriate location for the model rigid boundary after the embankment slope 
toe. The sensitivity analysis had studied different locations of the model boundary as a function of the surcharge fill height (H). 
The study had been carried out using both 2D and 3d analysis considering a rigid boundary located at distance (X) varies between 
(1H to 20H). the results of the analysis are presented in (Figure 10) and showed that the location of the FE boundary has a minor 
effect on the final lateral displacement starting from a distance of 13 times the embankment height (>65m). Accordingly, the rigid 
boundary limit had been selected at a distance of 75m from the embankment toe. 

 
Figure 10. Effect of Location of Model Boundary from Slope toe on the lateral displacement 

 
For 3D analysis, and considering the large area of the trial field embankment (top area 110m x 110m and bottom area of 150m x 
150m), modelling the entire embankment requires a huge number of elements that can exceed the available current computer 
capacities. To cover this problem, 3D FE analysis had been performed considering minimizing the model dimensions by modelling 
a portion of the embankment only with a dimension of 25m x 150m with adjusting the boundaries deformation and groundwater 
flow conditions at symmetry edges. (Figure 11) shows the selected 3D model dimensions compared to actual dimensions while 
(Figure 12) shows the geometry of the finite element models used in the analysis. 

 
Figure 11. Selected 3D model dimensions compared to actual dimensions 
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(a) (b) 

Figure 12. PLAXIS model geometry considered in the study (a) 2D (b) 3D 
 

For simulation of the vertical drains in the two dimensional plain-strain analysis, the equivalence between axisymmetric and 
plane strain conditions prior to finite element modeling has been performed based on the permeability equivalency procedure 
proposed by Hird et al. (1995) For ideal drains as expressed in the following equation: 
 

]75.0)[ln(
67.0
−

=
nk

k

ax

hp
 (4) 

 
Where, khp is the horizontal permeability of in plane strain unit cell, kax is the horizontal permeability in axisymmetric unit cell, n is 
the influence ratio re/rw. 
   For vertical drains pattern simulation, an equivalent rectangular spacing had been considered with same drain influence ratio (n) 
for triangular pattern. 
 
5. Results Analysis  

 
The results of PLAXIS analysis show that the vertical displacement at embankment center after 450 days from end of backfill 

process at level +1.50 is about 1.83 m and 1.97m for the 2D and 3D analysis respectively. (Figure 13) shows the time-settlement 
relationship concluded from the FE analysis. While (Figure 14) shows the variation of vertical displacement with level. 

For lateral displacement, the results of PLAXIS analysis show that the lateral displacement at embankment slope toe after 450 
days from end of backfill process is about 18 cm and 14 cm for the 2D and 3D analysis respectively. (Figure 15) shows the 
variation of lateral displacement with level. 
 

  

(a) 2D analysis (b) 3D analysis 
Figure 13. Time-settlement relationship concluded from FE analysis for embankment center after 450 days from end of backfill 

process 
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(a) 2D analysis (b) 3D analysis 
Figure 14. Vertical displacement versus level as resulted from FE analysis after 450 days from end of backfill process 

 
 

 
 

 

(a) 2D analysis (b) 3D analysis 
Figure 15. Lateral displacement versus level concluded from FE analysis for embankment slope toe after 450 days from end of 

backfill process 
 

Based on the FE analysis and with respect to the trial embankment field vertical displacement measurements (Figure 16), it is 
clear that 2D analysis is generally underestimated the vertical displacement during the consolidation time. Considering the average 
measured vertical displacement of 198cm, the average ratio of 2D FE analysis to the in-situ vertical displacement is about 1.08. 
For 3D model, the results of analysis show a good agreement with the filed records with an average ratio of 1.0 to the in-situ 
vertical displacement. For the first 200 days from the end of the backfill process, the field measurements show higher vertical 
displacement values in this period compared to the finite element results with difference percentage reached about 25% probably 
due to the presence of Sand interlayers in the upper 15m that might affect significantly and accelerated the settlement. 

With respect to the vertical displacement variation with depth, (Figure 17a) shows the vertical displacement variation with time 
resulted from the numerical analysis with respect to field measurements. From this figure, both 2D and 3D analysis show good 
agreement with the filed records in all measured levels. Only for measuring station at level -13.00, PLAXIS analyses 
overestimated the displacement value and showed higher value with a difference percentage of about 65% and 85% in the 2D and 
3D analysis respectively.  

For lateral measurements, (Figure 17b) shows the lateral displacement variation with time resulted from the numerical analysis 
with respect to field measurements. From this figure, it’s clear that 2D analysis is close to the field measured value with a 
difference percentage of about 6% while 3D analysis shows a difference percentage of about 20%. 
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Figure 16. Field measurements for vertical displacement and numerical analysis results variation with time 

 

  
(a) Vertical displacement of Embankment Center (b) Lateral displacement of Embankment toe 

Figure 17. Field measurements for vertical and lateral displacements and numerical analysis results variation with level 
 

6. Conclusions  
 
  The present study investigated 2D and 3D FE analysis and were compared to in-situ measurements for the performance of 
preloading system with partially penetrating vertical drains in consolidating marine clay deposits. The conclusions of the 
conducted study can be summarized in the following points: 
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• FE analysis properly predicted the in-situ measurements in terms of vertical and lateral displacements. The average ratios 
of 3D and 2D FE to in-situ vertical displacement were about 1.03 and 0.95 respectively. For lateral displacement, these 
average ratios were about 0.94 and 1.2 respectively. 

• Using soft soil model in the conducted study provided an adequate simulation for the behavior of marine soft clay under 
loading. 

• In 2D analysis, the plane-strain analysis was proper to model preloading system with partially penetrating vertical drains 
considering permeability equivalence between axisymmetric and plane-strain conditions using Hird et al. (1995) formula. 

• The triangular pattern in 2D plane-strain analysis was simulated with equivalent rectangular spacing considering the same 
drain Influence ratio (n) and provided a reasonable result. 

• 2D plane-strain analysis considering the addressed assumption provided similar results compared to 3D analysis with 
reduced execution time. 

• Permeability change index Ck with value higher than Ck=3Cc has a minor effect on the final vertical displacement value. 
 
Nomenclature 
 
PVD  Prefabricated vertical drains 
FE Finite element 
2D Two dimensional 
3D Three dimensional 
MC Mohr-Coulomb model 
SSM Soft soil model 
Cc  Compression Index. 
Cr  Swelling Index 
eo Initial Void ratio 
OCR Over consolidation ratio 
Ck Permeability change index 
Kh Coefficient of horizontal permeability  
Kv Coefficient of vertical permeability  
λ* Modified compression index 
κ* Modified swelling index 
Khp Horizontal permeability of in plane-strain unit cell 
Kax Horizontal permeability of in axisymmetric unit cell 
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