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Abstract 
 

   Fuel Cells are the only source of electric energy which do not pollute the environment. The fuel cells require Hydrogen and 

Oxygen, which combine electrochemically to provide electric current, heat energy and water. Fuel Cells are the green energy 

source, leading to zero polluting emissions. A fuel cell, as compared to ICE or BEV, has much higher performance and well-to-

wheel efficiency. A fuel cell when integrated with a powertrain provides all these benefits which are required in an automotive 

application. Hydrogen being the fuel for energy generation, an FCEV can be refueled in a short time and provides a higher range 

than a BEV whose charging time is relatively longer. There are many fuel cells which have been the source of power in 

automotive application, however, SOFC scores many positives over others. Despite Solid Oxide Fuel Cells having a high 

operating temperature, they can operate with a variety of fuels containing Hydrogen inside. The fuels for an SOFC may include 

syngas, biogas, coal gas, propane, or natural gas. Unlike PEMFC, SOFC is not sensitive to fuel impurities. This leads to higher 

SOFC performance and greater efficiency. An SOFC operating at a high temperature is not likely to use expensive catalysts for 

necessary ionic reactions required inside. However, the heat up time or start up time must be relatively low in an automobile 

integrated with SOFC powertrain. This paper evaluates heat up or start up time in an SOFC, coupled with the powertrain in 

automotive application.  
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1. Introduction 

 

In the year 1839, Sir William Robert Grove proposed the concept of a fuel cell for the first time. By using electrolysis as the 

basis, he designed a reverse process that combined hydrogen and oxygen to produce electricity. The first ever patent on fuel cells 

was filed by Fritz Haber, using a solid electrolyte in 1905. In his patent, glass and porcelain were used as electrolyte materials and 

platinum and gold as electrode materials. Between 1933 and 1959, Francis Thomas Bacon worked on and demonstrated a fully 



Ahuja et al./ International Journal of Engineering, Science and Technology, Vol. 15, No. 4, 2023, pp. 15-25 

 

16 

 

functional alkaline electrolyte fuel cell, AFC. In 1960, NASA used the same AFC technology developed in its Apollo space 

program. In 1990, the first direct methanol fuel cell, DMFC, was developed by NASA jet propulsion. 

Nernst was the first to develop Solid oxide fuel cell (SOFC) in 1899 by incorporating zirconia (ZrO2) as an ion conductor for 

Oxygen. The output of a fuel cell is three folds, electricity, heat and water or vapor, operating at a very high temperature 600 – 

1000 deg C. In late 1930s, the Swiss scientists, E. Baur and H. Preis worked extensively on Solid Oxide electrolysis by using 

yttrium, zirconium, cerium, lanthanum, and tungsten oxide. And, in 1937, they came out with the first operational ceramic fuel cell 

at 1000 deg C. In 1940s, a Russian scientist O.K. Davtyan added monazite sand to the mixture of sodium carbonate, soda glass and 

tungsten trioxide for increasing the conductivity and mechanical strength of fuel cell but resulted in chemical reactions with shorter 

life. In 1950s, the Netherlands Central Technical Institute in Hague, Consolidation Coal Company in Pennsylvania and General 

Electric in New York continued their research on Solid oxide fuel cell technology to achieve stable solid electrolytes. This could 

resolve the issues of high internal electrical resistance and short circuiting. In view of the high pollution and energy conservation, 

fuel cells are efficient sources of power without emitting any harmful gases in the environment. This property of fuel cells makes 

them a strong contender for automotive application. However, the start-up times of Solid Oxide fuel cells may be quite high due to 

high operational temperatures. 

A Solid Oxide Fuel cell may operate indefinitely if it is supplied with an uninterrupted source of hydrogen and oxygen, which 

is present in the air. Hydrogen atoms, which get disintegrated from a hydrocarbon gas, react with oxygen atoms electrochemically 

during oxidation to create water. Electrons are released within the process and flow as an electrical current through an external 

circuit (Ahuja et al., 2022). The fuel which is suitable to be used in an SOFC includes Syngas or Biogas. As a result, the chemical 

energy in SOFC is directly converted into electricity by fuel cells, the only by-products being pure water and heat, which can also 

be used as by-products. Solid Oxide Fuel cell systems can be up to 60 percent efficient and even higher when heat is also used for 

energy regeneration (Fernandes et al., 2018). The major advantage of using Solid Oxide fuel cells is their high efficiency of energy 

conversion. This is because they have the ability to use even impure fuel as input. Fuel cells and Solid Oxide Fuel Cells in 

particular, do not make any noise during working due to absence of any moving parts. Since direct combustion doesn’t take place 

inside a fuel cell, there is no emission in terms of products like NOx, SOx and particulate matter. Fuel cells are modular and can be 

scaled to desired sizes and can meet very high-power requirements as well. All this makes SOFC an obvious choice of fuel cell in 

automotive applications. 

 

2.  SOFC – Solid Oxide Fuel Cell 
 

The working temperature of SOFCs varies from 800 °C to 1000 °C. It works on methane gas or Syngas as fuel and generates 

energy from direct fuel oxidation and from reforming of fuel to H2 and CO2. The H2 is then split into Hydrogen ions (H
+
) and 

electrons at Anode. Air is supplied to the Cathode. The oxygen molecules at the Cathode are split into oxygen ions (O
2-

) and four 

electrons. When they reach the anode, the oxygen ions re-combine with the hydrogen ions, and heated water is produced. The 

electrons released at the anode generate the electrical current. For Anodes, a porous layer of composite Ni catalyst and yttria-

stabilized zirconia (YSZ) are the most used materials. This is a composite of ceramic and metal and is an ionic conducting 

material. Due to its porosity, gas phase species can also be passed through it. For Cathodes, a porous composite mixture of LSM 

(lanthanum strontium manganite) and YSZ (yttria-stabilized zirconia) is the most used materials. For Electrolytes, ceramic mixed 

metal oxides are the most used materials. The most popular SOFC electrolyte, YSZ is exclusively used in fuel cells operating 

above 750
 
deg C. The combustion of hydrogen has an HHV of 285.8 kJ/mole. However, the Gibbs free energy (GFE) for the 

reaction is only 237.2 kJ/mole, which is the maximum electricity produced by a fuel cell. Therefore, the difference, 48.6 kJ/mole, 

is released as heat energy, which can be used outside the fuel cell. In a Solid Oxide fuel cell, the overall electrochemical reaction 

may be expressed as: 
 

    (1) 
 

 
 
 

Figure 1. Sold Oxide Fuel Cell (SOFC) (Wachsman and Singhal) 
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3. SOFC Flow Equations 

 

   In an SOFC, the electrochemical reaction converts the fuel gas supplied into Hydrogen, which then disintegrates into Hydrogen 

ions and electrons, which produce electrical energy. The coal syngas is primarily a mixture of hydrogen and CO. It has significant 

water vapor and some levels of CO2 and other species in very small quantities. When H2 oxidation takes place at Anode, it 

contributes to electrochemical power generation. At the same time, Methane (CH4) is reformed to CO and H2, conforming to the 

steam reforming reaction. CO, when reacts to steam, releases CO2 and H2. Consequently, there exists three simultaneous reactions 

in a fuel cell – steam reforming reaction for methane, the water-gas shift reaction, and the electrochemical reaction. These 

reactions in an SOFC are enumerated as follows: 

 

 

CH4 + H2O → CO + 3H2 (steam reforming)                      (2) 

CO + H2O → CO2 + H2 (water gas shift)        (3) 

H2 + 1/2O2 → H2O (overall cell reaction)        (4) 

 

 

The amount of hydrogen consumed in the fuel cell reactions,  (mol/s), as per Faraday’s law is enumerated as: 

 

                    (5) 

 

 

The amount of Hydrogen supplied for a known Fuel utilization factor  is given as: 

 

          (6) 

 

 

The air stream molar flow rate is then calculated as: 

          (7) 

 

The fuel stream molar flow rate required to produce the supplied amount of hydrogen is then enumerated as: 

 

 

        (8) 

 

    (9) 

 

 

The molar flow rate for each component j for an identified fuel gas composition , in the fuel stream is calculated as: 

 

 

        (10) 

 

where:  

  = {  

 



Ahuja et al./ International Journal of Engineering, Science and Technology, Vol. 15, No. 4, 2023, pp. 15-25 

 

18 

 

To avoid carbon deposition in an SOFC, more amount of steam is required. The quantity of steam required is nearly twice the 

amount needed for the reforming and water-gas shift reactions. The required molar flow rate of steam is thus enumerated as: 

 

     (11) 

 

The additional steam molar flow rate supplied is hence given by: 

 

    (12) 

 

 

Therefore, the total molar flow rate of the fuel stream entering the fuel cell is given by: 

 

                         (13) 

 

 

4. SOFC Power Equations  

 

      In an SOFC stack, the open-circuit voltage is the maximum operating voltage when no current is flowing through the external 

circuit. The Nernst equation is defined as the relationship between the Standard potential  and the open-circuit voltage, which 

can be determined at partial pressures of reactants and products at temperature : 

 

        (14) 

 

where:  

         (15) 

 

 

The Nernst potential has losses, which are irreversible, when the electrical cell circuit is closed. The losses include the ohmic 

resistance losses of the cell elements, the activation losses at the electrodes and the concentration polarization losses. Thus, the cell 

voltage is calculated as: 

 

       (16) 

 

 

 
 

Figure 2. Sold Oxide Fuel Cell (3.5 kW) Voltage vs Time 
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Activation overpotential is calculated according to the general Butler–Volmer equation. It depends on the kinetics of the 

electrochemical reactions occurring at the anode and cathode. The respective activation overpotentials of the anode and cathode 

can be calculated as: 

 

        (17) 

 

        (18) 

 

 

        (19) 

 

where:  

 

        (20) 

 

         (21) 

 

        (22) 

 

         (23) 

 

 

         (24) 

 

 

The ohmic over-voltages are expressed by the Ohms law: 

 

        (25) 

 

where:  

 

  = Material Conductivity, calculated with a temperature-dependent relation 

 

          (26) 

 

          (27) 

 

          (28) 

 

         (29) 

 

 

The concentration overpotential at the anode and cathode have been included in the evaluation of are enumerated as: 

 

 

        (30) 

 

        (31) 
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        (32) 

 

While evaluating the performance of a fuel cell, the fuel utilization factor is defined as: 

 

 

         (33) 

 

                                       (34) 

 

where, each mole of CH4 generates 4 moles of H2 (3 by reforming and 1 by shift), as per equations (2) and (3). 

 

 

The Utilization Factor,  is pre-assigned for evaluation of fuel cell performance. By using above equation, it is, therefore, 

possible to calculate z and to obtain the electrical current of the cell as: 

 

          (35) 

 

The FC output power is then calculated as: 

 

          (36) 

 

 

 
 

Figure 3. Sold Oxide Fuel Cell (3.5 kW) Power vs Time 

 

 

The SOFC electrical efficiency is then calculated as: 

 

    (37) 
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5. Fuel Cell Thermodynamics  

 

The specific enthalpy and entropy for H2/O2 fuel cell are given by: 

 

  (38) 

 

  (39) 

 

 

For Hydrogen,  

 

 (40) 

 

For Oxygen,  

 

 (41) 

 

For Water,  

 

 (42) 

 

The heat is generated by chemical reaction during the water formation at anode side. It is calculated as: 

 

           (43) 

 

 

Heat generation by ohmic losses due to ohmic resistance, at anode ( ), cathode ( ), the electrolyte ( ) and at the 

Interconnect ( ) is then enumerated as: 

 

 

           (44) 

 

           (45) 

 

           (46) 

 

           (47) 

 

 

where: 

 

            (48) 

 

And, 

 

                      (49) 
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Figure 4. Sold Oxide Fuel Cell (3.5 kW) Temperature vs Time 

 

 

And, 

          (50) 

 

 

By solving the differential equation,  can be plotted w.r.t. time. 

 

The thermodynamic efficiency of the Fuel cell is then calculated as: 

 

  

                 (51) 

 

 

             (52) 

 

 

6. Conclusions  

 

   The performance of an SOFC is largely governed by its Cell temperature. As the Solid Oxide Fuel Cells work at high 

temperatures, their heat-up time becomes a challenging factor for many applications, particularly in automotives. Moreover, the 

rise of Cell temperature also depicts the thermal stresses in various components of fuel cell. All it is required is a shorter start-up 

time with less thermal stress. Automobiles have an obvious reason to have the minimum possible start-up time of a Fuel Cell. The 

start-up time may be minimized either by integration strategy on a vehicle or by changing the chemical composition of materials or 

electrolyte. 

 

 

Nomenclature 

 

  Current density 

  Active area of element  

  No. of electrons transferred per mole of reactant 

  Faraday constant (96,485 Coulomb/mole) 

  Number of moles of hydrogen produced by 1 mole of fuel 

  Cell Temperature (K) 
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i0  Exchange current density for each electrode 'j' (anode or cathode) 

  Pre-exponential factor represented by a first order polynomial temperature function 

  Activation energy of each electrode 'j' (anode and cathode), represented by a constant 

  Elements thickness 

  Material Conductivity, calculated with a temperature-dependent relation 

  Anode Conductivity constants [95 x ; -1150] 

  Cathode Conductivity constants [42 x ; -1200] 

  Electrolyte Conductivity constants [3.34 x ; -10,300] 

  Interconnect Conductivity constants [9.3 x ; -1100] 

  Fuel Utilization Factor 

 Oxygen utilization factor 

  Number of H2 moles reacting 

 mass flow rate for each component j in the fuel stream 

  Molar enthalpy of formation at 298.15 K 

  Molar entropy of formation at 298.15 K 

I  Cell Current (A) 

  Entropy of water formation reaction (J/mol-K) 

  Anode, Cathode, Electrolyte, and Interconnect ohmic resistance 

  Material resistivity =  

M  Mass of the Cell (kg) 

  Equivalent average specific Heat coefficient (J/kg K) 
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