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Abstract

   For assessing capability of a normal process with upper specification limit (USL) conventionally ܥ௣௨ index is estimated to 
facilitate better decision making in product and process management. But, in practice, many quality characteristics having USL 
only, e.g. count data, proportion defective etc. are discrete and follow Poisson or binomial distributions. Some unconventional 
indices (e.g. ܥ௨ ௣௖௨ܥ ¸௙௨ܥ ,  and ܥ௣௬௨) are proposed in literature for assessing capability of Poisson or binomial processes. Due to 
legacy of usages of ܥ௣௨  index and its interpretations, a user of an unconventional index often tends to interpret its values with 
reference to the values of ܥ௣௨ for the bad, good or highly capable normal processes, and get a false impression about the 
capability of the concerned Poisson or binomial process. In this paper, the key features of those unconventional indices are 
highlighted and then some numerical analysis is carried out for assessing the interpretation issues associated with these 
unconventional indices. The results of these analyses reveal that although there is no interpretation issue for the unconventional 
index ௨ܥ , there are serious interpretation issues with all other unconventional indices. The mathematical relationships of 
estimates of other unconventional indices with the estimate of ܥ௨ index are established. It is recommended to convert the 
estimates of other unconventional indices into estimated ܥ௨ value using those relationships before any decision making. 
Otherwise, users of the other unconventional indices may inadvertently be led to erroneous decision making. 
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1. Introduction 

   The behavior of a process is often described by a probability distribution. In order to assess its adequacy, the hypothesized 
distribution has to be compared with the corresponding specifications. Process capability index (PCI) measures the extent of 
variation a process experiences relative to its specification limits. There is a large body of literature dealing with PCIs. Mention 
may be made of the books by Kotz and Johnson (1993), Kotz and Lovelace (1998), Pearn and Kotz (2006), Ryan (2011), 
Polhemus (2018) and Chakraborty and Chatterjee (2021). The indices help in the prevention of nonconforming products by 
establishing a benchmark capability. Being dimensionless, they facilitate communication between engineering and manufacturing 
departments and between manufacturers and suppliers. They aid in establishing the priority areas for process improvement and 
continuous improvement.  
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The most basic PCI for quality characteristic with both-sided specifications is ܥ௣ , which is defined as the quotient between the 
length of the acceptance level and six times the process standard deviation. Thus, if ܷܵܮ and ܮܵܮ are the upper and lower 
specification limits respectively and ߪ is the population standard deviation, then 

௣ܥ = ܮܷܵ)  − (ܮܵܮ ⁄ߪ6                                                                                                   (1) 
When there is only ܷܵܮ or only ܮܵܮ for a quality characteristic, then the process capability indices are defined as 

௣௨ܥ = ܮܷܵ)  − (ߤ ⁄ߪ3                                                                                                       (2) 
௣௟ܥ = ߤ)  − (ܮܵܮ ⁄ߪ3                                                                                                       (3) 

where ߤ is the population mean. Commonly used other indices are ܥ௣௞ ௣௠௞ܥ ௣௠, andܥ , . Computation of all these indices requires 
assumption that the quality characteristic is a continuous variable and follows normal distribution. The details about these indices 
are available in Kane (1986), Kotz and Johnson (2002), Yum and Kim (2011), Chen et al. (2017) and Yum (2023). The 
generalization of these indices for continuous but non-normal variables is suggested by Clements (1989), Chen (2000), Kovarik 
and Sarga (2014), and Safder et al. (2019). 

In practice, many quality characteristics in manufacturing and service set ups are attribute in nature (Gauri and Pal, 2020). For 
example, number of defects in 100 square metre cloths, number of customers served per hour, proportion of improperly sealed 
orange juice can, proportion of defective purchase orders etc. The attribute data are typically obtained by counting the number of 
occurrences of some condition (e.g. defect, error etc.) in an inspection unit or by counting number of defective units (ݎ) within a 
given number of sample units(݊), and so, these data are discrete in nature. It is well established that attribute data usually follow 
Poisson or binomial distribution (Montgomery, 2019). These attribute data generally have upper specification limit only. The 
standard formulas (that are developed for normal processes with one-sided specification) cannot be used for computation of 
capability indices of a process involving such characteristics. 

In order to overcome the problem, some alternative indices are proposed in literature for measuring capability of a process 
involving attribute quality characteristic with ܷܵܮ. These are ܥ௨ index (Borges and Ho, 2001), ܥ௙௨  index (Yeh and Bhattacharya, 
 ௣௬௨ index (Maiti et al., 2010). The procedures for computation ofܥ ௣௖௨ index (Perakis and Xekalaki, 2002, 2005) andܥ  ,(1998
these indices are different from the standard practice for computation of process capability indices from a normal process. Thus 
these are referred to as unconventional indices. The indices ௙௨ܥ ௣௬௨ܥ ௣௖௨ andܥ , are computed as the ratio of two probabilities, and 
thus these indices can be computed for both continuous as well as discrete quality characteristics, and no assumption is required on 
the distributions of these quality characteristics. On the other hand, ܥ௨ is computed by mapping the expected proportion of 
nonconformance above ܷܵܮ of a characteristic to the Z-score in the right side of standard normal distribution. That is, ܥ௨ responds 
to changes in the nonconforming region and not to changes in the distribution of the observed quality characteristic. Consequently, 
computations of all these indices are feasible in any process regardless of whether the quality characteristics are discrete or 
continuous and their probability distributions. Pal and Gauri (2020a, 2020b) compared performance of these unconventional indices 
in evaluating capabilities of Poisson and binomial processes. Gauri and Pal (2020) showed that the same value of different 
unconventional (called generalized) indices computed from a Poisson or binomial process and the ܥ௣௨ value computed from a 
normal process signifies different capabilities for these processes and thus there exists interpretation issues for the unconventional 
indices.  

In fact, over the years we have been accustomed to evaluate the process capability indices from normal processes and interpret 
the same. For example, the capability of a process is considered good if ܥመ௣௨ ≥ 1 and the capability is considered very good if  
መ௣௨ܥ ≥ 1.33. Due to legacy of usages of conventional process capability indices and its interpretations, a user of an unconventional 
index may tend to interpret its values with reference to the values of the conventional process capability indices for the bad, good 
or very good capable normal processes, and thus he/she may unknowingly arrive at an erroneous decision based on the estimate of 
an unconventional index. Consequently, product and process management may become inefficient. This understanding motivates 
us to critically analyze the pros and cons of different unconventional indices in quantifying the capability of a process, and develop 
ways to overcome the problems of difficult to interpret unconventional indices. The article is organized as follows: The methods 
for computation of different unconventional indices along with their key features are described in Section 2. Some numerical 
analysis, which reveals usefulness and limitations of different unconventional indices, are presented in section 3. In section 4, 
mathematical relationships of some unconventional indices with ܥ௨ index are established. Section 5 concludes the paper. 

2.  Different Unconventional Process Capability Indices 

   The unconventional indices for process capability proposed by Borges and Ho (2001), Yeh and Bhattacharya (1998), Perakis and 
Xekalaki (2002, 2005) and Maiti et al. (2010) and their variants for unilateral specification are presented in the following 
subsections.  

For computation of estimates of many of the unconventional indices from a Poisson process we need to compute first expected 
proportion of nonconforming units with respect to ܷܵܮ (ܲܰ෣ܷ௎) and expected proportion of nonconforming units with respect to 
LSL (ܲܰ෣ܷ௅). For convenience, let us consider that a single unit of product represents an inspection unit. Suppose number of 
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occurrences of the events (e.g. defects or errors) is observed in each of the ݉ units collected from in-control process. Let the 
random variable ܭ denotes the number of occurrences of the event in a unit, and ݇௜ is the number of events occurred in the ݅௧௛  unit 
(݅ = 1,2,3 … ,݉). Then, the unknown parameter ߣ can be estimated as ߣመ = ത݇ =  ∑ ݇௜௠

௜ୀଵ ݉⁄ , and the values of ܲܰ෣ܷ௎ and ܲܰ෣ܷ௅can 
be obtained as follows: 

ܲܰ෣ܷ௎ = ܲ{݇ > ݇௎} = 1 − ܲ{݇ ≤ ݇௎} = 1 − ∑ ݁ି௞ത( ത݇)௞ ݇!⁄௞ೆ
௞ୀ଴                                                   (4) 

ܲܰ෣ܷ௅ = ܲ{݇ < ݇௅} = ∑ ݁ି௞ത ( ത݇)௞ ݇!⁄௞ಽିଵ
௞ୀ଴                                                                                     (5) 

where ݇௎ and ݇௅ are the USL and LSL of number of defects in a unit product. 
Similarly, for computation of estimates of many unconventional indices from a binomial process, we need to compute first 

expected proportion of nonconforming lots with respect to ܷܵܮ (ܲܰܮ෣௎) and expected proportion of nonconforming lots with 
respect to ܮܵܮ (ܲܰܮ෣௅). Let a production process is operating in a stable manner, such that the probability that any unit will be 
nonconforming to specification is ݌ and successive units produced are independent. Suppose a random sample of ݊ units of 
product is selected from the process and the number of nonconforming products observed is ݀, i.e. sample fraction nonconforming 
is ݂ = ݀ ݊⁄ . If the random variable ܦ denotes the number of units of product that are nonconforming to the specification, then ܦ
has a binomial distribution with parameters ݊ and ݌. The cumulative distribution function of sample fraction nonconforming, ݂ =
݀ ݊⁄  can be obtained by using the binomial distribution as 

ܲ{݂ ≤ ܽ} = ܲ ቄௗ
௡
≤ ܽቅ = ܲ{݀ ≤ ݊ܽ} = ∑ ቀ݊݀ቁ ݌

ௗ(1 − ௡ିௗ[௡௔](݌
ௗୀ଴                                                     (6) 

where [݊ܽ] denotes the largest integer less than equal to ݊ܽ. It can be shown that ܧ(݂) = ௙ଶ൯ߪ൫ܧ and ݌ = 1)݌ − (݌ ݊⁄
(Montgomery, 2009). If ݂ is STB type, then it will have only ܷܵܮ (say, ܷܵܮ = ௎݂) and if ݂ is LTB type, then it will have only ܮܵܮ
(say, ܮܵܮ = ௅݂). 

Suppose, m samples of size ݊௜  (݅ = 1, 2, 3,..,m) are collected from a stable process and number of defectives observed in ݅௧௛
sample is ݀௜. Then, fractions nonconforming in the ݅௧௛  sample is ௜݂ =  ݀௜ ݊⁄  (݅ = 1,2,3, … ,݉) and the unknown parameter ݌ is 
estimated as ̂݌ = ݂̅ = (∑ ݀௜௠

௜ୀଵ ) ݉݊⁄  and average sample size is estimated as ത݊ = (∑ ݊௜௠
௜ୀଵ ) ݉⁄ . So the values of ܲܰܮ෣௎ and ܲܰܮ෣௅

can be obtained as follows: 
෣௎ܮܰܲ = ܲ{݂ > ௎݂} = 1 − ܦ}ܲ ≤ ത݊ ௎݂} = 1 − ∑ ቀ ത݊݀ቁ ݂

̅ௗ(1 − ݂̅)௡തିௗ[௡ത௙ೆ]
ௗୀ଴                                        (7) 

෣௅ܮܰܲ = ܲ{݂ < ௅݂} = ܦ}ܲ ≤ ത݊ ௅݂} = ∑ ቀ ത݊݀ቁ ݂
̅ௗ(1 − ݂̅)௡തିௗ[௡ത௙ಽ]

ௗୀ଴                                                        (8) 

 index ࡯ 2.1

Borges and Ho (2001) suggested a new measure of process capability, called ܥ index, which has one-to-one correspondence 
(mapping) between the proportion of nonconformance (ߨ) and Z-value of the standard normal distribution. The ܥ index for a 
quality characteristic ܺ is defined as follows: 

ܥ =  ଵ
ଷ

× Φ
ିଵ
ቀ1 − గ

ଶ
ቁ                                                                                                          (9) 

where, ߨ = 1 − ܮܵܮ)ܲ ≤ ܺ ≤   .is the proportion of nonconformance in in-control process (ܮܷܵ
In case there is only USL, the expected proportion of nonconformance of a characteristic above ܷܵܮ is mapped to the Z-score 

in the right side of standard normal distribution, and 1/3rd of this Z-score is considered as the measure of the process capability 
with respect to ܷܵܮ and it is denoted as ܥ௨. Thus, the estimates of ܥ௨ from a Poisson process and from a binomial process can be 
obtained using equations (10) and (11) respectively.  

መ௨ܥ =  (1 3⁄ ) × Φିଵ൫1 − ܲܰ෣ܷ௎൯                                                                                          (10) 
መ௨ܥ =  (1 3⁄ ) × Φିଵ൫1 −  ෣௎൯                                                                                          (11)ܮܰܲ

Similarly, the estimates of process capability with respect to ܮܵܮ (denoted as ܥ௟ ) can be obtained from Poisson and binomial 
processes. 

Features of  ࢛࡯ index 
 It may be noted from equations (10-11) that if ܲܰ෣ܷ௎ or ܲܰܮ෣௅ is greater than 0.5, then ܥመ௨  will become negative which is not 

meaningful. Therefore, ܥመ௨ is to be considered as zero if ܲܰ෣ܷ௎ or ܲܰܮ෣௅ is greater than equal to 0.5. 
 The value of ܥመ௨ will be reasonably high for a very highly capable process. For example, if the proportion of nonconformance 

is 0.00001, the value of  ܥመ௨ will be 1.42. 
 The value of ܥመ௨ will be one if the proportion of nonconformance in the process is 0.00135. 
 The expected proportion of conformance (ܥܲܧ) in the concerned Poisson or binomial process can be obtained based on the 

estimate of ܥ௨ using the following  equation: 
ܥܲܧ  = Φ൫3ܥመ௨൯                                                                                                                  (12) 
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 index ࢉ࢖࡯ 2.2

Perakis and Xekalaki (2002, 2005) proposed to measure ܥ௣௖  index for assessing capability of a process. Saha et al. (2022) 
discussed estimation of ܥ௣௖  index when the process follows exponentiated exponential distribution. The index  ܥ௣௖ is defined as 
follows: 

௣௖ܥ = (1 − (଴݌ (1 − ⁄(݌                                                                                                                  (13) 
where, ݌଴ is the minimum allowable proportion of conformance and ݌ is the actual proportion of conformance. If the characteristic 
has USL only, then the process capability index can be represented as ܥ௣௖௨ , and it can be defined as follows: 

௣௖௨ܥ = (1 − ଴݌
௎) (1 − ⁄(௎݌                                                                                                             (14) 

where, ݌଴
௎ is the desired proportion of conformance with respect to ܷܵܮ, and ݌௎ is the actual proportion of conformance with 

respect to ܷܵܮ.  
Perakis and Xekalaki (2002, 2005) recommend that 0.9973 is a good choice for the desired proportion of conformance (݌଴) for 

both sided specifications and thus, when only USL is specified then a good choice for the minimum allowable proportion of 
conformance with respect to USL would be ݌଴

௎ = 0.99865, i.e. 1 − ଴݌
௎ = 0.00135. On the other hand, the actual proportion of 

nonconformance with respect to ܷܵܮ for Poisson and binomial processes are obtained as ܲܰ෣ܷ ௎ and ܲܰ෣ܷ௅  respectively. Thus, the 
estimates of ܥ௣௖௨ from the Poisson process and binomial processes can be obtained using equations (15) and (16) respectively. 

መ௣௖௨ܥ = 0.00135 ܲܰ෣ܷ ௎⁄                                                                                                                  (15) 
መ௣௖௨ܥ = 0.00135 ⁄෣௎ܮܰܲ                                                                                                                  (16) 

Similarly, the estimates of process capability with respect to ܮܵܮ (denoted as ܥ௣௖௟) can be obtained from Poisson and binomial 
processes. 

Features of ࢛ࢉ࢖࡯ index 
 In general, the value of ܲܰ෣ܷ ௎ or ܲܰܮ෣௎ is expected to be very low and so the estimate of ܥ௣௖௨  is derived from the ratio of two 

very small numbers. Thus, the estimate is highly impacted due to a minor deviation in the value of actual proportion of 
nonconformance from the acceptable proportion of nonconformance. 

 The value of ܥመ௣௖௨ will be unreasonably very high for a highly capable process. For example, if the proportion of 
nonconformance is 0.00001, the value of  ܥመ௣௖௨will be 135.

 Again, the value of ܥመ௣௖௨  will be unreasonably small even for a moderately capable process. For example, if the proportion of 
nonconformance is 0.01, the value of  ܥመ௣௖௨ will be 0.135. 

 The value of ܥመ௣௖௨  will be one if proportion of nonconformance in the process is 0.00135. 
 The expected proportion of conformance (ܥܲܧ) in the concerned Poisson or binomial process can be obtained based on the 

estimate of ܥ௣௖௨ using the following  equation: 
ܥܲܧ  = 1 −  0.00135 ⁄መ௣௖௨ܥ , where ܥመ௣௖௨ ≥ 0.00135                                                      (17) 

 The value of ܲܰ෣ܷ ௎ or ܲܰܮ෣௎ cannot be more than 1, and hence estimated ܥመ௣௖௨ value will always be more than equal to 
0.00135.  

It may be mentioned here that Yeh and Bhattacharya (1998) defined ܥ௙  index for measuring the capability of a process as follows: 
௙ܥ = ଴ߙ)݊݅݉

௅ ௅ߙ ,⁄ ଴ߙ
௎ ⁄௎ߙ )                                                                                                             (18)  

where, ߙ଴
௎ and ߙ଴

௅ are the proportions of nonconformance the manufacturer can tolerate on the ܷܵܮ and ܮܵܮ respectively, and ߙ௎
and ߙ௅ are the actual proportion of nonconformance with respect to ܷܵܮ and ܮܵܮ respectively. If the characteristic has USL only, 
then the process capability index can be represented as ܥ௙௨ , where 

௙௨ܥ = ଴ߙ
௎ ⁄௎ߙ                                                                                                                                   (19) 

Yeh and Bhattacharya (1998) recommended that a good choice for ߙ଴
௎ should be 0.00135. On the other hand, the actual proportion 

of nonconformance with respect to ܷܵܮ for Poisson and binomial processes are obtained as ܲܰ෣ܷ ௎ and ܲܰ෣ܷ ௅ respectively. Thus, 
in case of unilateral specification, the ܥመ௙௨ index becomes essentially the same as ܥመ௣௖௨  index. Similarly, the ܥመ௙௟  becomes essentially 
the same as ܥመ௣௖௟  index. Therefore, only ܥመ௣௖௨ index (not ܥመ௙௨ index) is taken into consideration for subsequent analysis/discussions. 

࢟࢖࡯ 2.3  index

Maiti et al. (2010) proposed ܥ௣௬  index as a measure of process capability. Saha et al. (2019) addressed different methods of 
estimation of ܥ௣௬ index from both frequentist and Bayesian view points of generalized Lindley distribution. EL-Sagheer and 
Hasaallah (2020) discussed inference issues of ܥ௣௬  index in 3-Burr XII distribution. The ܥ௣௬ index is defined as follows: 

௣௬ܥ = ி(௎)ିி(௅)
ଵିఈబ

ೆିఈబ
ಽ                                                                                                                                (20) 
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where, ܨ(ܷ) and (ܮ)ܨ are cumulative probability distribution function of the quality characteristic at ܷܵܮ and ܮܵܮ respectively, 
and ߙ଴௎ and ߙ଴௅ are the maximum allowable proportion of nonconformance at upper tail and lower tail of the distribution of the 
quality characteristic.  Here the numerator, ܨ(ܷ)−  gives the measure of the actual process yield (i.e. actual proportion of ,(ܮ)ܨ
conformance) and the denominator, (1 − ଴௎ߙ −  ଴௅) gives the measure of the desired process yield (i.e. desired proportion ofߙ
conformance). 

Maiti et al. (2010) suggested that in case of unilateral specification, median of the distribution (ߤ௘) should be taken as the 
process target and the process centre should be located such that ܨ(ߤ௘) = (ܷ)ܨ] + [(ܮ)ܨ 2⁄ = 1 2 = 0.5⁄ , and the value of ߙ଴௎ is 
conventionally taken as 0.00135.  On the other hand, the cumulative probability up to USL (i.e. ܨ(ܷ)) for Poisson and binomial 
processes are obtained as 1 − ܲܰ෣ܷ௎ and 1 − ܲܰ෣ܷ௅ respectively. Therefore, the estimate of ܥ௣௬௨ can be obtained using equations 
(21) and (22) respectively. 

መ௣௬௨ܥ = ி(௎)ିி(ఓ೐)
ଵିఈబ

ೆିி(ఓ೐)
= ଵି௉ே௎෣ೆି଴.ହ

ଵି଴.଴଴ଵଷହି଴.ହ
= ଴.ହି௉ே௎෣ೆ

଴.ସଽ଼଺ହ
                                                                              (21) 

መ௣௬௨ܥ = ி(௎)ିி(ఓ೐)
ଵିఈబ

ೆିி(ఓ೐)
= ଵି௉ே௎෣ೆି଴.ହ

ଵି଴.଴଴ଵଷହ .ହ
= ଴.ହି௉ே௅෣ೆ

଴.ସଽ଼଺ହ
                                                                              (22) 

Features of ࢛ࢉ࢖࡯ index 
 It may be noted from equations (21-22) that if ܲܰ෣ܷ௎ or ܲܰܮ෣௅ is greater than 0.5, then ܥመ௣௬௨ will become negative which is 

not meaningful. Therefore, ܥመ௣௬௨ is to be considered as zero if ܲܰ෣ܷ௎ or ܲܰܮ෣௅  is greater than equal to 0.5. 
 The value of ܥመ௣௬௨ will be unreasonably small even for a very highly capable process. For example, if the proportion of 

nonconformance is 0.00001, the value of  ܥመ௣௬௨ will be 1.0027. 
 Again, the value of ܥመ௣௬௨ will be unreasonably high even for a poorly capable process. For example, if the proportion of 

nonconformance is 0.30, the value of  ܥመ௣௬௨ will be 0.4011. 
 The value of ܥመ௣௬௨ will be one if the proportion of nonconformance in the process is 0.00135. 
 The expected proportion of conformance (ܥܲܧ) in the concerned Poisson or binomial process can be obtained based on the 

estimate of ܥ௣௬௨ using the following  equation: 
ܥܲܧ  = 0.5 + መ௣௬௨ܥ × 0.49865                                                                                          (23) 

3. Analysis and Discussions 

   Since introduction of the concept of process capability index, conventionally the indices ܥ௣௨ and ܥ௣௟  are estimated from normal 
processes for one-sided specification to facilitate better decision making in product and process management. Suppose in a normal 
process, the proportion of nonconformance of a characteristic ܺ with respect to USL is ܲܰܥ௎ . Then, 

௎ܥܰܲ = ܲ(ܺ > (ܮܷܵ = 1 − ܲ(ܺ ≤ (ܮܷܵ = 1 − ܲ ቀݖ ≤ 3 × ௎ௌ௅ିఓෝ
ଷఙෝ

ቁ = 1 − Φ൫3 × መ௣௨൯ܥ

⟹ መ௣௨ܥ = Φషభ(ଵି௉ே஼ೆ)
ଷ

                                                                                                                        (24) 
This implies that there is one to one correspondence between the proportion of nonconformance and the estimated ܥ௣௨ value in 
case of a normal process. Similarly, it can be shown that there is one to one correspondence between the proportion of 
nonconformance and the estimated ܥ௣௟  value in case of a normal process. Over the years, process managers, engineers and other 
decision makers have become accustomed to relate the estimates of process capability indices and the expected proportion of 
product conformance to specifications taking into account the normal processes. Accordingly, general thumb rule being followed 
among the users of the indices is that the capability of a process is good if ܥመ௣௨ ≥ 1 and the capability is very good if  ܥመ௣௨ ≥ 1.33. 

Therefore, it is desired that the values of the unconventional indices with respect to USL computed from Poisson or binomial 
processes should match as closely as possible with ܥ௣௨ values corresponding to different values of proportion of nonconformance 
with respect to USL in a normal process. Otherwise, the users (process managers, design engineers, vendors, customers etc.) of the 
unconventional indices may unknowingly get a false impression about the capability of the concerned Poisson or binomial process, 
which may lead him/her to erroneous decision making. Consequently, product and process management may become inefficient. 

In order to assess the usefulness of the unconventional indices, it is decided to compute the estimates of different 
unconventional indices corresponding to different values of proportion of nonconformance with respect to USL in the Poisson or 
binomial processes, and also to compute the estimate of ܥ௣௨ values corresponding to the same proportion of nonconformance with 
respect to USL in a normal process, and then to compare the estimated unconventional and conventional indices with respect to the 
same one-sided proportion of nonconformance. To facilitate comparison, we categorize the process performance into following 
two categories based on the proportion of nonconformance produced in a process:  

1) Capable process if  ܲܰܥ௎ ≤ 0.00135
2) Incapable process if  ܲܰܥ௎ > 0.00135
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For a capable normal process, we arbitrarily consider some possible proportion of nonconformance with respect to USL (ܲܰܥ௎) 
ranging from 0.00135 to 0.00001, and for each chosen value of proportion of nonconformance, the expected ܥ௣௨ value is computed 
using equation (24). Similarly, for the same chosen value of proportion of nonconformance a capable Poisson (or binomial) 
process, the expected values of unconventional indices i.e. ܥመ௨,  ܥመ௣௖௨,  and ܥመ௣௬௨ are computed using equations 10 (or 11), 15 (or 16) 
and 21 (or 22) respectively. The expected values of ܥ௣௨  index in a capable normal process and expected values of unconventional 
indices, i.e. ܥመ௨,  ܥመ௣௖௨,  and ܥመ௣௬௨ in a capable Poisson or binomial process corresponding to different ܲܰܥ௎  values are shown in 
Table 1. 

   It can be noted from Table 1 that the expected values of ܥ௣௨ and all the unconventional indices are the same (equal to one) when 
the proportion of nonconformance is 0.00135. As the proportions of  nonconformance decrease, the values of ܥመ௨ increase similarly 
to the values of ܥመ௣௨ . This implies that the estimated ܥመ௨ value from a capable Poisson or binomial process can be interpreted 
similarly to the interpretation of the estimated ܥመ௣௨ value from a capable normal process. However, as the proportion of 
nonconformance decreases the changes in the values of ܥመ௣௖௨ and ܥመ௣௬௨ become completely different from the changes in the values 
of ܥመ௣௨. Whereas the values of ܥመ௣௖௨  rapidly increases to abnormally high values with the decrease in proportion of nonconformance 
(e.g. ܥመ௣௖௨ changes from 1 to 27 when ܲܰܥ௎  value changes from 0.00135 to 0.00005), the values of ܥመ௣௬௨ increases very marginally 
even when the proportion of nonconformance is very low (e.g. ܥመ௣௬௨ value changes from 1 to 1.00261 when ܲܰܥ௎ value changes 
from 0.00135 to 0.00005). Therefore, it is very likely that the users of the ܥ௣௖௨ and ܥ௣௬௨ indices will arrive at a false impression 
about the capability of the concerned Poisson or binomial process by examining estimates of these indices. For example, if the 
proportion of nonconformance is 0.0001, the estimated  ܥመ௣௖௨  value will be 13.5 (whereas the estimated ܥመ௣௨ value in a normal 
process will be 1.24), which gives an impression that the concerned Poisson or binomial process is very highly capable. On the 
other hand, for the same proportion of nonconformance, i.e. 0.0001, the estimated ܥመ௣௬௨ value will be 1.00251, which gives an 
impression that the concerned Poisson or binomial process is only little better than the just capable although in reality the process 
is highly capable.     

To understand better the patterns in changes in expected values of ܥ௣௨ and different unconventional indices over the changes in 
proportion of nonconformance (ܲܰܥ௎) in capable processes, Figures 1a-1d are prepared. It can be noticed from these figures that 
only the pattern of changes in the unconventional index ܥ௨ over the changes in the proportion of nonconformance matches with the 
pattern of changes in ܥ௣௨ index (compare Fig. 1a and Fig. 1b). The pattern of changes in the unconventional indices ܥ௣௖௨  and ܥ௣௬௨
over the changes in the proportion of nonconformance grossly deviates from the pattern of changes in ܥ௣௨ (compare Fig. 1c with 
Fig. 1a and Fig. 1d with Fig. 1a). This implies that there is high chances of making wrong impressions about a Poisson or binomial 
process by examining the estimates of ܥ௣௖௨ and ܥ௣௬௨ indices.  

Again for an incapable normal process, we arbitrarily consider some possible proportion of nonconformance with respect to 
USL (ܲܰܥ௎) ranging from 0.002 to 0.30, and for each chosen value of proportion of nonconformance, the expected ܥ௣௨ value is 
computed using equation (24). Similarly, for the same chosen value of proportion of nonconformance in an incapable Poisson (or 
binomial) process, the expected values of unconventional indices, i.e. ܥ௨,  ܥ௣௖௨,  and ܥ௣௬௨ are computed using equations 10 (or 
11), 15 (or 16) and 21 (or 22) respectively. The expected values of ܥ௣௨ index in an incapable normal process and expected values 
of unconventional indices, i.e. ܥመ௨,  ܥመ௣௖௨, and ܥመ௣௬௨ in an incapable Poisson or binomial process corresponding to different ܲܰܥ௎
values are shown in Table 2. 
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Figures 2a-2d shows the patterns in changes in ܥ௣௨ and different unconventional indices over the changes in ܲܰܥ௎  in incapable 
processes. Comparison of Fig. 2b and Fig.2a reveals that both the values of ܥ௨ and ܥ௣௨ indices decreases with the increase in the 
values of proportion of  nonconformance, and the pattern of decreases in the values of ܥ௨  index is similar to the pattern of 
decreases in the values of ܥ௣௨ index. Therefore, interpretation of the estimated  ܥመ௨  value in an incapable Poisson or binomial 
process will be similar to the estimated ܥመ௣௨ value for a incapable normal process. On the other hand, comparisons of Fig. 2c and 
Fig. 2d with Fig 2a reveal that the patterns of changes in the values of ܥ௣௖௨ and ܥ௣௬௨ indices in incapable Poisson or binomial 
processes are completely different from the pattern of changes in the values of the ܥ௣௨ index in incapable normal process. Whereas 
the estimates of ܥ௣௖௨  index rapidly decrease to abnormally low values with the increase in proportions of  nonconformance, the 
estimates of ܥ௣௬௨ index decrease very slowly in a straight line with the increase in proportions of nonconformance. Therefore, it is 
very likely that the users of the ܥ௣௖௨ and ܥ௣௬௨ indices will land into a false impression about the capability of the concerned 
Poisson or binomial process. For example, if the process nonconformance is 0.01, the estimate of  ܥ௣௖௨ will be 0.1350 (whereas the 
estimate of ܥ௣௨ will be 0.775), which gives an impression that the capability of process is very very poor. On the other hand, for 
the same proportion of nonconformance, i.e. 0.01, the estimate of ܥ௣௬௨ will be 0.98265, which gives an impression that the 
capability of the process is only little inferior to a just capable process although in reality the process is quite inferior to a just 
capable process. 
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   So it is observed that for both the capable and incapable processes the pattern of changes in the unconventional index ܥ௨ over the 
changes in the proportion of nonconformance matches with the pattern of changes in ܥ௣௨. This implies that the estimate of  ܥ௨
index obtained fron a Poisson or binomial process can always be interpreted similarly to the interpretation of the estimate of ܥ௣௨
index from a normal process. However, for both capable and incapable processes, the pattern of changes in the unconventional 
indices ܥ௣௖௨ and ܥ௣௬௨ over the changes in the proportion of process nonconformance grossly deviates from the pattern of changes 
in ܥ௣௨ . This is indicative that there is always high chances of making wrong impressions about a Poisson or binomial process by 
examining the estimates of  ܥ௣௖௨  and ܥ௣௬௨  indices. The problem with the ܥ௣௖௨ index is that it is estimated as ratio of two very 
small numbers, where numerator is 0.00135 (acceptable proportion of nonconformance) and denominator is actual proportion of 
nonconforming units/lots with respect to ܷܵܮ. Thus, the estimate is highly impacted due to a minor deviation in the value of actual 
proportion of nonconformance from the acceptable proportion of nonconformance. The ܥ௣௬௨ index suffers from another problem. 
The value of the ratio [ܨ(ܷ) − 0.5] (0.5 − ⁄(଴௎ߙ  is considered as the estimate of ܥ௣௬௨. Since the value ߙ଴௎ is usually taken as 
0.00135, the denominator is always equal to 0.49865. On the other hand, the values of the numerator can be at most 0.5. Therefore, 
the maximum value of  ܥመ௣௬௨  (or ܥመ௣௬௟ ) in a process can be 0.5 0.49865⁄ = 1.0027. Thus the estimates of ܥ௣௬௨ index fail to make 
distinction between just capable process and highly capable process. Similarly, the estimates of ܥ௣௬௨ index fail to discriminate 
between just capable process and poorly capable process.  

It is already noted that the estimate of ܥ௨ index obtained fron a Poisson or binomial process can always be interpreted similarly 
to the interpretation of the estimate of ܥ௣௨  index from a normal process. Thus, it may be possible to resolve the interpretation 
issues of  ܥ௣௖௨ and ܥ௣௬௨ indices, if a relationship between ܥ௨ and ܥ௣௖௨ indices, and ܥ௨ and ܥ௣௬௨ indices can be established.  

4. Establishing Relationship Between estimates of  ࢛࡯ and ࢛ࢉ࢖࡯ indices and ࢛࡯ and ࢛࢟࢖࡯ indices  

The estimate of ܥ௨ from a Poisson process can be obtained using equation (10) as  
መ௨ܥ =  (1 3⁄ ) × Φିଵ൫1 − ܲܰ෣ܷ௎൯

⟹ 1 − ܲܰ෣ܷ௎ = Φ(3ܥመ௨)
⟹ ܲܰ෣ܷ௎ = 1 − Φ(3ܥመ௨)                                                                                                            (25) 
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Again the estimate of ܥ௣௖௨  from a Poisson process can be obtained using equation (15) as 
መ௣௖௨ܥ = 0.00135 ܲܰ෣ܷ ௎⁄

⟹ ܲܰ෣ܷ௎ = 0.00135 ⁄መ௣௖௨ܥ                                                                                                        (26) 
Comparing equations (25) and (26) we get, 

1 − Φ൫3ܥመ௨൯ = 0.00135 ⁄መ௣௖௨ܥ
⟹  Φ൫3ܥመ௨൯ = 1 − 0.00135 ⁄መ௣௖௨ܥ
⟹ መ௨ܥ   =  (1 3⁄ ) × Φିଵ൫1 − 0.00135 ⁄መ௣௖௨ܥ ൯                                                                          (27) 

On the other hand, the estimate of ܥ௣௬௨ from a Poisson process can be obtained using equation (21) as 

መ௣௬௨ܥ = ଴.ହି௉ே௎෣ ೆ
଴.ସଽ଼଺ହ

⟹ 0.49865 × መ௣௬௨ܥ = 0.5 − ܲܰ෣ܷ ௎

⟹ ܲܰ෣ܷ ௎ = 0.5 − 0.49865 ×  መ௣௬௨                                                                                          (28)ܥ
Comparing equations (25) and (28) we get, 

1 − Φ൫3ܥመ௨൯ = 0.5 − 0.49865 × መ௣௬௨ܥ

⟹  Φ൫3ܥመ௨൯ = 0.5 + 0.49865 × መ௣௬௨ܥ

⟹ መ௨ܥ   =  (1 3⁄ ) × Φିଵ൫0.5 + 0.49865 ×  መ௣௬௨൯                                                                    (29)ܥ
Similarly, it can be shown that the relationship between estimates of ܥ௨ and ܥ௣௖௨  indices obtained from a binomial process will be 
the same as equation (27) and relationship between estimates of ܥ௨ and ܥ௣௬௨ indices obtained from a binomial process will be the 
same as equation (29).  

The users of ܥ௣௖௨ and ܥ௣௬௨ indices should convert the estimated ܥመ௣௖௨ and ܥመ௣௬௨ values into ܥመ௨ value using equations (27) and 
(29) respectively before decision making. Otherwise, they may inadvertently be led to erroneous decision making.

5. Conclusions 

   For assessing capability of a normal process with USL conventionally ܥ௣௨  index is estimated to facilitate better decision making 
in product and process management. Due to legacy of usages of this index and its interpretations, a user of an unconventional 
index (used for assessing capability of a Poisson or binomial process) may tend to interpret its values with reference to the values 
of ܥ௣௨ for the bad, good or highly capable normal processes, and get a false impression about the capability of the concerned 
process. In this paper, the patterns of changes in values of unconventional indices over the changes in the proportions of 
nonconformance in Poisson or binomial process is compared with the pattern in changes in the values of conventional ܥ௣௨  index 
over the proportions of nonconformance in normal process. It is observed that the pattern of changes in the values of ܥ௨ index over 
the changes in the proportions of nonconformance matches with the pattern of changes in ܥ௣௨, which implies that  ܥ௨ index can 
safely be used for assessing capability of a Poisson or binomial process. However, the patterns of changes of other unconventional 
indices grossly deviates from the pattern of changes in ܥ௣௨. Mathematical relationships of estimates of other unconventional 
indices with the estimate of ܥ௨ index are established. It is recommended to convert the estimates of other unconventional indices 
into estimated ܥ௨ value using those relationships before any decision making. Otherwise, users of the other unconventional indices 
may inadvertently be led to erroneous decision making. 
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