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Abstract 
 
   A zero-inflated Poisson (ZIP) distribution is commonly used for modelling zero-inflated process data with single type of 
defect, and for developing appropriate tools for instituting statistical process control of manufacturing processes. However, in 
reality, such manufacturing scenarios are very common where more than one type of defect can occur. For example, occurrences 
of defects like solder short circuits (shorts) and absence of solder (skips) are very common on printed circuit boards. In 
literature, different forms of bivariate zero-inflated Poisson (BZIP) distributions are proposed, which can be used for modelling 
the manufacturing scenarios where two types of defects can occur.  Control charts are designed for monitoring for such 
processes using BZIP models. Although evaluation of capability is an integral part of statistical process control of a 
manufacturing process, researchers have given very little effort on this aspect of zero-inflated processes. Only a few articles 
attempted to evaluate the capability of a univariate zero-inflated process and no work is reported on evaluating capability of a 
bivariate zero-inflated process. In this paper, a methodology for measuring capability of a bivariate zero-inflated process is 
presented. The proposed methodology is illustrated using two case studies. 
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1. Introduction 
 
   Count data with excessive number of zero counts are quite common in many manufacturing processes as well as in many other 
non-manufacturing scenarios. For modelling such zero-inflated count data, several zero-inflated models such as zero-inflated 
Poisson (ZIP) distribution (Xie and Goh, 1993; Xie et al., 2001), zero-inflated negative binomial (ZINB) distribution (Chaney et 
al., 2013), zero-inflated generalized Poisson (ZIGP) distribution (Wagh and Kamalja, 2018) are developed by researchers over the 
last three decades. Among them, the most popular zero-inflated model is zero-inflated Poisson (ZIP) distribution where it is 
assumed that the defects occur due to random shock with certain probability Ω and those defects follow a Poisson distribution with 
parameter λ (Xie and Goh, 1993). More detailed information on the models and monitoring of univariate zero-inflated processes 
are available in Mahmood and Xie (2019) and Wagh and Kamalja (2018).  
   There are many high quality manufacturing processes where more than one type of defects may occur due to several reasons. For 
example, occurrences of defects like solder short circuits (shorts) and absence of solder (skips) are common on printed circuit 
boards (PCBs) (Li et al.; 1999); occurrences of LED mounting errors and soldering errors are observed in the soldering process of 
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LED mounting on the PCBs (He et al.; 2012). In a non-manufacturing scenario, Fatahi et al. (2012) have investigated the presence 
of number of particles and number of microorganisms in the environmental air of a sterilization process in a pharmaceutical 
factory.  
   When multiple types of defects are present in a process, it is essential to utilize multivariate distributions for modelling 
multivariate count data instead of using univariate distributions for modelling each type of defects separately. If the different types 
of defects are correlated with each other, it becomes more important to model such multivariate count data with multivariate 
distributions. Bivariate Poisson distribution, first introduced by Campbell (1938) and later developed by Holgate (1964), is often 
used for modelling correlated bivariate count data. The multivariate Poisson distribution was developed by extending the form of 
bivariate Poisson distribution for modelling multivariate count data (Krishnamoorthy, 1951). Famoye and Consul (1995) presented 
a bivariate generalized Poisson distribution with some applications.  
   For zero-inflated bivariate count data, Li et al. (1999) proposed two different types of BZIP models and extended them further 
for multivariate zero-inflated Poisson (MZIP) models. The BZIP model, proposed by Li et al. (1999), is a mixture of a bivariate 
Poisson, two univariate Poisson and a point mass at (0,0). Fatahi et al. (2012) applied the copula function approach to develop the 
joint distribution of two correlated ZIP distributions. Liu and Tian (2015) proposed a Type I multivariate ZIP distribution to model 
correlated multivariate count data with extra zeroes. They also described methods for obtaining maximum likelihood estimates of 
the proposed Type I MZIP distribution. Zhang et al. (2015) proposed two new bivariate zero-inflated generalized Poisson (BZIGP) 
distribution with a flexible correlation structure by incorporating a multiplicative parameter. Wang (2003) developed a bivariate 
zero-inflated negative binomial regression model for bivariate count data with excess zeroes. Faroughi and Ismail (2017) have 
used three different forms of bivariate zero-inflated negative binomial (BZINB) distribution for modelling bivariate zero-inflated 
count data. Cho et al. (2020) proposed a bivariate ZINB model constructed using a bivariate Poisson-Gamma mixture with 
application to single cell RNA sequencing data. Purhadi et al. (2021) have discussed about the development of geographically 
weighted bivariate zero-inflated generalized Poisson regression model and applied the same for modelling the number of pregnant 
maternal mortality and postpartum maternal mortality. Young et al. (2020a, 2020b) have discussed about various univariate zero-
inflated models, multivariate models and zero-inflated models for complex data structures. 
   Capability evaluation and process monitoring with the help of control charts are integral part of statistical process control of a 
manufacturing process. There are a considerable amount of research works on monitoring of multivariate processes for continuous 
data as well as for multi-attribute processes for count data. Patel (1973) proposed a Hotelling-type �� chart to monitor observations 
from multivariate Binomial or multivariate Poisson distribution. Marruci (1985) applied a Multinomial distribution to develop a 
control chart for multi-attribute processes. Lu et al. (1998) proposed a multivariate Shewhart ��-chart (��� chart) for combined 
number of defective items.  Jolayemi (2000) developed a model for an optimal design of multi-attribute control charts for 
processes with multiple assignable causes. Niaki and Abbasi (2007) proposed a methodology to monitor correlated multi-attribute 
high quality processes. As per the methodology, the multi-attribute data is first transformed, then the transformed mean and 
covariance matrix is estimated, and finally the well-known �� control chart is applied. Topalidou and Psarakis (2009) presented a 
review of multinomial and multi-attribute quality control charts. Aebtarm and Bouguila (2010) proposed an optimal bivariate 
Poisson field chart to monitor two correlated characteristics of count data for both manufacturing and non-manufacturing 
processes. Albers (2012) proposed a non-parametric control chart for high quality bivariate process. Fatahi et al. (2012) applied 
copula function approach to achieve the joint distribution of two correlated ZIP distributions for developing a bivariate control 
chart which can be used for monitoring rare events. He et al. (2012) proposed a CUSUM based procedure to monitor bivariate 
zero-inflated Poisson processes with an application in LED packaging Industry. The methodology uses the combination of two 
CUSUM based control procedures for detecting shifts in the two sets of parameters in a BZIP process.   
   Although evaluation of capability is an integral part of statistical process control of a manufacturing process, researchers have 
taken very little interest on this aspect of zero-inflated processes. Only Patil and Shirke (2012) and Pal and Gauri (2021) have 
attempted to measure capability of the univariate zero-inflated Poisson processes. Patil and Shirke (2012) have modified the 
Perakis and Xekalaki (2005) proposed ���	 index by incorporating the inflation of zero parameter into ���	 index, and applied it 
for measuring the capability of a zero-inflated Poisson process. But it fails to represent the true capabilities of zero-inflated 
processes consistently. On the other hand, Pal and Gauri (2021) have applied the concept of Borges and Ho (2001) for measuring 
the capability of a zero-inflated Poisson process. Pal and Gauri (2021) proposed approach overcomes the limitation of Patil and 
Shirke’s (2012) approach, and can reveal the true capabilities of zero-inflated processes consistently. However, to the best of our 
knowledge, no work is reported in literature on the measurement of process capability index of a bivariate zero-inflated process. In 
this paper, a methodology for evaluating capability of a bivariate zero-inflated process is presented. In the proposed approach, a 
BZIP model is first fitted to sample data and then the expected nonconformance in the process is estimated which is finally 
converted into a process capability index by using a transformation. 
   The article is organized as follows: in Section 2, we describe two different sets of BZIP distributions derived from Li et al. 
(1999) MZIP distribution and Liu and Tian (2015) Type I MZIP distribution for modelling bivariate zero-inflated count data. In 
section 3, we propose our approach for computing process capability index �	
��
 for the bivariate zero-inflated Poisson process. 
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We present two case studies in Section 4 for illustration of computational methods using the proposed approach. Finally, we 
conclude in Section 5. 
 
2. Bivariate Zero-Inflated Poisson (BZIP) Models and Parameter Estimation 
 
   There are several possible ways, proposed by various researchers, to develop bivariate zero-inflated Poisson distributions. Li et 
al. (1999) proposed two different types of BZIP models and extended them further for multivariate zero-inflated Poisson (MZIP) 
models. They also investigated the distributional properties of BZIP and MZIP models. The BZIP model, proposed by Li et al. 
(1999), is a mixture of a bivariate Poisson, two univariate Poisson and a point mass at (0,0). Fatahi et al. (2012) applied the copula 
function approach to develop the joint distribution of two correlated ZIP distributions. Then, using the joint distribution, they 
developed a bivariate control chart which can be used for monitoring correlated rare events in a BZIP process. Liu and Tian (2015) 
proposed a Type I multivariate ZIP distribution to model correlated multivariate count data with extra zeroes. The bivariate ZIP 
distribution having only three parameters, derived from the proposed MZIP distribution, is much simpler in comparison with Li et 
al. (1999) proposed BZIP distribution and copula-based BZIP distribution proposed by Fatahi et al. (2012). Hence, in this article, 
we consider two BZIP models: the first one proposed by Li et al. (1999) and the Type I BZIP distribution, proposed by Liu and 
Tian (2015). Let us first describe an univariate ZIP model and then we describe about both the BZIP models. 
 
2.1. Univariate Zero-inflated Poisson (ZIP) distribution and parameter estimation  
Here, we assume that only one type of random shock occurs in the zero-inflated process and the probability of occurrence of the 
random shock is Ω. When the random shock occurs, defects (nonconformities) appear in the produced items according to Poisson 
distribution with parameter λ. The probability of occurrence of the other stationery state is 1- Ω and in this state, only zero defect 
items are produced. Thus, if Y is an independent random variable that follows ZIP distribution, the probability mass function (pmf) 
for ZIP model can be written as 

                              ���;Ω, �� = ��1 −Ω� + Ω���						for	� = 0														
Ω

�"#$%
&! 																						for	� = 1,2,3, ..			 +                                                (1) 

for some 0 ≤ Ω ≤ 1 and λ > 0. The mean and variance of the underlying Poisson distribution is λ, and the mean and variance of 
the ZIP distribution are -�.� = Ω� and /01	�.� = Ω�21 + �1 − 	Ω�λ3 respectively.  
The unknown parameters Ω and λ of the ZIP distribution can be estimated from a random sample of size n using the maximum 
likelihood estimation method (Xie and Goh 1993). An enumerative search procedure can be performed using ‘Solver’ tool of 
Microsoft Excel for obtaining parameter estimates by solving two likelihood equations and maximizing the log-likelihood function 
(Pal and Gauri 2021). A Chi-square goodness-of-fit must be performed to check the adequacy of the fitted model for the sample 
data.  
 
2.2. Bivariate Zero-inflated Poisson (BZIP) model (Li et al., 1999)  
A BZIP model can be constructed as a combination of two univariate Poisson models, one bivariate Poisson model and a point 
mass at (0,0) for stationery state with probability p00. Let Y1 and Y2 are two random variables representing two different types of 
defects. Then, 
                    �.4	, .��	~		�0	, 0�	with	probability	�?? ~		�Poisson��4�,0�	with	probability	�4? ~		�0	, Poisson�����	with	probability	�?4 
                      													~		bivariate	Poisson��4?, ��?, �??�	with	probability	�44                                 (2) 
where each �??, �4?, �?4, �44 > 0, and	�?? + �4? + �?4 + �44 = 1. A bivariate Poisson distribution (X1, X2) with parameters ��4?, ��?, �??� is represented as follows (Marshall and Olkin, 1995): 
                             G4 = 	H4 + I			0�J	G� = H� + I 
where U1, U2, and Z are independent and have univariate Poisson distributions with respective means �4?, ��?, and	�??, ��0K� >0�. 
The probability mass function of the BZIP is given by: 
              L�.4 = 0, .� = 0� = �?? + �4? exp�−�4� + �?4 exp�−��� + �44exp�−��,  
             L�.4 = �4, .� = 0� = 4	&N! 2�4?�4&N exp�−�4� + �44�4?&N exp�−��3  
             L�.4 = 0, .� = ��� = 4	&O! 2�?4��&O exp�−��� + �44��?&O exp�−��3              
												LP.1 = �1, .2 = �2Q = �11{∑ 2�NT"N$U�OT"O$U�TTU VWX�����&N�Y�!�&O�Y�!Y!minP�1,�2Q[=0 3}                                                         (3)  

for �4, �� = 1,2, … , and	� = �4? + ��? + �??.  The authors also assumed that �4 = �4? + �??	and	�� = ��? + �?? (see Li et al. 
1999), for simplification of the BZIP model and to let the marginal distributions become univariate ZIP distributions. 
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Estimation of Parameters of BZIP Model of Li et al. (1999) 
It can be observed from the above BZIP model that there are total 10 unknown parameters, namely �??, �4?, �?4, �44, �, �4, ��, �4?, ��?, and	�??. Among them, three parameters namely, λ, λ1, and λ2 can be obtained from λ10, λ20, and 
λ00 values, and parameter p11 can be automatically obtained since the constraint �?? + �4? + �?4 + �44 = 1 must be satisfied.. 
Therefore, we need to estimate only six unknown parameters, namely �??, �4?, �?4, �4?, ��?, and	�??. The unknown six parameters 
can be estimated from a random sample of size n using the maximum likelihood method (Li et al. 1999). The maximum likelihood 
procedure is quite complicated and may not be easily implementable for many practitioners. 

Let there are n pairs of values of (y1, y2) from a BZIP process where y1 gives the number of first type of defects and y2 gives the 
number of second type of defects in a single item. For a high quality BZIP process, most of the values will be (0,0). Let there are 
n00 number of such (0,0) pairs. Let us denote the maximum number of type 1 defects and type 2 defects in an item by u and v 
respectively. So, there can be a maximum of (u+1)(v+1) number of (i,j) pairs where i=0,1,2,...,u, and j = 0,1,2,...,v. Let the 
frequency of occurrence of (i,j)th pair is denoted by nij. Therefore, ∑ ∑ �^Y_Y`? = �	̂̀ ? . In the sample data, there can be many (i,j) 
pairs whose frequencies may be equal to zero. 
The log likelihood function can be written as 
             a�	b = a�∏ ∏ L�.4 = d, .� = [�efU_Y`? = ∑ ∑ �^Y × a�L�.4 = d, .� = [�_Y`?	̂̀ ?	̂̀ ?                     (4) 
This log likelihood function is to be maximized by changing those six unknown parameters (�??, �4?, �?4, �4?, ��?, 0�J	�??� 
subjecting to few constraints. The constraints are: i) all parameters are positive, and ii) �?? + �4? + �?4 + �44 = 1.  Using 
enumerative search procedures, the estimates of the unknown parameters can be obtained. While performing this search procedure, 
one has to check about the expected proportion value computed from the fitted BZIP model.  The expected probability L�.4 =d, .� = [� value for i=0,1,2,..u and j=0,1,2,..,v,  should be close to (�^Y/�� value obtained from sample data. The analyst must 
perform Chi-square goodness-of-fit test for checking the adequacy of the fitted model. 
 
2.3. Type I Bivariate ZIP Distribution of Liu and Tian (2015) 
Liu and Tian (2015) proposed a Type I multivariate ZIP distribution to model correlated multivariate count data with extra zeroes. 
The proposed BZIP distribution can be thought of as an extension of univariate ZIP distribution with an extra parameter for 
accounting the second type of defect data. 
The Type I BZIP distribution is represented as �.4, .��~iIjL�4��Ω, �4, ��� and the joint probability mass function  of (Y1, Y2) is 
given as 

            �P��4, ���kΩ, �4, ��Q = 	 ��1 − Ω� + Ω	����Nl�O�				where	��4, ��� = �0,0�
Ω	����Nl�O� �N"N�O"O

&N!&O! 				where	��4, ��� ≠ �0,0� +                              (5) 

where 0 < Ω < 1	0�J	�4, �� > 0.  
Let us assume that a sample of size n is collected from a BZIP process and there are n00 number of defect free items. The observed-
data likelihood function for the Type I BZIP model can be written as a�b = ln	{o�1 − Ω� + Ω����Nl�O�peTT ∗ 	Ωe�eTT ∗ ���e�eTT���Nl�O� ∗ ∏ ��N"Nf�O"OU

&Nf!&OU! 	�efU^,Y }  
       = �??lno�1 − Ω� + Ω����Nl�O�p + �� − �??�2a�Ω − ��4 + ���3 + ∑ �^Y^,Y a���N"Nf�O"OU

&Nf!&OU! 	�           (6) 

This log likelihood function is to be maximized by changing three unknown parameters (Ω, �4, ���.  Using enumerative search 
procedures, the estimates of the unknown parameters can be obtained. This search procedure can be performed using Solver tool of 
Excel package. While performing this search procedure, one has to check about the expected proportion value computed from the 
fitted Type I BZIP model.  The expected probability L�.4 = d, .� = [� value for i=0,1,2,..u and j=0,1,2,..,v,  should be close to 
(�^Y/�� value obtained from sample data. The analyst must perform Chi-square goodness-of-fit test for checking the adequacy of 
the fitted model. 
 
2.4. Selection of the most appropriate model 
To a given sample dataset, both BZIP distribution of Li et al. (1999) and Type I BZIP distribution of Liu and Tian (2015) can be 
fitted. However, one should use the most appropriate model for the purpose of statistical process control. For identification of the 
most appropriate model for a zero-inflated process generally the following two information criterion are used: i) Akaike 
Information Criterion (AIC) and ii) Bayesian Information Criterion (BIC). The AIC and BIC are formally defined as 
                                rj� = 2s − 2 × ln	b                                                                                               (7)  
                                ij� = sln��� − 2 × ln	b                                                                                        (8)             
where K is the number of estimated parameters in the model, ln	b is the log-likelihood function for the model, and � is the sample 
size. A smaller value of AIC (or BIC) implies that the existing discrepancy between the fitted model and the data is less, and thus 
the fitted model that results in the minimum value of AIC (or BIC) can be considered as the most appropriate one.  
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It is important to note that AIC (or BIC) value reveals the relative goodness of two or more fitted models. But it does not say 
anything about the adequacy of the fitted model. Therefore, the primary criterion for considering a fitted model as the candidate 
model for the comparison is that it must pass the Chi-square goodness-of-fit. 
 
3. Proposed Approach for Computation of PCI of a Bivariate ZIP process 
 
The standard process capability indices (Cp, Cpk, Cpm, Cpmk) are developed for univariate processes where the process data are 
continuous in nature and follow a normal distribution. Subsequently, generalized PCIs have been developed for continuous process 
data that do not follow a normal distribution. Bivariate PCIs are also developed for two continuous characteristics from a process 
with the assumption that the bivariate process data jointly follow a bivariate normal distribution. For detailed information on 
process capability indices for continuous data, refer Kotz and Johnson (2002), Polhemus (2018). 
   Defects data are discrete in nature (also known as count data) and generally follows a Poisson distribution or negative binomial 
distribution. Various PCIs have been proposed by several researchers for attribute process data (number of defects, proportion of 
defective items). For example, Yeh and Bhattacharya (1998) proposed �t index, Borges and Ho (2001) proposed Cu index, Perakis 
and Xekalaki (2005) presented ��� index and Maiti et al. (2010) suggested ��& index for assessment of process capability of 
attribute process data. Pal and Gauri (2020) assessed relative goodness of these indices and suggested about the best measure of 
PCI for Poisson process data. 
   For high quality zero-inflated process where most of the items are defect free and only a few items contain defects due to the 
occurrence of random shock, the defect data are assumed to follow a zero-inflated Poisson (ZIP) distribution or a zero-inflated 
negative binomial (ZINB) distribution (Pal and Gauri 2021). Pal and Gauri (2021) have proposed a method for computation of PCI 
of univariate zero-inflated processes. As per the proposed methodology, a ZIP or ZINB distribution is utilized for modelling the 
sample zero-inflated process data and then the expected proportion of conformance is estimated using the fitted model. Then, 
adopting the approach of Borges and Ho (2001) for computation of PCI, the estimated proportion of conformance is converted into 
PCI Cu-index by using inverse transformation of standard normal distribution. We adopt the similar methodology to compute the 
PCI for a bivariate process where two different types of defects are assumed to follow a bivariate zero-inflated Poisson (BZIP) 
distribution. 
   In this method, a BZIP distribution is first fitted to the sample data using maximum likelihood method. Then, the expected 
proportion of nonconforming items having combined number of defects (arising from two types of defects) more than the specified 
upper limit of defects in an item is estimated using the fitted BZIP model. The expected proportion of non-conformance above 
USL is mapped to the Z-score in the right side of standard normal distribution, and 1/3rd of this Z-score is considered as the 
measure of the process capability with respect to USL and it is denoted as �	
��
. The  �	
��
 index can be evaluated from a 
bivariate zero-inflated Poisson process using the following procedures: 
1) Collect a sample of � units from the concerned zero-inflated process and observe the numbers of two different types of 

defects present in each of the sample items. Let the random variables (.4, .�� represent the number of two types of defects 
present in an item. 

2) Fit appropriate bivariate zero-inflated Poisson distribution to the observed count data. 
3) Estimate the expected proportion of nonconforming items (LuHvwx) with respect to specified USL for defects in an item of 

the concerned zero-inflated process. The specified USL can be on the combined number of defects in an item or two 
individual USL values for two different types of defects in an item. 
Let Kvwx be the USL specified by the manufacturer on the combined number of defects in a unit. A unit will be considered 
nonconforming if the number of defects in it is more than Kvwx. Then the expected proportion of non-conforming items LuHvwx can be estimated as follows: 
 

              LuHyvwx = L��.4 + .�� > Kvwx� = 1 − L��.4 + .�� ≤ Kvwx�                                                 (9) 

                     L��.4 + .�� ≤ Kvwx� = ∑ ∑ L�.4 = d, .� = [��z{|�Y`?�z{|�Y^`?                                               (10)          

 The probability L��.4 + .�� ≤ Kvwx� gives the proportion of conforming items having combined number of defects less than 
equal to the specified USL. 

Suppose (K4vwx , K�vwx�	are the individual USL values for two different types of defects specified by the manufacturer. A 
unit will be considered nonconforming if the number of first type of defects in it is more than K4vwx 	or the number of second 
type of defects is more than K�vwx or both. Then LuHvwx can be estimated as follows: 
For a BZIP process, the proportion LuHvwx  can be estimated as 

              LuHyvwx = 1 − L�.4 ≤ K4vwx , .� ≤ K�vwx� 
                            = 1 − ∑ ∑ L�.4 = d, .� = [��Oz{|Y`?�Nz{|^`?                                                                         (11) 

 The probability L�.4 ≤ K4vwx , .� ≤ K�vwx�	gives the proportion of conforming items having number of two types of defects less 
than equal to the respective specified USL values. 



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 14, No. 1, 2022, pp. 10-20 

 

 

15 

  4) Determine the Z-value in the right side of the standard normal distribution that results in probability area equal to LuHyvwxvalue. In other words, map the computed LuHyvwxvalue to the Z-score in the right side of standard normal 
distribution. Let Iv is the value of Z that results in probability area LuHyvwx above it. The Iv value can be obtained by using 
inverse cumulative probability of the standard normal distribution function as follows:  

                                Iv = 	} 0																							LuHyvwx 	≥ 0.5
Φ

�4P1 − LuHyvwxQ					0.0 < 	LuHyvwx < 0.54																															LuHyvwx = 0	 +                                                      (12)   

where, Φ�∙� denotes the standard normal cumulative distribution function. 
5) Finally, obtain the estimate of the process capability index �	
��
 of the concerned zero-inflated process as follows: 

                              ��	
��
 = 	�1 3⁄ � × Iv                                                                                                         (13)  
If the value of estimated index  ��	
��
 is greater than 1, then the capability of the concerned zero-inflated process can be 
considered good. In this case, the process is capable of producing more than 99.865% conforming items, i.e. more than 
99.865% of produced items will have total number of defects less than equal to Kvwx (the specified USL).  

It is important to mention that if the value of proportion LuHyvwx is more than or equal to 0.5, then I�v is considered as zero instead 
of taking the negative values. Consequently, the index �	
��
 becomes equal to zero. When LuHyvwx is more than 0.5, it means that 
more than 50% of produced items are nonconforming, i.e. more than 50% of produced items will have combined number of 
defects more than Kvwx (the specified USL). Thus, it is concluded that the corresponding manufacturing process is not capable at 
all.  
 
3.1 Estimation of confidence interval of  �	
��
 
Since  ��	
��
	is a point estimate obtained from sample data, it is necessary to construct confidence interval (CI) of the capability 
index �	
��
 for inference purpose, especially when the sample size is relatively small. However, construction of CI using the 
sampling distribution of the estimated ��	
��
 is found to be quite difficult. Hence, we use Nagata and Nagahata (1994) proposed 
generalized approximation formula for construction of two-sided CI of �	
��
. According to Nagata and Nagahata (1994),  

 �1 − �)% two-sided CI of ������ =  ���	
��
 − I4��O� 4�e + ���������O��e�4� 	 , ��	
��
 + I4��O� 4�e + �����������e�4��   (14) 

where, �	is the level of significance and (1-	�� is the confidence coefficient. 
 
4. Analysis and Results 
 
For the purpose of illustrations of computations of process capability indices using the proposed approach and assessing its 
effectiveness, two case studies are presented here. 
 
4.1 Case Study 1 
This case study from a LED packaging process was presented by He et al. (2012). In LED packaging process, LEDs are placed 
onto a printing circuit board (PCB) and then a soldering process is done that connects the LEDs and PCB via golden wires. There 
are two types of defects in the LEDs on a manufactured PCB, namely – LED mounting errors (defect 1) and soldering errors 
(defect 2). They have selected 100 PCBs from the packaging process when the process is under an in-control situation and then 
counted the number of two types of defects in them. He et al. (2012) used this data to estimate the process parameters and develop 
control limits for CUSUM control charts for monitoring the packaging process. The raw data is given in the article (He et al. 
2012). Here, the frequency distribution of two types of defects from the sample data is presented in the following Table 1. 

 
Table 1. Frequency distribution of two types of defects 

(�4, ��� Frequency (�4, ��� Frequency (�4, ��� Frequency 
(0, 0) 62 (0, 1) 1 (0, 8) 2 
(1, 0) 2 (0, 2) 1 (0, 9) 1 
(2, 0) 1 (0, 3) 3 (2, 3) 2 
(3, 0) 2 (0, 4) 4 (3, 8) 2 
(4, 0) 3 (0, 5) 2 (7, 5) 1 
(5, 0) 1 (0, 6) 1 (7, 8) 1 
(7,0) 2 (0, 7) 6   

 
Following the notations described earlier, it can be written that: 
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�?? = 62, ��^?
�

^`4
= 11,				��?Y = 21,				���^Y = 6,									� = 100�

Y`4
�

^`4
	�

Y`4
 

Also, it can be computed from the sample data that the total number of type 1 defects is 65, total number of type 2 defects is 146 
and combined number of defects is 211. 
   We now apply the maximum likelihood procedure to find the estimates of the unknown six parameters 
(�??, �4?, �?4, �4?, ��?, 0�J	�??�	of BZIP distribution, proposed by Li et al. (1999). The iterative procedure for finding the 
estimates by maximizing the log-likelihood function is carried out using Solver tool of Microsoft Excel. A starting solution of 

(�??, �4?, �?4, 0�J	�44� for the iterative procedure can be considered as (
eTTe , ∑ efTfe , ∑ e�UUe , ∑ efUf,U�Ne � values respectively. The 

procedure of computing expected proportions and likelihood function is slightly complicated and will be difficult for many 
practitioners. The maximum likelihood estimates of the parameters of the fitted BZIP distribution are obtained as: �̂?? = 0.6162,			�̂4? = 0.1125,				�̂?4 = 0.2094,				�̂44 = 0.0619 ��?? = 1.3543, ��4? = 2.3426, ���? = 4.0187, ��4 = 3.6969, ��� = 5.3730	0�J	�� = 7.7156 
with the log-likelihood value as ln b = −197.231. Although, the Chi-square goodness-of-fit must be performed to check the 
adequacy of the fitted distribution, it could not be done for this small size sample data because of very small frequency values of 
the observed pairs. 
   We then try to find the maximum likelihood estimates of Type I BZIP distribution, proposed by Liu and Tian (2015). The 
maximum likelihood estimates of the parameters of the fitted BZIP distribution are obtained as: 

Ω  = 0.3815,			��4 = 1.7037, ��� = 3.8269				with 	ln b =	 − 263.8 
The expected frequencies computed using this fitted Type I BZIP distribution of Liu and Tian (2015) are found as highly deviated 
from the observed frequencies in the sample data. Also, the log-likelihood value of the fitted Type I BZIP distribution is much less 
compared to the fitted BZIP distribution of Li et al. (1999). Hence, the fitted BZIP model of Li et al. (1999) is chosen for further 
computation of non-conformances and process capability index. 
   For computation of process capability index and expected non-conformance, we need a specified upper limit for the combined 
number of defects or individual upper limits for both type of defects in a PCB. He et al. (2012) have not specified USL value either 
for the combined number of defects or for individual USL values for two types of defects. Obviously, the desirable value for 
number of defects in a PCB is zero. However, for computation of PCI, we need to have positive integer values as USL for the 
number of defects.  
   In the first case, let us assume that the specified USL for the combined number of defects is Kvwx = 7, that means, a PCB will be 
considered as non-conforming if the combined number of defects in it exceeds 7. Then, the expected proportion of non-conforming 
PCBs can be computed as: 

    Expected	Conformance	L��.4 + .�� ≤ Kvwx� = ∑ ∑ L�.4 = d, .� = [� = 0.9168��Y`?��Y^`?    

    Expected	Nonconformance	LuHyvwx = 1 − L��.4 + .�� ≤ Kvwx� = 0.0832 
The process capability index �	
��
 can be computed as  ��	
��
 = 13Φ�4P1 − LuHyvwxQ = 13Φ�4�0.9168� = 0.461 

Since, the estimated PCI ��	
��
 is much less than 1.0, it can be concluded that the LED packaging process is not capable. In fact, 
around 8.32% of manufactured PCBs will have the combined number of defects more than the specified USL of 7.  

The zero-defect proportion L�.4 = 0, .� = 0� is computed from the fitted BZIP model as 0.62. This means, 62% of PCBs are 
expected not to have any type of defect and around 38% of manufactured PCBs will have either LED mounting defect or soldering 
defect or both.  

In the second case, let us assume that the specified USL values for the two types of defects in a PCB are given as �K4vwx =3, K�vwx = 4�. This means, a PCB will be considered as non-conforming if the number of first type of defects in it exceeds 3 or the 
number of second type of defects exceeds 4. Then, the expected proportion of non-conforming PCBs can be computed as: 

Expected	Conformance	L�.4 ≤ K4vwx , .� ≤ K�vwx� = � � L�.4 = d, .� = [��Oz{|

Y`?
�Nz{|

^`?
= 0.7636 

         Expected	Nonconformance	LuHyvwx = 1 − L�.4 ≤ K4vwx , .� ≤ K�vwx� = 0.2364 
The process capability index �	
��
 can be computed as  ��	
��
 = 13Φ�4P1 − LuHyvwxQ = 13Φ�4�0.7636� = 0.239 

Since, the estimated PCI ��	
��
 is much less than 1.0, it can be concluded that the LED packaging process is not capable. In fact, 
around 23.6% of manufactured PCBs will either have the first type of defects more than the specified USL of 3 or the second type 
of defects more than the specified USL of 4 or both.  
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It may be noted here that the second type of specified limits (USL for each type of defects) is more stringent than first type of 
specified USL for the combined number of defects. This is because of many defect combinations like [(4,0), (4,1), (4,2), (4,3), 
(1,5), (1,6), (2,5),.. etc] which are considered as non-conforming PCBs under the second type of specification limits, will be 
considered as conforming PCBs under the first type of USL for combined number of defects. This becomes clear from the 
expected proportion of conforming PCBs estimated above. 
 
4.2 Case Study 2 
The following study was carried out in an automobile industry for one critical component used in motor cycles. After receiving the 
input components from an authorized vendor, these components are processed for a smooth outer surface finish using a special 
purpose grinding machine. The defects are detected only after removal of a fixed amount of material from component outer surface 
after the grinding process. There are mainly two types of defects, namely, holes and uncleaned surface, either one or both 
occurring in one or more locations. Although around 90% components are observed as defect free, there are around 10% 
components having either one or both type of defects in one or more locations along the component surface. It is desirable not to 
have any kind of defects in any component. However, looking at the complex structure of the component, it was decided that a 
maximum of total 4 defects (cUSL = 4) in any component will be treated as acceptable and any component containing more than 4 
defects will be rejected and will be sent back to the supplier at his expenses. A sample of 1000 components is selected randomly 
from a lot and all those components are inspected after the grinding process. The following Table 2 gives the number of defect 
occurrences in a component and their frequencies in the entire sample of size 1000. 

 
Table 2. Frequency distribution of two types of defects in components after grinding 

(�4, ��� Frequency (�4, ��� Frequency (�4, ��� Frequency 
(0, 0) 893 (0, 3) 5 (2, 1) 6 
(1, 0) 16 (0, 4) 2 (2, 2) 7 
(2, 0) 9 (0, 5) 1 (2, 3) 5 
(3, 0) 4 (1, 1) 8 (3, 1) 3 
(4, 0) 2 (1, 2) 5 (3, 2) 4 
(0, 1) 15 (1, 3) 3 (4, 1) 1 
(0, 2) 9 (1, 4) 2   

 
Following the notations described earlier, it can be written that: 

�?? = 893, ��^?
¥

^`4
= 31,				��?Y = 32,				���^Y = 44,									� = 1000¦

Y`4
¥

^`4
	¦

Y`4
 

Also, it can be computed from the sample data that the total number of type 1 defects is 133, total number of type 2 defects is 143 
and combined number of defects is 276. 

We now apply the maximum likelihood procedure to find the estimates of the unknown six parameters 
(�??, �4?, �?4, �4?, ��?, 0�J	�??�	of BZIP distribution, proposed by Li et al. (1999). The maximum likelihood estimates of the 
parameters of the fitted BZIP distribution are obtained as: �̂?? = 0.8697,			�̂4? = 0.0312,				�̂?4 = 0.0295,				�̂44 = 0.0696 ��?? = 0.6432, ��4? = 0.6929, ���? = 0.8049, ��4 = 1.3361, ��� = 1.4481	0�J	�� = 2.1410 
with the log-likelihood value as ln b = −637.397. Since, six unknown parameters are estimated from the sample data of size n = 
1000, the AIC and BIC values are computed as rj� = 2 ∗ 6 − 2a�b = 1286.794		0�J	ij� = 6 ∗ ln��� − 2a�b = 1316.24 
We then try to find the maximum likelihood estimates of Type I BZIP distribution, proposed by Liu and Tian (2015). The 
maximum likelihood estimates of the parameters of the fitted BZIP distribution and the corresponding AIC, BIC values are 
obtained as: 

Ω  = 0.1186,			��4 = 1.1218, ��� = 1.2062		§d¨ℎ ln b = 	−642.302			 rj� = 2 ∗ 3 − 2a�b = 1290.60		0�J	ij� = 3 ∗ ln��� − 2a�b = 1305.33 
Following the model selection criteria of minimum AIC value and maximum log-likelihood value, it is decided to select the Li et 
al. (1999) BZIP distribution with 6 estimated parameters as the fitted model for this sample data. Using those 6 estimated model 
parameters, the expected frequencies of defects pairs are computed which is found quite similar with the observed frequencies. 
However, Liu and Tian (2015) Type I BZIP distribution is also found as a good model for the sample data and can be utilized for 
future estimation purposes. 

The specified USL for the combined number of defects is given as cUSL = 4. The expected proportion of non-conforming 
components is computed using Li et al. (1999) BZIP distribution as: 
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          Expected	Conformance	L��.4 + .�� ≤ Kvwx� = ∑ ∑ L�.4 = d, .� = [� = 0.9879¥�Y`?¥�Y^`?   

          Expected	Nonconformance	LuHyvwx = 1 − L��.4 + .�� ≤ Kvwx� = 0.0121 
The process capability index �	
��
 can be computed as  ��	
��
 = 13Φ�4P1 − LuHyvwxQ = 13Φ�4�0.9879� = 0.751 

The 95% confidence interval of process capability index �	
��
 is computed using equation no. (14) as 95%	�ª��dJ��K�	d�¨�1«0a	ª�	�	
��
	d¬	�0.708, 0.794� 
Since, the estimated PCI ��	
��
 is less than 1.0, it can be concluded that the supplied materials are not conforming to permissible 
limit with respect to total number of defects. In fact, around 1.2% components will be rejected due to containing the combined 
number of defects more than the specified USL of 4. 

If we use the fitted Type I BZIP distribution with 3 parameters of Liu and Tian (2015), the expected proportion of non-
conformance  LuHyvwx is estimated as 0.0103 and accordingly, the process capability index �	
��
 can be computed as 0.771. The 
expected proportion of non-conformance and process capability index values estimated using both BZIP models are observed as 
quite close to each other. In this particular case, Liu and Tian’s Type I BZIP distribution may be preferred for future prediction 
purposes because of its simplicity and easier computational procedure of expected proportions in comparison with Li et al. (1999) 
proposed BZIP distribution. 

 
5. Conclusions and Future Research 
 
In high quality manufacturing processes, most of the items produced are defect free and only a few items contain one or more 
number of single or multiple types of defects. Such processes are referred to as zero-inflated processes with random shocks. A 
zero-inflated Poisson (ZIP) distribution is commonly used for modelling zero-inflated process data with single type of defect and a 
bivariate zero-inflated Poisson (BZIP) distribution is used for modelling zero-inflated process data with two types of defects and a 
multivariate zero-inflated Poisson (MZIP) distribution is used for modelling zero-inflated process data with more than two types of 
defects. Often evaluation of capabilities of such zero-inflated processes becomes necessary for their assessment, comparison and 
decision making for improvement. Although some works on evaluation of process capability of univariate zero-inflated Poisson 
(ZIP) processes are available in literature, no work is reported on measuring the capabilities of BZIP or MZIP processes. This 
paper presents a methodology for measuring capability of a BZIP process. In the proposed approach, a BZIP model is first fitted to 
sample data and then the expected nonconformance in the process is estimated which is finally converted into a process capability 
index by using a transformation. The proposed methodology is illustrated using two case studies and the results reveal that the true 
capabilities of these processes are well represented by the measured values of the proposed process capability index.  
   In this article, the proposed methodology is developed considering only two different forms of BZIP distribution. In literature, 
some other forms of BZIP distributions are reported. It will be an interesting future work to study how robust is the proposed 
methodology when other forms of BZIP distribution are used for modelling the process data. Sometimes bivariate zero-inflated 
negative binomial (BZINB) distribution and bivariate zero-inflated generalized Poisson (BZIGP) distributions are used for 
modelling bivariate count data, especially when there is over dispersion in the count data. Future studies are required to examine 
the effectiveness of the proposed methodology when BZINB or BZIGP distribution is used for modelling process data. Future 
studies may also be aimed at evaluating process capabilities of multivariate zero-inflated processes. 
 
Acknowledgment 
Thanks to the referees for their comments that have enhanced the quality of this article. 
 
References 
 
Aebtarm, S., and Bouguila, N., 2010. An optimal bivariate Poisson field chart for controlling high-quality manufacturing 

processes. Expert Systems with Applications, Vol. 37, pp. 5498-5506. https://doi.org/10.1016/j.eswa.2010.02.060 
Albers, W.,2012. Nonparametric control charts for bivariate high quality processes. International Journal of Pure and Applied 

Mathematics, Vol. 79, pp. 139-154. 
Borges, W. and Ho, L. L., 2001. A fraction defective based capability index. Quality and Reliability Engineering International, 

Vol. 17, pp. 447-458. https://doi.org/10.1002/qre.438 
Campbell, J.T. (1938). The Poisson correlation function, Proceedings of the Edinburgh Mathematical Society (Series 2), Vol.4, pp. 

18-26. 
Cho, H., Liu, C., Preisser, J.S., and Wu, D., 2020. A bivariate zero-inflated negative binomial model for identifying underlying 

dependence with application to single cell RNA sequencing data.   https://doi.org/10.1101/2020.03.06.977728. 
Famoye, F., and Consul, P.C., 1995. Bivariate generalized Poisson distribution with some applications. Metrika, Vol. 42, pp. 127-

138. https://doi.org/10.1007/BF01894293  



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 14, No. 1, 2022, pp. 10-20 

 

 

19 

Faroughi, P., and Ismail, N., 2017. Bivariate zero-inflated negative binomial regression model with applications. Journal of 
Statistical Computation and Simulation, Vol. 87, pp. 457-477. https://doi.org/10.1080/00949655.2016.1213843 

Fatahi, A.A., Noorossana, R., Dokouhaki, P., and Moghaddam, B.F., 2012. Copula-based bivariate ZIP control chart for 
monitoring rare events. Communication in Statistics - Theory and Methods, Vol. 41, pp.2699-2716. 
https://doi.org/10.1080/03610926.2011.556296 

He, S., He, Z., Wang, G.A., 2012. CUSUM charts for monitoring bivariate zero-inflated Poisson processes with an application in 
the LED packaging industry. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, pp. 169-
180. https://doi.org/10.1109/TCPMT.2011.2176948 

Holgate, P., 1964. Estimation for the bivariate Poisson distribution, Biometrika, Vol. 51, pp.241-245. 
https://doi.org/10.2307/2334210 

Jolayemi, J.K., 2000. An optimal design of multiattribute control charts for processes subject to a multiplicity of assignable causes. 
Applied Mathematics and Computation, Vol. 114, pp.187-203. https://doi.org/10.1016/S0096-3003(99)00111-3 

Kotz, S. and Johnson, N. L., 2002. Process capability indices - a review, 1992-2000. Journal of Quality Technology, Vol. 34, pp 2-
19. https://doi.org/10.1080/00224065.2002.11980119 

Krishnamoorthy, A.S., 1951. Multivariate Binomial and Poisson distributions. Sankhya, Vol. 11, pp. 117-124. 
https://www.jstor.org/stable/25048072 

Li, C.S., Lu, J.C., Park, J., Kim, K., Brinkley, P.A., and Peterson, J.P. 1999. Multivariate zero-inflated Poisson models and their 
applications. Technometrics, Vol. 41, pp. 29-38. https://doi.org/10.2307/1270992 

Lu, X.S., Xie, M., Goh, T.N., and Lai, C.D., 1998. Control chart for multivariate attribute processes. International Journal of 
Production Research, Vol. 36, No. 12, pp. 3477-3489. https://doi.org/10.1080/002075498192166 

Mahmood, T. and Xie, M., 2019. Models and monitoring of zero-inflated processes: The past and current trends. Quality and 
Reliability Engineering International, Vol. 35, pp. 2540-2557. https://doi.org/10.1002/qre.2547 

Maiti, S.S., Saha, M. and Nanda, A.K., 2010. On generalising process capability indices. Quality Technology & Quantitative 
Management, Vol. 7, No. 3, pp. 279-300. https://doi.org/10.1080/16843703.2010.11673233 

Marshall, A.W., and Olkin, I., 1985. A family of bivariate distributions generated by the bivariate Bernoulli distribution. Journal 
of the American Statistical Association, Vol. 80, pp. 332-338. 

Nagata, Y. and Nagahata, H., 1994. Approximation formulas for the confidence intervals of process capability indices. Okayama 
Economic Review, Vol. 25, pp. 301-314. 

Niaki, S.T.A., and Abbasi, B., 2007. On the monitoring of multi-attribute high-quality production processes. Metrika, Vol. 66, pp. 
373-388. https://doi.org/10.1007/s00184-006-0117-0 

Pal, S., and Gauri, S.K., 2020. Measuring capability of a Poisson process: relative goodness of the estimates obtained by different 
approaches. International Journal of Engineering, Science and Technology, Vol. 12, pp. 1-13. 
https://doi.org/10.4314/ijest.v12i4.1 

Pal, S., and Gauri, S.K., 2021. Measuring capabilities of zero-inflated processes. International Journal of Engineering, Science 
and Technology, Vol. 13, No. 3, pp. 37-48. https://doi.org/10.4314/ijest.v13i3.4 

Patil, M. K.  and Shirke, D.T., 2012. Process capability index for zero-inflated Poisson process. International Journal of 
Mathematical Sciences & Engineering Applications, Vol. 6, pp. 87-97. 

Perakis, M. and Xekalaki, E., 2005. A process capability index for discrete processes. Journal of Statistical Computation and 
Simulation, Vol. 75, No. 3, pp. 175-187. https://doi.org/10.1080/00949650410001687244 

Polhemus, N.W., 2018. Process Capability Analysis: Estimating Quality. CRC press, Taylor & Francis Group, Boca Ration, 
Florida. 

Purhadi, Sari, D.N., Aini, Q., and Irhamah, 2021. Geographically weighted bivariate zero-inflated Poisson regression model and its 
application. Heliyon, 7, e07491. https://doi.org/10.1016/j.heliyon.2021.e07491 

Tian, W., You, H., Zhang, C., Kang, S., Jia, X. and Chien, W.K., 2019. Statistical process control for monitoring the particles with 
excess zero counts in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, Vol. 32, pp.93-103. 
https://doi.org/10.1109/TSM.2018.2882862 

Topalidou, E., and Perakis, S., 2009. Review of multinomial and multiattribute quality control charts.  Quality and Reliability 
Engineering International, Vol. 25, pp. 773-804. https://doi.org/10.1002/qre.999 

Wagh, Y.S., and Kamalja, K.K., 2018. Zero-inflated models and estimation in zero-inflated Poisson distribution. Communications 
in Statistics - Simulations and Computation. Vol. 47, pp. 2248-2265. https://doi.org/10.1080/03610918.2017.1341526 

Wang, P., 2003. A bivariate zero-inflated negative binomial regression model for count data with excess zeroes. Economic Letters, 
Vol. 78, pp. 373-378. https://doi.org/10.1016/S0165-1765(02)00262-8 

Xie M, Goh T., 1993. Spc of a near zero-defect process subject to random shocks. Quality and Reliability Engineering 
International.  Vol. 9, pp. 89-93. https://doi.org/10.1002/qre.4680090205 

Xie, M. He, B. and Goh, T. N., 2001. Zero-inflated Poisson model in statistical process control. Computational Statistics & Data 
Analysis, Vol. 38, pp. 191-201. https://doi.org/10.1016/S0167-9473(01)00033-0 



Pal and Gauri / International Journal of Engineering, Science and Technology, Vol. 14, No. 1, 2022, pp. 10-20 

 

 

20 

Yeh, F.B. and Bhattacharya, S., 1998. A robust process capability index. Communications in Statistics - Simulation and 
Computation, Vol. 27, No. 2, pp. 565-589. https://doi.org/10.1080/03610919808813495 

Young, D.S., Roemmele, E.S., and Yeh P., 2020a. Zero-inflated modelling Part I: Traditional zero-inflated count regression models, 
their applications, and computational tools. WIREs Computational Statistics. https://doi.org/10.1002/wics.1541. 

Young, D.S., Roemmele, E.S., and Yeh P., 2020b. Zero-inflated modelling Part II: Zero-inflated models for complex data 
structures. WIREs Computational Statistics. https://doi.org/10.1002/wics.1540. 

Zhang, C., Tian, G., and Huang, X. 2015. Two new bivariate zero-inflated generalized Poisson distribution with a flexible 
correlation structure. Statistics, Optimization and Information Computing, Vol. 3, pp. 105–137. 
https://doi.org/10.19139/soic.v3i2.133 

 
Biographical notes  
 
Dr. Surajit Pal is a Faculty Member in the Statistical Quality Control and Operations Research Unit of the Indian Statistical Institute, Chennai Centre, India. His 
fields of interest are quality engineering, process optimization, statistical quality control and multiple response optimization. He has published about forty five 
papers in different National and International journals. 
 
Dr. Susanta Kumar Gauri is a Faculty Member in the Statistical Quality Control and Operations Research Unit of the Indian Statistical Institute, Kolkata, India. 
His fields of interest are quality engineering, process optimization, statistical quality control and multiple response optimization. He has published about sixty 
papers in different National and International journals. 

 
 


