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Abstract

A zero-inflated Poisson (ZIP) distribution is commponised for modelling zero-inflated process datehvgingle type of
defect, and for developing appropriate tools fatitnting statistical process control of manufaictgrprocesses. However, in
reality, such manufacturing scenarios are very commhere more than one type of defect can occurekample, occurrences
of defects like solder short circuits (shorts) aafasence of solder (skips) are very common on rimiecuit boards. In
literature, different forms of bivariate zero-irta Poisson (BZIP) distributions are proposed, Witian be used for modelling
the manufacturing scenarios where two types of aigfean occur. Control charts are designed foritmong for such
processes using BZIP models. Although evaluationcapability is an integral part of statistical pess control of a
manufacturing process, researchers have given litdeyeffort on this aspect of zero-inflated preses. Only a few articles
attempted to evaluate the capability of a univariadro-inflated process and no work is reporte@aiuating capability of a
bivariate zero-inflated process. In this paper, ethomdology for measuring capability of a bivariagro-inflated process is
presented. The proposed methodology is illustragiag two case studies.
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1. Introduction

Count data with excessive number of zero coargsquite common in many manufacturing processegedsas in many other
non-manufacturing scenarios. For modelling suclo-aeftated count data, several zero-inflated modwish as zero-inflated
Poisson (ZIP) distribution (Xie and Goh, 1993; Xieal., 2001), zero-inflated negative binomial (B)Ndistribution (Chaney et
al., 2013), zero-inflated generalized Poisson (3l@iBtribution (Wagh and Kamalja, 2018) are develbpy researchers over the
last three decades. Among them, the most popularirflated model is zero-inflated Poisson (ZIP¥tdbution where it is
assumed that the defects occur due to random shititkcertain probability2 and those defects follow a Poisson distributiothwi
parametei. (Xie and Goh, 1993). More detailed informationtbe models and monitoring of univariate zero-irgthiprocesses
are available in Mahmood and Xie (2019) and Waghkaimalja (2018).

There are many high quality manufacturing preessvhere more than one type of defects may oeeutadseveral reasons. For
example, occurrences of defects like solder shiocuits (shorts) and absence of solder (skips)cammmon on printed circuit
boards (PCBs) (Li et al.; 1999); occurrences of LiBunting errors and soldering errors are obseitvélde soldering process of
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LED mounting on the PCBs (He et al.; 2012). In a-nmanufacturing scenario, Fatahi et al. (2012) havestigated the presence
of number of particles and number of microorganismshe environmental air of a sterilization proges a pharmaceutical
factory.

When multiple types of defects are present ipracess, it is essential to utilize multivariatestdbutions for modelling
multivariate count data instead of using univariditgributions for modelling each type of defeaparately. If the different types
of defects are correlated with each other, it bexomore important to model such multivariate cadetia with multivariate
distributions. Bivariate Poisson distribution, firatroduced by Campbell (1938) and later developgdiolgate (1964), is often
used for modelling correlated bivariate count datee multivariate Poisson distribution was devetbpyg extending the form of
bivariate Poisson distribution for modelling muétiate count data (Krishnamoorthy, 1951). Famoye@onsul (1995) presented
a bivariate generalized Poisson distribution wihs applications.

For zero-inflated bivariate count data, Li et(Al999) proposed two different types of BZIP madahd extended them further
for multivariate zero-inflated Poisson (MZIP) mosieThe BZIP model, proposed by Li et al. (1999) imixture of a bivariate
Poisson, two univariate Poisson and a point maf3,@x. Fatahi et al. (2012) applied the copulacfiom approach to develop the
joint distribution of two correlated ZIP distribatis. Liu and Tian (2015) proposed a Type | multatar ZIP distribution to model
correlated multivariate count data with extra zerdehey also described methods for obtaining mamirfikelihood estimates of
the proposed Type | MZIP distribution. Zhang et(2015) proposed two new bivariate zero-inflatedegalized Poisson (BZIGP)
distribution with a flexible correlation structubsy incorporating a multiplicative parameter. Wa2{3) developed a bivariate
zero-inflated negative binomial regression modellivariate count data with excess zeroes. Faroaghilsmail (2017) have
used three different forms of bivariate zero-irdthinegative binomial (BZINB) distribution for motled bivariate zero-inflated
count data. Cho et al. (2020) proposed a bivaZdadB model constructed using a bivariate Poissom@a mixture with
application to single cell RNA sequencing data.hadr et al. (2021) have discussed about the dewedap of geographically
weighted bivariate zero-inflated generalized Paissgression model and applied the same for mogethie number of pregnant
maternal mortality and postpartum maternal mostalitoung et al. (2020 2020) have discussed about various univariate zero-
inflated models, multivariate models and zero-iteithmodels for complex data structures.

Capability evaluation and process monitoringhvitie help of control charts are integral parttafistical process control of a
manufacturing process. There are a considerablei@nad research works on monitoring of multivarigtecesses for continuous
data as well as for multi-attribute processes famt data. Patel (1973) proposed a Hotelling-typehart to monitor observations
from multivariate Binomial or multivariate Poissdistribution. Marruci (1985) applied a Multinomidistribution to develop a
control chart for multi-attribute processes. Luakt(1998) proposed a multivariate Shewhertchart Mnp chart) for combined
number of defective items. Jolayemi (2000) devetbm model for an optimal design of multi-attribwtentrol charts for
processes with multiple assignable causes. NiakiAbbasi (2007) proposed a methodology to monitoredated multi-attribute
high quality processes. As per the methodology, thdti-attribute data is first transformed, there thansformed mean and
covariance matrix is estimated, and finally thelskelbown y? control chart is applied. Topalidou and PsaraR30Q) presented a
review of multinomial and multi-attribute qualityowtrol charts. Aebtarm and Bouguila (2010) propoaadoptimal bivariate
Poisson field chart to monitor two correlated chtgdstics of count data for both manufacturing ar@h-manufacturing
processes. Albers (2012) proposed a non-paranrnittol chart for high quality bivariate processatahi et al. (2012) applied
copula function approach to achieve the joint distion of two correlated ZIP distributions for ddeping a bivariate control
chart which can be used for monitoring rare evedts.et al. (2012) proposed a CUSUM based proceursonitor bivariate
zero-inflated Poisson processes with an applicatiohED packaging Industry. The methodology uses ¢bmbination of two
CUSUM based control procedures for detecting shiftee two sets of parameters in a BZIP process.

Although evaluation of capability is an integpart of statistical process control of a manufantuprocess, researchers have
taken very little interest on this aspect of zerftaited processes. Only Patil and Shirke (2012) Radand Gauri (2021) have
attempted to measure capability of the univarisgeoinflated Poisson processes. Patil and ShirkdZp have modified the
Perakis and Xekalaki (2005) proposgg,, index by incorporating the inflation of zero paetar intoC,, index, and applied it
for measuring the capability of a zero-inflated $3on process. But it fails to represent the trysalgities of zero-inflated
processes consistently. On the other hand, PaGadli (2021) have applied the concept of BorgesHm@2001) for measuring
the capability of a zero-inflated Poisson proc&a.and Gauri (2021) proposed approach overcongefrtiitation of Patil and
Shirke’s (2012) approach, and can reveal the tapalgilities of zero-inflated processes consisteidiywever, to the best of our
knowledge, no work is reported in literature on measurement of process capability index of a Et@rzero-inflated process. In
this paper, a methodology for evaluating capabiitya bivariate zero-inflated process is presenitedhe proposed approach, a
BZIP model is first fitted to sample data and thiba expected nonconformance in the process is &&thmwhich is finally
converted into a process capability index by usinigansformation.

The article is organized as follows: in Secttynwe describe two different sets of BZIP distribns derived from Li et al.
(1999) MZIP distribution and Liu and Tian (2015)peyl MZIP distribution for modelling bivariate zenaflated count data. In
section 3, we propose our approach for computingegss capability indegZ%'F for the bivariate zero-inflated Poisson process.
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We present two case studies in Section 4 for ihtistn of computational methods using the propoasggdroach. Finally, we
conclude in Section 5.

2. Bivariate Zero-I nflated Poisson (BZIP) M odelsand Parameter Estimation

There are several possible ways, proposed bgusresearchers, to develop bivariate zero-irdl&eisson distributions. Li et
al. (1999) proposed two different types of BZIP misdand extended them further for multivariate Zeftated Poisson (MZIP)
models. They also investigated the distributionalperties of BZIP and MZIP models. The BZIP mogebposed by Li et al.
(1999), is a mixture of a bivariate Poisson, twovariate Poisson and a point mass at (0,0). Fatahi. (2012) applied the copula
function approach to develop the joint distributiohtwo correlated ZIP distributions. Then, usimg tjoint distribution, they
developed a bivariate control chart which can ke der monitoring correlated rare events in a BgiBcess. Liu and Tian (2015)
proposed a Type | multivariate ZIP distributionntmdel correlated multivariate count data with exteaoes. The bivariate ZIP
distribution having only three parameters, derifreth the proposed MZIP distribution, is much simmple comparison with Li et
al. (1999) proposed BZIP distribution and copuladshBZIP distribution proposed by Fatahi et al.1@0Hence, in this article,
we consider two BZIP models: the first one propobed.i et al. (1999) and the Type | BZIP distritartj proposed by Liu and
Tian (2015). Let us first describe an univariat® Atodel and then we describe about both the BZI&etso

2.1. Univariate Zero-inflated Poisson (ZIP) distribution and parameter estimation
Here, we assume that only one type of random shoclrs in the zero-inflated process and the prdibabi occurrence of the
random shock i€2. When the random shock occurs, defects (noncoritieghappear in the produced items according tisfen
distribution with parametér. The probability of occurrence of the other stagity state is 1 and in this state, only zero defect
items are produced. Thus,¥fis an independent random variable that follows dkribution, the probability mass function (pmf)
for ZIP model can be written as
1-Q+Qe?* fory=0

fo: .4 = o™ ’ fory = 1,2,3,. @)
for some0 < Q <1 andA > 0. The mean and variance of the underlying BaisBstribution ist, and the mean and variance of
the ZIP distribution ar& (Y) = QA andVar (Y) = QA[1 + (1 — Q)A] respectively.
The unknown parametef3 and) of the ZIP distribution can be estimated from ad@m sample of size n using the maximum
likelihood estimation method (Xie and Goh 1993). Amumerative search procedure can be performed) tSwiver’ tool of
Microsoft Excel for obtaining parameter estimatgsoblving two likelihood equations and maximizitg log-likelihood function
(Pal and Gauri 2021). A Chi-square goodness-afifist be performed to check the adequacy of thedfithodel for the sample
data.

2.2. Bivariate Zero-inflated Poisson (BZIP) model (Li et al., 1999)
A BZIP model can be constructed as a combinatiotwof univariate Poisson models, one bivariate Poissodel and a point
mass at (0,0) for stationery state with probabigy Let Y; andY, are two random variables representing two diffetgpes of
defects. Then,
(Y1,Y,) ~ (0,0) with probability py,
~ (Poisson(4,),0) with probability p,,
~ (0, Poisson(4,)) with probability py,
~ bivariate Poisson (1, A5, Ag0) With probability p,, (2)
where eachpyg, P10, Po1, P11 > 0,and pgg + p1o + o1 + P11 = 1. A bivariate Poisson distributionX{, X;) with parameters
(A10, 220, A00) is represented as follows (Marshall and Olkin, )99
X,=U,+Z andX, =U, + Z

whereU;, U, andZ are independent and have univariate Poissonluliins with respective mearsg,, 1,,, and 1,,, (eacl] >
0).
The probability mass function of the BZIP is givan

P(Y; = 0,Y; = 0) = poo + P10 exp(—41) + po1 exp(—4;) + py1exp(=2),

PY,=y,Y,=0) = % [P1041”" exp(—=4;) + p11410” exp(=A)]

P(Y; =0,Y, =y,) = yLZ, [Po112"2 exp(—=23) + 1120”2 exp(=2)]

min(y,,y,) (AYa 232772 exp(-2)
P(Y1 =y, Y2 = ;) = py, (Smy M) [ Lt dw ey, ®)

for y.,y, =1,2,.., and 1 = Ay + 4,0 + 4go. The authors also assumed that= 1,, + 150 and 1, = 1,5 + 14, (See Li et al.
1999), for simplification of the BZIP model andl& the marginal distributions become univariatP distributions.
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Estimation of Parameters of BZIP Model of Li et al. (1999)

It can be observed from the above BZIP model thaerg are total 10 unknown parameters, namely
Poo> P10 Po1r P11, A A1y Ay Ao A20, and Agg. Among them, three parameters namgly,,, andi, can be obtained frofg, Ay, and

Aoo Values, and parameteg; can be automatically obtained since the constjnt- p1o + po1 + P11 = 1 must be satisfied..
Therefore, we need to estimate only six unknowmapaters, namely,o, P10, Po1, 10, A20, and Ag. The unknown six parameters
can be estimated from a random sample of sizenguke maximum likelihood method (Li et al. 199Bhe maximum likelihood
procedure is quite complicated and may not beeasjlementable for many practitioners.

Let there aren pairs of values ofy, y,) from a BZIP process wheye gives the number of first type of defects gpdives the
number of second type of defects in a single itear.a high quality BZIP process, most of the valwdkbe (0,0). Let there are
Ng Nnumber of suchQ0) pairs. Let us denote the maximum number of typiefects and type 2 defects in an itemubgndv
respectively. So, there can be a maximum(wfl)(v+1) number of i;j) pairs wherei=0,1,2,....,u, andj = 0,1,2,...,v. Let the
frequency of occurrence offjj"" pair is denoted by;. Therefore -, ¥7-on;; = n. In the sample data, there can be magy (
pairs whose frequencies may be equal to zero.

The log likelihood function can be written as

InL=In[[L, H}’:o P(Y,=1Y,=))" =3k, Z?:o ny; X InP(Y; =1,Y, =) (4)
This log likelihood function is to be maximized lppanging those six unknown parametews,, 1o, Po1, A0, Azo, and Agg)
subjecting to few constraints. The constraints dreall parameters are positive, and #ijo + p1o + Po1 + P11 = 1. Using
enumerative search procedures, the estimates ofiflrown parameters can be obtained. While perfagrtiiis search procedure,
one has to check about the expected proportiorevedunputed from the fitted BZIP model. The expeqteobability P(Y; =
i,Y, = j) value fori=0,1,2,..u andj=0,1,2,..,v, should be close tm{;/n) value obtained from sample data. The analyst must
perform Chi-square goodness-of-fit test for cheghktme adequacy of the fitted model.

2.3. Type| Bivariate ZIP Distribution of Liu and Tian (2015)
Liu and Tian (2015) proposed a Type | multivarizte distribution to model correlated multivariateuoit data with extra zeroes.
The proposed BZIP distribution can be thought ofaasextension of univariate ZIP distribution with axtra parameter for
accounting the second type of defect data.
The Type | BZIP distribution is represented(&s Y,)~BZIP™(Q, 1,,1,) and the joint probability mass function oY) is
given as

(1 - Q) +Q e_(/11+/12) where (yll yZ) = (0'0)

Y1453 Y2
Q e~ A1+2) hyl'—iz' where (yl, }/2) * (0'0)

f((YpJ’z)lQ:/lpAz) = )
where0 < Q < 1and 1,1, > 0.

Let us assume that a sample of siig collected from a BZIP process and therengg@umber of defect free items. The observed-
data likelihood function for the Type | BZIP mod=in be written as

InL =In {[(1 -Q)+ Qe—(lﬁlz)]noo % Q00 4 o—(n—ng)(A1+42) 4 H”(M )i}
R AT 231
—(Ag+1y) A,Y1i0,Y2]
= nogln[(l - Q) + Qe 1742 ] + (Tl - noo)[an - (2.1 + 2.2)] + Zi,j Tli]' ln(—y1i!3/'2j! ) (6)

This log likelihood function is to be maximized lbfzanging three unknown parametefs A;, 4,). Using enumerative search
procedures, the estimates of the unknown parameg@rbe obtained. This search procedure can berperl using Solver tool of
Excel package. While performing this search prooedone has to check about the expected proportitue computed from the
fitted Type | BZIP model. The expected probabiltgy; = i,Y, = j) value fori=0,1,2,..u andj=0,1,2,..,v, should be close to
(nij/n) value obtained from sample data. The analyst peiform Chi-square goodness-of-fit test for chegkime adequacy of
the fitted model.

2.4. Selection of the most appropriate model
To a given sample dataset, both BZIP distributibhicet al. (1999) and Type | BZIP distribution bfu and Tian (2015) can be
fitted. However, one should use the most appropmabdel for the purpose of statistical processrobrfor identification of the
most appropriate model for a zero-inflated procgeserally the following two information criterionrea used: i) Akaike
Information Criterion (AIC) and ii) Bayesian Infoation Criterion (BIC). The AIC and BIC are formaliigfined as
AIC =2K—-2xInL @)
BIC = KIln(n) —2 X InL (8)
whereK is the number of estimated parameters in the madéljs the log-likelihood function for the model, ands the sample
size. A smaller value of AIC (or BIC) implies th#e existing discrepancy between the fitted model the data is less, and thus
the fitted model that results in the minimum vadfiéAIC (or BIC) can be considered as the most appate one.
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It is important to note that AIC (or BIC) value eals the relative goodness of two or more fittedief® But it does not say
anything about the adequacy of the fitted modekr&fore, the primary criterion for considering tefi model as the candidate
model for the comparison is that it must pass thesguare goodness-of-fit.

3. Proposed Approach for Computation of PCI of a Bivariate ZIP process

The standard process capability indices (Cp, CptnCpmk) are developed for univariate processesravthe process data are
continuous in nature and follow a normal distribati Subsequently, generalized PCls have been gelfor continuous process
data that do not follow a normal distribution. Bivede PCls are also developed for two continuowsatteristics from a process
with the assumption that the bivariate process atdly follow a bivariate normal distribution. Faletailed information on
process capability indices for continuous datam&otz and Johnson (2002), Polhemus (2018).

Defects data are discrete in nature (also knasvoount data) and generally follows a Poissomilligton or negative binomial
distribution. Various PCls have been proposed lweisé researchers for attribute process data (nuwibeefects, proportion of
defective items). For example, Yeh and Bhattach@t948) proposed; index, Borges and Ho (2001) proposgdndex, Perakis
and Xekalaki (2005) presenteti. index and Maiti et al. (2010) suggestégl, index for assessment of process capability of
attribute process data. Pal and Gauri (2020) asdastative goodness of these indices and suggebimat the best measure of
PCI for Poisson process data.

For high quality zero-inflated process where hadsthe items are defect free and only a few itemstain defects due to the
occurrence of random shock, the defect data anarass to follow a zero-inflated Poisson (ZIP) distition or a zero-inflated
negative binomial (ZINB) distribution (Pal and Ge2021). Pal and Gauri (2021) have proposed a niefitmocomputation of PCI
of univariate zero-inflated processes. As per ttoppsed methodology, a ZIP or ZINB distributionuidized for modelling the
sample zero-inflated process data and then thectegbgroportion of conformance is estimated ushm fitted model. Then,
adopting the approach of Borges and Ho (2001) donputation of PCI, the estimated proportion of confance is converted into
PCI Cu-index by using inverse transformation of standawdmal distribution. We adopt the similar methodpldo compute the
PCI for a bivariate process where two differentelyf defects are assumed to follow a bivariate-adtated Poisson (BZIP)
distribution.

In this method, a BZIP distribution is firsttétl to the sample data using maximum likelihoodhoet Then, the expected
proportion of nonconforming items having combineninber of defects (arising from two types of defeatsre than the specified
upper limit of defects in an item is estimated gsihe fitted BZIP model. The expected proportiomnoh-conformance above
USL is mapped to the Z-score in the right side tahdard normal distribution, and 1/3rd of this D&cis considered as the
measure of the process capability with respect & dnd it is denoted ag§f?'’F. The CZ%Pindex can be evaluated from a
bivariate zero-inflated Poisson process using dliewing procedures:

1) Collect a sample ofi units from the concerned zero-inflated process @lmserve the numbers of two different types of
defects present in each of the sample items. leetahdom variablesy, Y,) represent the number of two types of defects
present in an item.

2) Fit appropriate bivariate zero-inflated Poissoriritisition to the observed count data.

3) Estimate the expected proportion of nonconformiegns PNUys; ) with respect to specified USL for defects in semi of
the concerned zero-inflated process. The speclil&l can be on the combined number of defects iritem or two
individual USL values for two different types offdets in an item.

Let cUSt be the USL specified by the manufacturer on thelioed number of defects in a unit. A unit will bensidered
nonconforming if the number of defects in it is mahancVSt. Then the expected proportion of non-conformireamis
PNUy, can be estimated as follows:

PNUys, = P(Y; +Y,) > c¥SH) =1 - P((Y; + 1) < c¥Sh) )(9
P((Y, + V) < cUSty =y iy py — iy, = 10
(( 1 + 2) scC ) Zi:o Zj:[) ( 1 L 2 ]) ( )

The probabilityP ((Y; + Y,) < c¢YSt) gives the proportion of conforming items havingntwned number of defects less than
equal to the specified USL.

Suppose ¢St cJ5t) are the individual USL values for two different gégof defects specified by the manufacturer. A
unit will be considered nonconforming if the numioéffirst type of defects in it is more thaf{L or the number of second
type of defects is more tha#lS* or both. TherPNU,5, can be estimated as follows:

For a BZIP process, the proportiBWU,;s, can be estimated as
PNUys, =1—P(Y; < ISy, < cY5h)
= 1—24&24&13(1/ =Y =j
i=0 j=0 1 » 12 ]) (11)
The probabilityP(Y; < ¢VSt, Y, < cJ5t) gives the proportion of conforming items having f@mof two types of defects less
than equal to the respective specified USL values.
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4) Determine the Z-value in the right side of ts&andard normal distribution that results in philig area equal to
PNUyg, value. In other words, map the computBd U, value to the Z-score in the right side of standaimal
distribution. LetZ, is the value of Z that results in probability af#él s, above it. TheZ,, value can be obtained by using
inverse cumulative probability of the standard nalrdistribution function as follows:

0 PNUys, =0.5
Zy = {0 (1 - PNUys,) 0.0 < PNUyg, <0.5 (12)
4 PNUUSL == 0

where,®(+) denotes the standard normal cumulative distrilutimction.
5) Finally, obtain the estimate of the process cajighiidex CZ%'P of the concerned zero-inflated process as follows:
CEZIP = (1/3) x Zy (13)

If the value of estimated index’Z%'? is greater than 1, then the capability of the eoned zero-inflated process can be

considered good. In this case, the process is tamdproducing more than 99.865% conforming iteires, more than

99.865% of produced items will have total numbedefiects less than equaldd®” (the specified USL).
It is important to mention that if the value of poation PNU,,5, is more than or equal to 0.5, thén is considered as zero instead
of taking the negative values. Consequently, tdextZ%'? becomes equal to zero. WhBNT ;, is more than 0.5, it means that
more than 50% of produced items are nonconformiieg,more than 50% of produced items will have comt number of
defects more thanVS* (the specified USL). Thus, it is concluded tha torresponding manufacturing process is not capatbl
all.

3.1 Estimation of confidence interval of CE#F

Since CE#P is a point estimate obtained from sample data itécessary to construct confidence interval (€the capability
index CE2'® for inference purpose, especially when the samsjze is relatively small. However, construction®@if using the
sampling distribution of the estimaté§?'? is found to be quite difficult. Hence, we use Niagand Nagahata (1994) proposed
generalized approximation formula for constructiditwo-sided Cl ofc2?’P. According to Nagata and Nagahata (1994),

(1 — @)% two-sided CI ocB2!P = (¢Bzr _ gz o |14 G2 poap  f o |1 GEF) (14)
u u 1-34oam = 2(n-1) ~ % 1-5349n = 2(n-1)

where,« is the level of significance and (&) is the confidence coefficient.

4. Analysisand Results

For the purpose of illustrations of computationspofcess capability indices using the proposed agmbr and assessing its
effectiveness, two case studies are presented here.

4.1 Case Sudy 1

This case study from a LED packaging process wasented by He et al. (2012). In LED packaging pssceEDs are placed
onto a printing circuit board (PCB) and then a sedlty process is done that connects the LEDs arigl\R&Cgolden wires. There
are two types of defects in the LEDs on a manufadtiPCB, namely — LED mounting errors (defect 1J anldering errors
(defect 2). They have selected 100 PCBs from tloggfing process when the process is under an imetaituation and then
counted the number of two types of defects in thdmet al. (2012) used this data to estimate theqss parameters and develop
control limits for CUSUM control charts for monitog the packaging process. The raw data is givethénarticle (He et al.
2012). Here, the frequency distribution of two tymé defects from the sample data is presentddkifidilowing Table 1.

Table 1. Frequency distribution of two types of defects

(1, ¥2) Frequency| (v1,¥2) Frequency | (v1,¥2) Frequency

(0, 0) 62 ©, 1) 1 (©, 8) 2
(1, 0) 2 ©, 2) 1 (0, 9) 1
(2, 0) 1 (0, 3) 3 2, 3) 2
(3, 0) 2 (0, 4) 4 (3, 8) 2
(4, 0) 3 (0, 5) 2 (7, 5) 1
(5, 0) 1 (0, 6) 1 (7, 8) 1
(7,0) 2 ©,7) 6

Following the notations described earlier, it canisitten that:
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7 9

7 9
Ngy = 62, an:ll, Zn0j=21, ZZnﬁz& n =100

i=1 j=1 i=1 j=1
Also, it can be computed from the sample datattiatotal number of type 1 defects is 65, total henof type 2 defects is 146
and combined number of defects is 211.

We now apply the maximum likelihood procedure find the estimates of the wunknown six parameters
(Poo> P10s Po1r Ao, A2o, and Aq) of BZIP distribution, proposed by Li et al. (1999)he iterative procedure for finding the
estimates by maximizing the log-likelihood functiencarried out using Solver tool of Microsoft EkcA starting solution of

Poos P1os Por, and py;) for the iterative procedure can be considered ™8, %t Zitoi 2i>1%iy ya 65 respectively. The
n n n n

procedure of computing expected proportions andliikod function is slightly complicated and wilk Wdifficult for many
practitioners. The maximum likelihood estimateshaf parameters of the fitted BZIP distribution abtained as:
Doo = 0.6162, Pyo = 0.1125, Py, = 0.2094, p;; = 0.0619
Aoo = 1.3543, 1, = 2.3426,1,, = 4.0187,1, = 3.6969,1, = 5.3730 and 1 = 7.7156
with the log-likelihood value atn L = —197.231. Although, the Chi-square goodness-of-fit must leefggmed to check the
adequacy of the fitted distribution, it could na @one for this small size sample data becausergfsmall frequency values of
the observed pairs.

We then try to find the maximum likelihood estites of Type | BZIP distribution, proposed by LindaTian (2015). The
maximum likelihood estimates of the parameterseffitted BZIP distribution are obtained as:

Q=03815 A, =1.7037, 1, =3.8269 with InL= —26338
The expected frequencies computed using this filigee | BZIP distribution of Liu and Tian (2015)eafound as highly deviated
from the observed frequencies in the sample dd&m, Ahe log-likelihood value of the fitted Typ&EIP distribution is much less
compared to the fitted BZIP distribution of Li dt 1999). Hence, the fitted BZIP model of Li et £1999) is chosen for further
computation of non-conformances and process catyabitiex.

For computation of process capability index amgected non-conformance, we need a specified Uppiérfor the combined
number of defects or individual upper limits forthdype of defects in a PCB. He et al. (2012) hastespecified USL value either
for the combined number of defects or for individusL values for two types of defects. Obviouslye tdesirable value for
number of defects in a PCB is zero. However, fangotation of PCI, we need to have positive integdues as USL for the
number of defects.

In the first case, let us assume that the sipeldidSL for the combined number of defectsis: = 7, that means, a PCB will be
considered as non-conforming if the combined nunalbelefects in it exceeds 7. Then, the expectedgatmn of non-conforming
PCBs can be computed as:

Expected Conformance P((Y; + Y;) < ¢YSt) = 21.7;({ Z?zoP(Y1 =iY,=j)=09168
Expected Nonconformance PNUyg;, = 1 — P((Y; +Y,) < ¢USt) = 0.0832
The process capability ind&€#'* can be computed as

. 1 S 1
CBIP = §q)—1(1 — PNUyg,) = §CI)_1(0.9168) =0.461

Since, the estimated PCF?#? is much less than 1.0, it can be concluded ttatfBD packaging process is not capable. In fact,
around 8.32% of manufactured PCBs will have thelioed number of defects more than the specified bfSL

The zero-defect proportiaP(Y; = 0,Y, = 0) is computed from the fitted BZIP model as 0.62isTheans, 62% of PCBs are
expected not to have any type of defect and ar888t of manufactured PCBs will have either LED maugntlefect or soldering
defect or both.

In the second case, let us assume that the spetifid. values for the two types of defects in a P&B given agc/st =
3,cJ5t = 4). This means, a PCB will be considered as non-carifay if the number of first type of defects in koeeds 3 or the

number of second type of defects exceeds 4. Therexpected proportion of non-conforming PCBs aardmputed as:
USL .USL
C1™ €2

Expected Conformance P(Y; < cVSL,Y, < cJ5t) = Z z P(Y,=1iY,=j)=0.7636
i=0 j=o0
Expected Nonconformance PNU,g, = 1 — P(Y; < c/SL,Y, < YY) = 0.2364
The process capability inde&€#'* can be computed as

. 1 S 1
CBIP = §q)—1(1 — PNUyg,) = §CI)_1(0.7636) =0.239

Since, the estimated PCF?'? is much less than 1.0, it can be concluded tratL#D packaging process is not capable. In fact,
around 23.6% of manufactured PCBs will either hidneefirst type of defects more than the specifi@Ldf 3 or the second type
of defects more than the specified USL of 4 or both
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It may be noted here that the second type of spddiimits (USL for each type of defects) is moteéngent than first type of
specified USL for the combined number of defectsisTis because of many defect combinations likeOj(4(4,1), (4,2), (4,3),
(1,5), (1,6), (2,5),.. etc] which are considerednas-conforming PCBs under the second type of §ipation limits, will be
considered as conforming PCBs under the first tgh&JSL for combined number of defects. This becorolesr from the

expected proportion of conforming PCBs estimateal/ab

4.2 Case Sudy 2

The following study was carried out in an automelildustry for one critical component used in matgoles. After receiving the
input components from an authorized vendor, theseponents are processed for a smooth outer suififiisk using a special
purpose grinding machine. The defects are detexthdafter removal of a fixed amount of materiarfr component outer surface
after the grinding process. There are mainly twpety of defects, namely, holes and uncleaned sur&tieer one or both
occurring in one or more locations. Although arou@b components are observed as defect free, timerearound 10%
components having either one or both type of defecbne or more locations along the componengsarflt is desirable not to
have any kind of defects in any component. Howelomking at the complex structure of the componéniyas decided that a
maximum of total 4 defects{* = 4) in any component will be treated as acceptahteamny component containing more than 4
defects will be rejected and will be sent backh® supplier at his expenses. A sample of 1000 caemgs is selected randomly
from a lot and all those components are inspectied #ne grinding process. The following Table e the number of defect
occurrences in a component and their frequencidientire sample of size 1000.

Table 2. Frequency distribution of two types of defecteimponents after grinding

(v,y) | Frequency |  (y5,¥,) Frequency (v, 72) Frequency
(0, 0) 893 (0, 3) 5 2, 1) 6
(1,0) 16 0, %) 2 2,2) 7
2,0) 9 (0, 5) 1 (2,3) 5
3,0) 4 1,1 8 (3, 1) 3
(4,0) 2 1,2 5 3,2 4
0, 1) 15 1,3) 3 @, 1) 1
©,2) 9 1,4 2

Following the notations described earlier, it canisitten that:
4 5 4 5

ngo = 893, an:m, Zn0j=32, Zznij=44, n = 1000

i=1 j=1 i=1 j=1
Also, it can be computed from the sample datatti@total number of type 1 defects is 133, totahbar of type 2 defects is 143
and combined number of defects is 276.

We now apply the maximum likelihood procedure tondfi the estimates of the unknown six parameters
(Poo> P10 Po1r A1, A2o, and Aq) Of BZIP distribution, proposed by Li et al. (1999)he maximum likelihood estimates of the
parameters of the fitted BZIP distribution are aled as:

Poo = 0.8697, p;o = 0.0312, Py, = 0.0295, p;, = 0.0696
Aoo = 0.6432,1,, = 0.6929,1,, = 0.8049, 1, = 1.3361, 1, = 1.4481 and 1 = 2.1410

with the log-likelihood value al L = —637.397. Since, six unknown parameters are estimated frersample data of size n =
1000, the AIC and BIC values are computed as

AIC =2+ 6 —2InL = 1286.794 and BIC = 6 *xIn(n) — 2InL = 1316.24
We then try to find the maximum likelihood estinmtef Type | BZIP distribution, proposed by Liu aféan (2015). The
maximum likelihood estimates of the parametershef fitted BZIP distribution and the correspondingCABIC values are
obtained as:

0 =0.1186, 1, =1.1218, A, = 1.2062 withInL = —642.302

AIC =2 %3 —2InL = 1290.60 and BIC = 3 xIn(n) — 2{nL = 1305.33
Following the model selection criteria of minimuniQvalue and maximum log-likelihood value, it iscitbed to select the Li et
al. (1999) BZIP distribution with 6 estimated parters as the fitted model for this sample datang/¢ihose 6 estimated model
parameters, the expected frequencies of defects peé computed which is found quite similar witie tobserved frequencies.
However, Liu and Tian (2015) Type | BZIP distrilarniis also found as a good model for the sample aatl can be utilized for
future estimation purposes.

The specified USL for the combined number of defdstgiven as”® = 4. The expected proportion of non-conforming
components is computed using Li et al. (1999) Bdid¥ribution as:
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Expected Conformance P((Y; + ¥,) < ¢YSt) = Z?z_({ Z?zoP(Y1 =1iY, =j) =0.9879
Expected Nonconformance PNUyg, =1 — P((Y; + Y5) < ¢YSt) = 0.0121
The process capability inde&€#'* can be computed as

A 1 S 1
CBIP = §q)—1(1 — PNUyg,) = §CI)‘1(0.9879) =0.751

The 95% confidence interval of process capabitifeix CEZ#'* is computed using equation no. (14) as

95% Confidence interval of CE#'P is (0.708,0.794)
Since, the estimated PCF#? is less than 1.0, it can be concluded that thelgg materials are not conforming to permissible
limit with respect to total number of defects. bcf, around 1.2% components will be rejected dueotttaining the combined
number of defects more than the specified USL of 4.

If we use the fitted Type | BZIP distribution with parameters of Liu and Tian (2015), the expectexpgrtion of non-
conformancePNU,, is estimated as 0.0103 and accordingly, the psocapability indexCZ?'? can be computed as 0.771. The
expected proportion of non-conformance and procepsbility index values estimated using both BZI&deis are observed as
quite close to each other. In this particular cé$e,and Tian's Type | BZIP distribution may be faeed for future prediction
purposes because of its simplicity and easier ceatipnal procedure of expected proportions in camspa with Li et al. (1999)
proposed BZIP distribution.

5. Conclusions and Future Research

In high quality manufacturing processes, most ef ithms produced are defect free and only a femsteontain one or more
number of single or multiple types of defects. Spchcesses are referred to as zero-inflated presesgh random shocks. A
zero-inflated Poisson (ZIP) distribution is commpounked for modelling zero-inflated process datdwihgle type of defect and a
bivariate zero-inflated Poisson (BZIP) distributisrused for modelling zero-inflated process daith two types of defects and a
multivariate zero-inflated Poisson (MZIP) distrilmut is used for modelling zero-inflated processadaith more than two types of
defects. Often evaluation of capabilities of suehozinflated processes becomes necessary foraks@ssment, comparison and
decision making for improvement. Although some veodn evaluation of process capability of univarizéeo-inflated Poisson
(ZIP) processes are available in literature, nokwsrreported on measuring the capabilities of BAIPMZIP processes. This
paper presents a methodology for measuring capabflia BZIP process. In the proposed approachZI® Bnodel is first fitted to
sample data and then the expected nonconformartbe jprocess is estimated which is finally conweiteo a process capability
index by using a transformation. The proposed nulogy is illustrated using two case studies amdrésults reveal that the true
capabilities of these processes are well repreddmntehe measured values of the proposed procesbitity index.

In this article, the proposed methodology iseleped considering only two different forms of BZiistribution. In literature,
some other forms of BZIP distributions are repartédvill be an interesting future work to studyvhaobust is the proposed
methodology when other forms of BZIP distributiore aised for modelling the process data. Sometimesiate zero-inflated
negative binomial (BZINB) distribution and bivagatzero-inflated generalized Poisson (BZIGP) distitns are used for
modelling bivariate count data, especially whendhis over dispersion in the count data. Futurdistuare required to examine
the effectiveness of the proposed methodology WBINB or BZIGP distribution is used for modellingqeess data. Future
studies may also be aimed at evaluating procesbddies of multivariate zero-inflated processes.
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