

MultiCraft

International Journal of Engineering, Science and Technology

Vol. 16, No. 2, 2024 pp. 48-67

INTERNATIONAL
JOURNAL OF

ENGINEERING,
SCIENCE AND
TECHNOLOGY

 www.ijest1-ng.com
www.ajol.info/index.php/ijest

 2024 Multicraft Limited. All rights reserved

A technical research survey on bio-inspired intelligent optimization grouping
algorithms for finite state automata in intrusion detection system

S. Prithi1, S. Sumathi2*

1Department of Computer Science and Engineering, Sri Rajalakshmi Engineering College, Chennai. Tamil Nadu, INDIA

2Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, Tamil Nadu, India

*Corresponding Author: e-mail: ssi.eee@psgtech.ac.in, Tel. No.: +99947 59330
ORCID iDs: http:/orcid.org/0000-0001-5165-0212 (Sumathi)

Abstract

 Network Security plays an essential role in the modern world. Current network services mainly rely on processing of payload
in packets. Deep Packet Inspection (DPI) is a key factor in examining the packet payload which uses the signatures to identify
the packet that carries any viruses, worms, malicious traffic, unauthorized access and attacks. DPI uses regular expression
matching as a core operator to examine the packet payload. Finite State Automata (FSA) are natural representations for regular
expression. FSA is usually too large to be constructed or deployed and has a huge overhead. Finite State Automata frequently
leads to state explosion problem which require more storage space, high bandwidth and more computational time. To overcome
this problem, Intelligent Optimization Grouping Algorithms (IOGA) can be used to distribute the regular expressions into
various groups and for each group the Deterministic Finite Automata (DFA) are built independently. Grouping the regular
expression efficiently solves the state explosion problem by achieving large-scale best tradeoff among the memory utilization
and computational time. This paper reviews the various Intelligent Optimization Grouping Algorithms like Genetic Algorithm,
Ant Colony Optimization, Particle Swarm Optimization, Bacterial Foraging Optimization, Artificial Bee Colony Algorithm,
Biogeography Based Optimization, Cuckoo Search, Firefly Algorithm, Bat Algorithm and Flower Plant Optimization. The
discussions states that by effectively using these grouping algorithms along with finite state automata can reduce the number of
states by solving the state explosion blow up problem, providing a balance between the memory consumption, number of
groups and provide faster convergence.

Keywords: Intelligent Optimization Grouping Algorithms, Finite State Automata, Regular Expression, Deep Packet Inspection,
Network Intrusion Detection System.

DOI: http://dx.doi.org/10.4314/ijest.v16i2.6

Cite this article as:
Prithi S., Sumathi S. 2024. A technical research survey on bio-inspired intelligent optimization grouping algorithms for finite state automata in intrusion detection
system. International Journal of Engineering, Science and Technology, Vol. 16, No. 2, pp. 48-67. doi: 10.4314/ijest.v16i2.6

Received: June 16, 2023; Accepted: August 26, 2023; Final acceptance in revised form: September 4, 2023

1. Introduction

 In recent years network security has acquired a tremendous interest due to the anxiety in mounting the security in today’s
network. An extensive variety of algorithms have been proposed which can detect and battle with these security threats. Amongst
these proposals, Network Intrusion Detection System (NIDS) have been a commercial success and have seen a tremendous
adoption (Paxson, 1998). The events that occur in a computer system are captured by NIDS and it analyses the signs of possible
events in the data packets such as computer security policy violation and standard security policy violation. Network devices have
a stipulate growing demand and have the capability of analyzing the data packet contents so as to facilitate network security and to

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

49

offer application specific services. NIDS makes use of Deep Packet Inspection (DPI) that allows the network holder to analyze
internet traffic, throughout the network, in real-time and to differentiate them according to their packet payload (Nitin et al., 2012).
 Network services use signatures recognized from the packet payload to perform intrusion detection system. DPI matches the set
of predefined patterns with the content of the payload byte by byte and examines whether the patterns are identified in the payload
content. DPI uses regular expressions to represent complex string patterns as attack signatures. DPI examines whether a packets
payload matches any of a set of predefined regular expressions. Regular expressions are highly preferred because of its
compactness, flexibility and expressive power to specify attack signatures. Finite state automata are abstract model that recognizes
the same language that is expressed by the regular expression. FSA plays a major role in matching regular expression (Hopcroft et
al., 2001). Finite state automata comprises of a set of states, set of state transitions, input alphabet, start state and set of accept
states. Each final state corresponds to a pattern or a signature. Regular expression matching proceeds from the start state and reads
the payloads first byte. For each byte read, the state transition occurs based on the current state and the payload byte read. At a
course of time accept state is reached and the payload is matched with the equivalent signature. Each byte is processed and each
byte requires one or many main memory accesses therefore regular expression matching in DPI is time consuming and depends on
the efficiency of the matching algorithm.
 FSA can be broadly classified into Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata (NFA). The
expressive power of NFA and DFA are same but the processing is different (Hopcroft et al., 2001). DFA have only one state
transition for each character while NFA can have multiple state transitions for a character. Thus a DFA have only one state active
at a time whereas NFA have multiple states active. Thus the processing cost for each step for DFA is O(1) whereas it is O(n2m) for
NFA, where m denotes number of regular expression and n denotes the average length of regular expression and to convert NFA to
DFA it is as large as O(2nm) which leads to state explosion problem (Yu et al., 2006). NFA and DFA have a conflicting feature in
the consumption of memory and bandwidth. As there is a huge increase in the network applications, the number of signatures that
is to be matched with the patterns simultaneously becomes very difficult. Thus the storage and scalability of regular expression
becomes a big challenge. A majority of ongoing research are searching for a substitute for storage and performance. Thus the main
objective is to perform the matching as fast as DFA at the same time keep the storage as small as NFA for handling a large set of
regular expressions.
 In the recent years, to improve the overall performance of DPI a significant effort has been done to optimize the automaton based
on pattern matching. To implement the DFA bases regular expression matching the primary obstacle is the blow up of states. To
avoid state explosion, rule grouping method (Rohrer et al., 2009; Liu et al., 2014; Yu et al., 2006) was used which groups the rules
into several groups and for each group a DFA is generated. Each combination of patterns has varying magnitude of interactions
therefore the objective of rule grouping is to split the patterns to different groups based on the interaction and to leave the patterns
with least interaction without splitting. Yu’s grouping algorithm (Yu et al., 2006) tactically compiled a set of regular expressions
into several groups that showed an increase in the regular expression matching speed without much rise in the usage of memory.
Rohrer et al. (2009) enumerated the method of rule grouping based on Yu’s algorithm (Yu et al., 2006) and also computed the
measure of how the patterns interact. The enumeration resulted in an optimal grouping. But Yu’s and Roherer’s algorithm
consumed more computational time and memory utilization. Liu et al. (2014) proposed an algorithm called DFA size estimator
that estimated the size of the DFA for the given set of regular expression without building the actual DFA. DFA size estimator is
orders of magnitude faster, has better grouping results and more efficient than the Yu’s algorithm (Yu et al., 2006).
 Based on the performance of these existing rule grouping method, grouping multiple regular expressions can be transformed into
an optimization problem to obtain a better result. The key goal of the optimization problem is to determine the objective functions
maximum or minimum value (Konar, 2005). It literally means finding the best possible or desirable solution. Intelligent
optimization grouping algorithms such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), Bacterial Foraging Optimization (BFO), Artificial Bee Colony (ABC), Biogeography Based Optimization
(BBO), Cuckoo Search, Firefly Algorithm, Bat Algorithm and Flower Plant Optimization can be used efficiently to group the
regular expression and IOGA plays a major role in improving the overall performance of DPI. In this paper, a detailed study on
IOGA is done to build memory efficient and compact automaton based regular expression matching.
 The rest of the paper is structured as follows. Section 2 illustrates about the regular expression its common features and how it
works in DPI, the finite state automaton, its basic types namely NFA and DFA and the state of the art system of evolutionary
strategies that are implied to finite state automata. Section 3 discusses and analyses about the various Intelligent Optimization
Grouping Algorithms that are used in the last three decades and a basic idea of how it can be used with finite state automata and
section 4 discusses about the proposed approach for FSA in DPI which is used to group the regular expression efficiently using
Intelligent Optimization Grouping Algorithms thereby to compress the memory space and improve the convergence speed and
section 5 delivers the concluding remarks.

2. Finite automata based on regular expression matching

 The techniques that are used for designing automaton based regular expression matching are discussed in this section. The
regular expression plays a major part in pattern matching so a detailed background about the regular expression and its importance
in popular DPI systems and how it works in DPI is illustrated. The next core part of matching regular expression is the relationship
between regular expression and finite state automaton, which is explained in this section. The two traditional FSA namely NFA

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

50

and DFA are discussed in detail. Finally the automaton based DPI is illustrated which can obtain high throughput, low
implementation cost, reduced memory utilization, high inspection speed and fast convergence.

2.1 Regular Expression
 A regular expression is a formula that was first developed by Kleene, 1956 (Kleene, 1951) for identifying the basic classes of
strings. A string represents a sequence of symbols. Each symbol in a regular expression is either a regular ASCII character or a
meta-character that has a special meaning. Regular expression can be described by a formal language known as regular language.
Regular language is one of the basic classes of the Chomsky Formal Language (Harrison, 1978). The regular language over
alphabet Σ is defined as:

1. Φ is a regular language.
2. For any a, a  Σ, {a} is a regular language.
3. If R1 and R2 are regular language, then so are:

a. R1.R2 =],|[21 RbRaab  , the concatenation of R1 and R2

b. R1 Ս R2, then union of R1 and R2
c. R1 *, Kleene closure of R1

 The languages that satisfy the above properties are called the regular language. Regular expression has been widely used in
programming languages, compiler design, text editors, text processing, network security etc. In network applications, regular
expression matching is mainly focused on application protocol identification and NIDS, where packet payloads is inspected at line
rate over large sets of complex patterns. As regular expressions are widely adopted for packet content scanning, it is essential that
they handle packet header processing. A regular expression pattern may represent the unique characteristics of an application level
protocol, a virus, a spam and a malware. The expressive power and flexible characteristics of regular expression has the ability to
be widely used in open source DPI and commercial DPI applications.

2.2 Functions of Regular Expression in DPI
 The set of strings which are unspecified explicitly are represented using regular expression. Table 1 lists the frequent features of
regular expression patterns (Yu et al., 2006) that are widely used in packet payload scanning.

Table 1. Features of regular expression (Yu et al., 2006)

Syntax Meaning Example

. A single character wildcard
* A quantifier that refers to zero or more S* means an arbitrary number of Ss.
? A quantifier that refers to one or less pq?r represents pr and pqr
+ A quantifier that refers to one or more p+q represents pq, ppq, pppq, etc

| OR relationship P|Q represents P or Q
^ Patterns that are matched at the start

of the input
^PQ represents the input that begins with PQ. A pattern without “^”, e.g., PQ, can be matched
anywhere in the input.

[] A class of characters [pqr] denotes a letter p or q or r.
[^] Anything but [^pq] denotes any character other than p or q
{} Repeat P{100} denotes 100 Ps.

2.3 Finite State Automaton
 Finite State Automata are computing devices that recognizes the regular languages. The operations of finite state automata are
simulated by a simple basic computer program. A finite state automaton consists of a finite set of states which are classed to be
either accepting or not accepting. A string of input symbols are taken in by the finite state automata. After processing all the input
if the current state is an accepting state then the input is accepted or else the input is rejected. The regular expression matching
problem determines whether a given string belongs to the member of the language defined by a particular regular expression. For
an automaton based regular expression matching in DPI the given string is considered as the packet payload.

2.4 Deterministic Finite Automata
 In deterministic finite automata from each and every state there is only one transition that takes place on each input symbol of
the alphabet (Σ) i.e., δ(s,a) is unique (Koza et al., 1994). This implies that for an input w, the execution is predictable.

A DFA is defined as a 5–tuple (S, Σ, δ, s0, A) where,
• S is a set of finite states.
• Σ is the set of finite input symbols.
• δ is the transition function where δ: S × Σ  S e.g., δ (s,a) =p gives the transition from state s on the input a.
• q0 Є S is the initial state.
• A  S is the set of accepting states.

 Let M be a DFA such that M = (S, Σ, δ, q0, A). String w is acceptable by M if δ *(q0, w) = p for some p in A.
 A primary characteristic of DFA is that only one state can be active at any point of time. However this characteristic becomes
infeasible for regular expressions that are present in the repeatedly used rule - sets. Particularly, when the regular expression

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

51

contains repeated wildcards it becomes difficult to construct a DFA with a reasonable number of states (Hopcroft, 1971). It takes
only one main memory accesses per byte. A worst case analysis (Hopcroft et al., 2001) illustrates that a an NFA which contains a
single regular expression of size n has O(n) states. The same expression when transformed into a DFA generates O(∑n) states. In a
DFA the processing complexity for every character in the input is O(1) and however in a NFA it is O(n2) when all n states are
active at the same time.

2.5 Nondeterministic Finite Automata
 Nondeterministic Finite Automata (NFA) has multiple or null state transitions for each input symbol. Non determinism therefore
implies that there may not be a unique execution trace as in DFAs. There are multiple paths of possible executions. For NFAs a
string is accepted if there exists at least one execution path that ends in a final state, whereas a string is rejected if all possible
execution paths end in a non accept state. NFAs also allow for ε–transitions i.e. transitions which do not read a character of the
input string. For every NFA there is an equivalent DFA which accepts exactly the same language L. It is therefore possible to
convert any NFA to a DFA. NFAs are necessary as it is easier to construct whereas DFAs can become very complex. DFAs on the
other hand are easier to implement and interpret on a computer.

An NFA is defined as a 5–tuple (S, Σ, δ, s0, A) where,
• S is the set of finite states.
• Σ is the set of finite input alphabet.
• δ is the transition function where δ: S× (Σ Ս ε)  P(S) where P(S) is the power set of S and ε is the empty string.
• s0 Є S is the start state.
• A  S is the set of accepting states.

 Therefore, Sidhu and Prasanna (2001) proposed a NFA-based automaton which improves the memory utilization problem. All
the states in NFA can be active at the same time which needs a prohibitive amount of memory bandwidth. To match a regular
expression of size m, the memory required by a serial machine is O(2m) and requires the time complexity of O(1) per input
character. However, the authors proposed a method that requires the O(m2) space and a text character can be processed in O(1)
time. Furthermore, they obtained a simple and fast algorithm that rapidly constructs the NFA for the given regular expression. To
construct an NFA rapidly is crucial because the NFA structure depends upon the regular expression, which is known only during
runtime.

2.6 Automaton based DPI
The packets are organized in a Network Intrusion Detection System with the help of a predefined rule set and the malicious
packets are identified by scanning the packet payloads for any signature in the rule set. Automaton based approaches such as HFA,
H-FA, XFA, D2FA, δFA etc discussed in Prithi et al. (2016) are used extensively for pattern matching or regular expression
matching. These approaches can be used along with the IOGA to obtain an optimal solution. To accomplish high throughput in
regular expression matching and to reduce memory access frequency is critical for the overall intrusion detection performance
based on the metrics such as detection rate, intrusion detection capability, false alarm rate, base rate etc. The classical automaton
based Aho-Corasick algorithm (Aho and Corasick, 1975), Commentz-Walter algorithm (Commentz-Walter, 1979) and Wu-
Manber algorithm (Wu and Manber, 1994) for string matching have been proposed to reduce memory requirement but these
algorithms slow down the matching speed for large pattern set. To solve these problems automaton based DPI approach has been
analyzed and discussed to obtain high processing throughput, low implementation cost, reduced memory consumption, high
inspection speed, high intrusion detection capability, better detection rate, better false alarm rate and fast convergence.

3. Intelligent optimization grouping algorithms

 Intelligent Optimization Grouping Algorithms are used to solve optimization problems (Fu et al., 2014). A variety of intelligent
optimization grouping algorithms can be used to allocate the multiple regular expressions into groups and for each group the
algorithm constructs DFAs independently to efficiently solve the state explosion blowup by obtaining most favorable global
solution between memory consumption and computational time. Typical IOGAs include Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Artificial Bee Colony Algorithm (ABC), Bacterial Foraging Optimization (BFO), Particle Swarm
Optimization (PSO), Biogeography Based Optimization (BBO), Firefly Algorithm (FA), Bat Algorithm (BA), Cuckoo Search
(CK) and Flower Plant Optimization (FPO). In this section the various intelligent optimization grouping algorithms are studied and
brief idea of how to apply these algorithms along with finite state automaton are discussed.

3.1 Genetic Algorithm(GA)
 GA is an evolutionary based stochastic optimization algorithm that was proposed by Holland in 1975 (Koza, 1992; Holland,
1975). They go behind the doctrines of Charles Darwin Theory of survival of the fittest (Darwin, 2007). In GA, the population is
defined to be the group of individuals. A chromosome is a collection of genes which corresponds to individual population. Each
individual chromosome finds a feasible solution for the optimization problem. The algorithm starts by initializing a population for
the solution. Then for each chromosome the fitness is evaluated by means of a proper fitness function appropriate for the problem.

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

52

Based on this, the best chromosomes are selected, where they go through crossover and mutation thus giving new set of solutions
which are also known as offspring.
 The most important genetic operators in GA are the selection, crossover, and mutation. The selection procedure selects the good
individuals from the current population and generates next population based on the assigned fitness by implementing the survival-
of-the-fittest and natural selection principle. Crossover also known as the recombination operator replaces parents and merges
these parts to obtain new individuals known as children by means of crossover probability. Mutation modifies some portion of
individuals to generate perturbed solutions. It operates only on a single individual while crossover operates on two or more
individuals.
 The pseudo code to implement genetic algorithm is as follows:

1. Select initial population
2. Estimate the individual fitness
3. Repeat
4. Choose the best ranking individuals to reproduce
5. Obtain new generation through crossover and mutation and reproduce children
6. Evaluate the individual fitness of the children population
7. Restore the best ranking individuals
8. Until terminating condition is met.

 In case of complex search space or the search space is not clearly defined and when mathematical investigation is not available
GA provides an efficient result (Mabu et al., 2007). GAs has the ability to locate good solutions faster for the complicated search
space but converges towards the local optima when the fitness function is not defined properly. The main problems of GAs are it
does not operate on dynamic data and selecting encoding and fitness function is very difficult. Certain simple optimization
algorithms obtain a better solution for certain optimization problems than GA when the same amount of computation time is given.
Finally GAs does not have the ability to solve constraint optimization problems.

3.1.1 Genetic Algorithm and Finite State Automata
 Genetic algorithm can be applied in Finite State Automata by considering the population as the collection of individuals. Each
individual consists of one regular expression and for every individual; fitness function is calculated based on the total number of
states. Each possible path in the search space is encoded in the form of a binary string which represents the chromosome c. This
chromosome represents the distribution of the present individual i.e. distribution of regular expression. The chromosomes length is
denoted as N. Each genes value represents the serial number of the corresponding regular expression that is distributed into the
groups.
 After initializing the individuals, each regular expression is distributed randomly to allow space for the entire range of the search
space. The fitness of the population is calculated based on the number of states. The individuals are selected by the standard
selection schemes such as proportionate selection, linear ranking selection, tournament selection and genitor selection (Goldberg
and Deb, 1991). Select the distinct chromosome individuals by probabilistic method and perform crossover and mutation. The
operations of crossover and mutation guarantee that this approach does not fall into local optimum. Since the method can find
global optimal solution in distributing the regular expression, the system reduces memory consumption, improves compression
rate, increases convergence speed and reduces number of groups.

3.2 Ant colony optimization
 Ant Colony Optimization (ACO) is a population based search technique that takes inspiration from the manners of real ants
proposed by the Italian scholar Dorigo et al. (1991). The inspirational behavior for ACO is the way ants discover the shortest paths
between the nest and the food source. This behavior is known as ant’s foraging behavior. Initially ants travel around the place
neighboring their nest in an indiscriminate way in search of food. Ants depart a substance known as pheromone on the ground.
When searching the way the ants select the path that contains strong pheromone concentration. Once the source of the food is
found it calculates the quality and quantity of food and takes some back to their nest. The pheromone trails leads a way for the ants
to find the food source. Ants coordinate their activities by means of stigmergy which is an indirect communication intervened by
the changes in the environment in which they move.
 As a general rule, there are three principle operations that must be repeated until a feasible solution is obtained or a terminating
condition is satisfied.
1. BuildSolutions. Each ant travels around the graph in a definite way searching for food. Based ont eh heuristic and

pheromone value of the edge the ant decides the subsequent edge to visit. After selecting the edge, it attaches to its path and
continues to move to the next node. Generally, it keeps on searching the graph to check whether an entire solution to the
problem has been constructed.

2. PheromonesUpdate: On all the edges of the graph the pheromone values are updated. If the edge is been travelled by the ant
the pheromone value is incremented or else the pheromone value is decremented. The fitness function is used to calculate
the amount of pheromone that each ant drops on the graph edges.

3. DaemonActions: Individual ants cannot perform actions that are executed by certain procedure. Local optimization is
one such procedure.

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

53

The pseudo code for ACO algorithm is as follows:
1. Start
2. Initialize the parameters and pheromone trails
3. Generate population of k solutions;
4. Calculate fitness(n) for each individual ant n ε k
5. For each ant find out its best position
6. Determine the best global ant
7. Revise the pheromone trail
8. Until terminating condition is satisfied
9. End

 ACO can be used in dynamic applications such as circuit switched networks, network routing applications, scheduling problems,
etc. It has optimistic feedback which directs to fast innovation of good solutions and the dispersed computations avoid early
convergence. It performs better against the genetic algorithm. Convergence is certain, but time to convergence is uncertain. Coding
is not simple and theoretical analysis is difficult.

3.2.1 Ant Colony Optimization and Finite State Automata
 Initially, one regular expression is randomly selected by each of m ants. Then one of the ungrouped regular expressions is
randomly selected by each ant. The probability of including that to the current group is calculated. Check whether the group
condition is met. If so add the regular expression into the current group and the pheromone value between each of the current
group and regular expression is increased. Else the previous step is repeated until at least one regular expression is added. If none
of the regular expression meets the criteria, one regular expression from the ungrouped expression is selected randomly and
considered as the start of the next round grouping. When the destination is achieved the best solution is recorded, the pheromones
are evaporated and all m ants are placed at the starting point. The algorithm ends after deterministic iterations. The final solution is
found to be optimum and is superior to the solutions recorded in round iteration (Janakiriman and Vasudevan, 2009).
 The advantage of grouping regular expressions with probability value can avoid the convergence to a local optimum solution,
and the pheromones introduction can make the positive feedback easy and can increase the speed of convergence, improve
computational time and reduce the number of groups.

3.3 Particle swarm optimization
 Particle Swarm Optimization (PSO) is a biologically inspired algorithm evolved by Kennedy et al in 1995 that simulates the
behavior of bird gathering, fish schooling or swarming of bee communication in search for food. PSO is broadly implemented in a
variety of fields for optimization and design applications (Yang, 2010). PSO is proved to be better than Genetic Algorithm (GA)
(Robinson and Rahmat-Samii, 2004) with a very simple concept of calculation and design pattern of only some computational
codes. The most important advantages of PSO is that it has a very few parameters to regulate and able to compute a solution as
GA. Further PSOs are more appropriate for online parameter tuning (Hopcroft et al., 2001). The primary idea of PSO is not just
only on fish/bee/bird swarming behavior, it is also related to reproduce human social behavior which is the main factor of
abstractness.
 The particles position is inclined by velocity. Let xi(t) represent the position of particle in the search space at time t step; where t
represents discrete time steps. The position of the particle is changed by including velocity vi(t), to the current position:

xi(t + 1) = xi(t) + vi (t+1) (1)

where velocity is given by:

vi(t) = vi(t-1) + c1 r1 (local best (t) - xi(t-1)) + c2 r2 (global best (t) - xi(t-1)) (2)

With acceleration coefficients c1 and c2, and random vectors r1 and r2.

PSO algorithm determines its candidate solutions by making use of the objective function and it functions upon the
resulting fitness value. The position, fitness evaluated, candidate solution and velocity is maintained by each particle and it
remembers the individual best fitness and individual best candidate solution. It also maintains the global best fitness and the
candidate solution that attained this fitness is called as global best candidate solution.

The following steps are continued in a PSO algorithm until the terminating condition is satisfied.
1. Initialize the population, particle position and velocity.
2. Assess the localbest location i.e. the fitness of the individual particle.
3. Keep track of the individual highest fitness i.e. the globalbest location.
4. Adjust velocity based on localbest and globalbest location.
5. Revise the velocity and particle position.
6. End if condition is satisfied else go to step 3.

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

54

One of the prime advantages of basic particle swarm optimization algorithm is its intelligence (Bai, 2010). It is used in both
scientific research and engineering purpose. PSO does not have overlapping and mutation calculation. The process takes place by
considering the particles speed. The exploration speed is very fast. In PSO, all the calculations that are done are very simple and
can be completed easily.
 The limitations of the basic particle swarm optimization algorithm are the methods effortlessly endure from the partial optimism,
which makes the regulation of its speed and the direction less exact. Spreading cannot be done and the method cannot effort out
the troubles of non-coordinate system, such as the result to the energy field and the moving rules of the particles in the energy
field.

3.3.1 Particle Swarm Optimization and Finite State Automata
 The population or the search space represents the set of regular expressions. Each particle is a regular expression and the group
of particle is called as swarm. At each step of the PSO algorithm, the swarm size is fixed or varied depending upon the
convergence speed. The algorithm works by randomly choosing a regular expression from the search space and the fitness function
is computed for each particle and uses this function to evaluate the candidate solution (Wang et al., 2009). The position, fitness
value and velocity of each particle are maintained. The best fitness and the candidate solution are also remembered among all the
particles in the swarm. PSO parameters such as the velocity and position are adjusted and another particle or regular expression is
chosen. The same process is continued till the convergence conditions are reached.
 The main advantage of grouping regular expression through PSO is that all the particles are likely to come together to the best
solution quickly and information sharing is done only one way through globalbest. Thus it will provide global optimal solution
with increased convergence speed, high throughput, improved time complexity and reduced number of groups.

3.4 Bacterial foraging optimization algorithm
 Bacterial Foraging Optimization Algorithm (BFOA) is a bio-inspired optimization algorithm that was proposed by Passino
(2002). The key idea of this algorithm is the group foraging strategy of a swarm of Escherichia Coli bacteria in multi modal
function optimization. Each bacterium searches for food in order to maximize the energy E per unit time T. Foraging is an
occurrence of a colony of bacteria instead of individual behavior. The foraging strategy of the E-coli is administered by four core
operations.

 Chemo tactics
 The movement of E-coli is simulated through swimming and tumbling. The bacterium either swims or tumbles in the same
direction or changes the direction. Let S represents total number of bacterium, information of the ith bacterium is represented by

),...,,(11
i
D

ii
i   where i =1,2,…,S.),.,(lkji represents the ith bacterium at jth chemo tactic, kth reproductive and lth

elimination and dispersal step.
 Reproduction

 After the chemo taxis process is completed each bacterium’s fitness is estimated. The sum of cost function is calculated as





cN

j

lkjii
fitness PJ

1

,,, where Nc represents the total number of steps in complete chemo taxis process. The bacterium which has the

least value dies and the healthier bacteria asexually splits the bacterium into two which are then placed in same location. This
process maintains the swarm size constant.

 Elimination and Dispersal Operation
 Elimination operation occurs when the bacterium gets fascinated into local optima and it improves the ability of global search.
The dispersion operation occurs when the bacteria gets randomly positioned in the environment.

 The Swarming
 As the bacteria move it sends a signal to other bacteria to swarm towards it. Each bacterium signals the bacteria to maintain a
safe distance between each other.

The pseudo code for the BFOA algorithm is given below:
1. Initialize the population and parameters.
2. For each variable in elimination dispersal loop
3. For each variable in reproduction loop
4. For each variable in chemo tactic loop

a. Compute the fitness function
b. Generate a random vector and apply tumbling
c. Move in the direction of the tumble
d. Compute the fitness function
e. Swim and again calculate the fitness function

5. If chemo tactic loops terminating condition is not satisfied go to step 4.
6. Reproduction

a. Calculate heath cost for each bacterium

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

55

b. Sort bacteria and chemo tactic parameters in the increasing order of health cost.
c. The highest health cost value is died and the remaining bacteria with best value are splitted.

7. Repeat till the reproductions loop terminating condition is satisfied else go to step 3
8. Elimination dispersal

a. Eliminate and disperse each bacterium
9. Repeat till the elimination dispersals terminating condition is satisfied.

 The main advantage of BFOA is that it is not affected by size and non-linearity of the problem. It has less computational burden,
global convergence, less computational time is needed and can handle more number of objective function. The disadvantages of
the algorithms are that the elimination step makes the bacterium which obtained optimal solution to escape which slows down the
convergence speed.

3.4.1 Bacterial Foraging Optimization Algorithm and Finite State Automata
 In BFO the population is represented by the set of regular expression. The fitness function is calculated and the set of regular
expression is grouped based on the tumble move. Again the fitness value is estimated and the regular expression is grouped based
on the swim move. The health cost for each group is calculated and the highest health cost value of the group is eliminated and
regrouped. The process is repeated until the optimum group is formed. FSA using BFO algorithm will reduce the memory size and
will provide a high throughput. It also will provide a better computational and regular expression grouping time. It does not
improve the convergence speed as the optimal group that is formed is escaped in elimination process.

3.5 Artificial bee colony algorithm
 Artificial Bee Colony (ABC) algorithm was proposed by Karaboga D in 2005 in favor of the numerical optimization problems
(Karaboga, 2005). It is a swarm based meta-heuristic optimization algorithm developed by (Tereshko and Loengarov, 2005;
Karaboga and Akay, 2009) based on the intelligent foraging manners of honey bee swarm. There are three essential components of
forage selection (Basturk and Karaboga, 2006). The first component is the food source. The food sources values depends on the
factors such as its proximity to the nest, its energy, and the easy extraction of this energy. The second one is the employed foragers
which are related with a scrupulous food source. The information concerning the particular source, its distance and direction from
the nest, the profitability of the source are transmitted and this information is distributed with a firm probability. The last part is the
unemployed foragers which constantly search for a food source to exploit. Communication between bees related to the quality of
food sources acquires place in the dancing area which is called as waggle dance.
 The ABC search cycle comprises of three rules (Chan and Tiwari, 2007). The first one is to send the employed bees to a food
source, to evaluate the nectar quality, secondly onlookers choose the food source from the employed bees to calculate the nectar
quality and finally to formulate the scout bees and to distribute them to possible food sources.

The following are the main steps of the ABC algorithm.
1. Initialize population, optimization problem parameters and Food Source Memory (FSM)
2. Repeat
3. Position the employed bees on their food sources
4. Position the onlooker bees on the food sources based on their nectar amounts
5. Drive the scouts to the search area for determining new food sources
6. Remember the best food source that are found so far
7. Until terminating conditions are satisfied.

 Each cycle of the search comprises of three steps. The first step is to send the employed bees onto their food sources and the
amount of nectars are calculated and secondly the nectar information of food sources are shared and after that the food source
regions are selected by the onlookers and the nectar amount of the food sources are evaluated and the last step is to determine the
scout bees and are sent randomly onto promising new food sources. Repeat these steps throughout a predetermined number of
cycles known as Maximum Cycle Number (Bahriye and Dervis, 2012) or until a terminating condition are satisfied.
 Some of the advantages of ABC algorithm are strong robustness, convergence is fast, highly flexible, fewer setting parameters
(Civicioglu and Besdok, 2011), ease of hybridization with other optimization techniques (Karaboga and Akay, 2009) such as GA,
PSO, Differential Evolution, Evolutionary Strategies and easily implemented with common mathematical and logical operators.
Few disadvantages of ABC are in later search period there are chances of premature convergence and it sometimes cannot satisfy
the requirements of the accuracy of optimal value.
 ABC remains an interesting and promising algorithm, which are comprehensively used by researchers athwart various fields. Its
main advantage is that it can be easily hybridized with various meta-heuristic algorithms and is robustly feasible for continued
utilization and improvements are possible.

3.5.1 Artificial Bee Colony Algorithm and Finite State Automata
 In ABC, the bees are considered as the set of regular expression and the values are randomly assigned. The parameters of the
optimization problem and the food source memory are initialized. The set of regular expression is divided into two groups and
initialized to employed bees and onlooker bees. For each regular expression the fitness value is calculated and based on the fitness
value the probability to form the group is determined. Based on the probability the count of onlooker bees that are sent to the
sources of food of employed bees is calculated. The fitness for each onlooker bee is calculated and based on this value the best

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

56

onlooker bee is found and replaced with respective employed bee and the best feasible onlooker is found and replaced with best
solution. The iteration is repeated until optimal groups are formed.
 When compared to other optimization algorithms ABC is fast and uses less time to group the regular expression. Because of its
fast convergence and fewer setting parameters, FSA using ABC will provide limited memory utilization and have faster
convergence speed.

3.6 Biogeography based optimization (BBO)
 Biogeography based optimization is an optimization technique which was proposed by Simon (2008). It is based on the
geography concept of biological organisms. The algorithm works on the principle of migration and mutation. The two main
processes in migration are immigration and emigration. Immigration and emigration are affected by the factors such as distance of
an island to the nearest neighbor, size of the island, habitat suitability index (HSI) etc. HSI involves various factors such as
rainfall, vegetation, climate etc. These factors favor the existence of species in a habitat. Mutation is the sudden drastic change
made to the HSI of any habitat due to certain cataclysmic events. Mutation increases the diversity among the population.

The pseudo code of the BBO algorithm is given as:
1. Define the migration probability and mutation probability
2. Initialize the population.
3. Determine the immigration and emigration rate of each candidate in the population.
4. Select the island to be modified based on the immigration rate.
5. Using roulette wheel selection, select the island from which the SIV is to be emigrated.
6. Randomly select an SIV from the selected island to be emigrated.
7. Perform mutation based on the mutation probability of each island.
8. Estimate the fitness of each individual island. If the fitness criterion is not satisfied go to step3.
Immigration rate Ri can be defined as

Ri = I (1-F(s)/n)
Emigration rate Re can be defined as

Re = E (F(s)/n)
where I is the maximum immigration rate, E is the maximum emigration rate, F(s) is the fitness rank of solution s and n is

the number of candidate solutions in the population.
 BBO algorithm does not take unnecessary computational time. The solutions do not die at the end of each generation like other
optimization algorithms. The exploration capability of BBO makes it attractive for solving many complex problems in various
fields but the exploiting capability is very poor. It does not have provision for selecting the best members from each generation. In
some cases infeasible solutions are generated.

3.6.1 Biogeography Based Optimization Algorithm and Finite State Automata
 In BBO, the population is considered as the set of regular expression and the values are randomly assigned. The probability of
migration and mutation are defined. For each regular expression the immigration rate and emigration is calculated and based on the
values the probability to form the group is determined. For each regular expression the SIV is calculated and the random value is
selected to perform emigration and based on the SIV the group is formed. The fitness value for each group is calculated and the
iteration is repeated until optimal groups are formed.

When compared to other optimization algorithms BBO has very less computational time and also can group the regular
expression in very less time. The exploration capability of BBO can make the FSA to be designed easily and complex regular
expression can be easily grouped.

3.7 Cuckoo search
 Cuckoo Search is a meta heuristic bio-inspired optimization algorithm deployed by Yang and Deb S. (2009). Cuckoo Search is
inspired by obligate blood parasitism behavior of cuckoo’s by laying their eggs into nest of host birds and by characteristics of
Levy Flights. The Cuckoo Search algorithm is implemented by three basic characteristics.

a. A Cuckoo randomly selects a nest to lay the egg and it lays egg at a time.
b. The very good quality eggs nest is considered as best nest and it is carried to the next generation.
c. The available host nests value is fixed and the probability of a host bird to discover cuckoo’s egg is Paε[0,1]. In this

scenario the host bird destructs the egg or the nest completely and goes for a new nest in new location.
These three characteristics are represented in simple form by representing each egg in a nest by a solution and each cuckoo

signifies a new solution. The objective is to make use of the new and most likely superior solution to alternate a least solution in
the nests. Pseudo code for cuckoo search is given below:

1. Begin
2. Define objective function f(X), where X = {x1,x2…,xd}
3. Generate initial population of host nests xi, where i=1,2,3,…,n.
4. While terminating condition is not met
5. Generate a cuckoo selection randomly using Levy Flight.
6. Evaluate the fitness function, FN

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

57

7. Select a random nest j among n
8. If(FN >Fj) Replace j by new solutions
9. Discard worst nest with a fraction of Pa and generate new nests.
10. Maintain the best solutions
11. Grade the solutions and find the current nest
12. End While
13. Post process results and visualization.

The main advantage of Cuckoo Search is that it deals with multi criteria optimization. It is simple and easy to
implement. It aims to speed up the convergence and it can be hybridized with other swarm based optimization algorithms.

3.7.1 Cuckoo Search and Finite State Automata
 The population of the cuckoo search is represented by the set of regular expression. The cuckoo is selected randomly using Levy
Flight from the set of regular expression. Calculate the fitness function and the nest is selected randomly. The worst nest is
discarded and the new nest is generated and based on this the regular expression is grouped. Maintain the best solution and find the
current group. Repeat the process till optimal regular expression groups are formed. It is easy and simple to design FSA using
Cuckoo Search. FSA with Cuckoo search will increase the convergence speed and it can be easily hybridized with other
optimization algorithms to provide improved memory consumption, throughput and better inspection speed

3.8 Firefly algorithm
 Firefly algorithm that was projected by Yang (2009) is an unconventional swarm based heuristic algorithm for constrained
optimization problems inspired by the flashing behavior of fireflies. The algorithm is represented by a population-based iterative
process with various fireflies simultaneously taking care of a considered optimization problem. Agents correspond to each other
through bioluminescent sparkling which allows the cost function space to be investigated more efficiently than in standard
distributed random search. The firefly algorithm comprises of three idealized rules (Farahani et al., 2011; Yang, 2010) which
depends on the basic flashing distinctiveness of real fireflies. The first rule is unisex behavior of all fireflies that moves toward
more attractive and brighter ones. Secondly, the attractiveness of firefly is relative to its brightness. Lastly, the light intensity of the
firefly is obtained by the objective function of the specified problem.
 The two main issues of firefly algorithm are the formulation distinction of light intensities, I and attractiveness, β. The
attractiveness is relative that varies by distance among firefly i and firefly j. Light is also absorbed by medium and diminishes by
increasing distance, therefore the attractiveness also varies with a factor of absorption.

The light intensity I varying with distance r is expressed by the following equation:
2

0)(reIrI  (3)

whereas 0I denotes intensity of the light at the source, and is a coefficient of fixed light absorption. The attractiveness β

is defined as:
2

0
re   (4)

With βo is the attractiveness when r is 0 and is a defirepresents the light absorption coefficient.
 The distance between two fireflies i and j is represented by the Euclidian distance





n

k
jkikjiij SSSSr

1

|| (5)

 =

where ikS is the position of the kth element of the ith firefly within the search space. Each firefly i moves to the more attractive

firefly j, as follows:

 iij
r

ii SSeSS ij    )(
2

0 (6)

The first term in eq. (6) specifies the ith firefly’s position. The next term represents the ith firefly’s attractiveness and the last
term refers the randomized move with the randomized argument α and the random number εi ϵ (0, 1).

The firefly algorithm is given as
2. Initialize general counter, attractiveness and best solution
3. Initialize the population of firefly
4. While t is less than or equal to MAX_GEN do
5. Find out new value of α

6. Evaluate)(t
iS according to)(iSf

7. Sort)(t
iP according to)(iSf

8. Determine best solution *S

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

58

9. Vary attractiveness according to iS

10. End While
11. Post process.

 Firefly algorithm can deal with highly non-linear multi-modal optimization problems proficiently. The speed of convergence of
FA is very high in terms of finding the global optimized respond. It has the flexibility of integration with other optimization
techniques such as GA and PSO to form hybrid tools. Firefly algorithm suffers from diminishing returns once the swarm size
grows or when the solution space grows immensely large and is impossible to predict the future moves of a firefly so there is no
opportunity to allow pre-caching of values.

3.8.1 Firefly Algorithm and Finite State Automata
 In firefly algorithm the agents or fireflies act as the regular expression and the values are initialized randomly. The regular
expressions interact through bioluminescent glowing which allows estimating the cost function space efficiently. The degree of
attractiveness is determined by the objective function and the attractiveness varies by distance between two regular expressions.
The light intensity is estimated based on the cost function. The best solution is determined and the attractiveness is varied
according to the best solution. This process is repeated until the terminating condition is satisfied.
 When compared with GA and PSO, firefly algorithm deals with multi modal optimization problem and will use less time to
group the regular expression. Firefly algorithm has high flexibility in hybridizing with GA and PSO algorithms. By hybridizing FA
with GA and PSO optimization algorithms, it will provide a better memory utilization, high throughput, increased convergence
speed and better regular expression grouping time.

3.9 Bat algorithm
 Yang (2010) developed Bat Algorithm which was very efficient in terms of frequency tuning, automatic zooming and parameter
control. Bat algorithm depends on the echolocation features of micro bats. There are around 1000 distinct types of bats (Tudge,
2000; Yilmaz and Kucuksille, 2013). The sizes are differed broadly, extending from the little bumblebee bat of around 1.5 to 2
grams to the mammoth bats with wingspan of around 2m and may weigh up to around 1 kg. Most bats uses echolocation to a
specific degree; among every one of the species, micro bats use echolocation expansively, while mega bats don’t. Micro bats
typically use a type of sonar, called, echolocation, to sense prey, avoid obstacles, and position their roosting crevices in the dark.
They can transmit a very loud sound pulse and listen for the reverberation that bounces back from the encompassing objects. Their
pulses range in properties and can be corresponded with their searching procedures, relying on the species. Most bats utilize short,
frequency-modulated signals to clear through around an octave, and every heartbeat keeps going a couple of thousandths in the
frequency range of 25 kHz to 150 kHz (Yang, 2013).
 BA has three salient features (Guang-Qiu et al., 2013) in which the first is it uses a frequency-tuning technique to improve the
diversity of the solutions in the population, second feature is that it uses the automatic zooming to aim to balance exploration and
exploitation throughout the search process by impersonating the variations of pulse emission rates and loudness of bats when
searching for prey. Accordingly, it has quick convergence rate when compared with GA and PSO, and the last feature is that it
uses parameter control which can vary the values of parameters such as frequency, velocity, solution, loudness and pulse emission
rate as the iterations proceed. This provides a way to automatically toggle from exploration to exploitation as soon as optimal
solution is impending.
 Based on the above explanation and uniqueness of bat echolocation, Xin-She Yang (2010) built up the bat algorithm with the
three idealized rules. The primary rule is that each one bats use echolocation to feel distance, and they also recognize the
distinction between prey and heritage limitations in a few supernatural way. Second rule is that bats fly arbitrarily with speed vi at
position xi with a frequency fmin, differing wavelength λ and loudness A0 to hunt for prey. They can consequently modify the
wavelength (or frequency) of their discharges heartbeats and change the rate of heartbeat emission r ϵ [0, 1], depending on the
proximity of their goal. The last rule is in spite of the fact that the loudness can change from multiple points of view; expect that
the loudness fluctuates from a substantial (positive) A0 to a minimal constant value Amin.

A. Initialize Bat Population
 Initial population is randomly generated from real-valued vectors with the measurement d and number of bats n, by enchanting
into account lower and upper limits.

))(1,0(minmaxmin jjjij xxrandxx  (7)

where i=1, 2, n, j=1, 2….d, xminj and xmaxj denotes lower and upper limits for dimension j respectively.

B. Update Frequency, Velocity and Solution
 The frequency element controls step size of a solution in BA. This element is assigned to random value for each bat between
upper and lower limits [fmin, fmax]. Velocity of a solution is relative to frequency and new solution relies upon its new velocity.

)(minmaxmin ffffi  (8)

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

59

1
*1)(fxxvv t

i
t
i

t
i   (9)

t
i

t
i

t
i vxx  1 (10)

in which β ϵ [0, 1] shows arbitrarily generated number, represents current global best solutions.
For local search part of algorithm (exploitation) is chosen among the selected best solutions and random walk is applied.

t
oldnew Axx  (11)

Where tA is average loudness of all bats, ε [0, 1] is random number and represents direction and intensity of arbitrary-
walk.

C. Update Pulse Emission Rate and Loudness
 As the cycle continues the loudness and pulse emission rate must be upgraded. When the bats move in the direction of its food
then there is an increase in the pulse emission rate and there is a drop in the loudness A. The following equation describes the how
the Loudness A and pulse emission rate r are updated.

t
i

t
i AA 1 (12)

]1[)(01 t
i

t
i err   (13)

where α and γ are constants. 0
ir and Ai represents the factors of random values and 0

iA can generally be [1, 2], while 0
ir can

usually be [0, 1].
The pseudo code for Bat Algorithm is as follows:

1. Initialize bat population xi and speed vi , i=1, 2,..n
2. Describe frequency of pulse fi at xi
3. Compute loudness Ai and pulse rate ri
4. while
5. Generate new solutions by adjusting frequency, velocities and solutions.
6. Choose a solution from the best solutions
7. Generate a local solution from the chosen best solution
8. Accept new solutions
9. Reduce loudness Ai and increase pulse rate ri
10. Ranks the bats to obtain the current best x*
11. Until terminating condition is satisfied.

In this algorithm the behavior of bat is captured into fitness function of problem to be solved. The algorithm is very
straightforward, flexible and simple to implement. It solves a wide range of non linear problems more efficiently and at initial
stage it provides a very fast convergence by toggling from exploration to exploitation. Automatic control and auto zooming
mechanism can be achieved by the loudness and pulse emission rate. If the algorithm enters the exploitation phase very rapidly,
then stagnation may occur after some initial stage.

3.9.1 Bat Algorithm and Finite State Automata
 In FSA designing, the bats are considered as the set of regular expressions. The number of regular expressions, the velocity,
pulse rate, frequency and loudness are initialized. The frequency, velocity and locations are updated. The procedure is repeated till
the terminating conditions are met and the best solution is attained. When compared to GA and PSO optimization algorithms bat
algorithm is simple, easy to implement and solves non linear problems effectively. Thus it will provide low implementation cost,
high processing throughput, reduced memory utilization, high detection rate and fast convergence.

3.10 Flower pollination algorithm
Xin She Yang in 2012 proposed the flower pollination algorithm (Yang, 2012) which is a bio-inspired optimization algorithm that
evolved from the idea of processes of flower pollination. The flower pollination algorithm is formed and structured by four
pollination policies based on the stimulation of flower plants. The four policies are defined as:

1. In global pollination process, biotic and cross-pollination are considered and pollinators that carry pollens move by
obeying levy flights.

2. In local pollination process, biotic and self pollination are considered.
3. Insect pollinators expand flower constancy and are equal to the probability of reproduction which is relative to the match

between two flowers that are involved.
4. The local and global pollinations interactions are controlled by a switch probability between 0 and 1.

The algorithm to perform flower pollination optimization is given below.
1. Define objective function
2. Initialize the population of n flowers
3. Find the best solution in the population

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

60

4. Define switch probability
5. Define stopping critera
6. While
7. For all n flowers in the population

a. If rand<p
b. Draw a d-dimensional step vector L that obeys Levy distribution and perform global optimization
c. Else
d. Draw from uniform distribution and perform local optimization

8. Evaluate new solutions
9. Update the better solutions in the population
10. Find current best solution
11. Repeat till the terminating condition is satisfied.

 Flower Pollination Algorithm is very efficient than GA and PSO due to the two key components long distance pollinators and
flower consistency. The pollinators can travel long distance and they have the ability to escape any local landscape and can explore
larger search space. Flower consistency ensures that same pieces of flowers are chosen more frequently and guarantees
convergence more quickly. These two components ensure that the algorithm is very efficient.

3.10.1 Flower Pollination Algorithm and Finite State Automata
 Initialize the population by representing the set of regular expression as the flowers. Based on the regular expression define the
switch probability and the stopping criteria. For all the set of regular expressions in the population perform global and local
optimization using Levy distribution and uniform distribution. Evaluate new solutions and form groups. Update the group by better
solutions and repeat this procedure until optimal solution is obtained. When compared to GA and PSO, the FPA is very efficient in
terms of convergence and space because of long distance pollinations and flower consistency.

4. Discussions and proposed approach

 The main reason that was analyzed from the finite state automata is that the number of states gets increased due to the state
explosion problem. The problem with explosion in states can be competently alleviated by grouping the regular expression.
Grouping the regular expression falls into two cases. The first one is if number of groups is given, the DFA states can be
minimized and second is if the maximum number of DFA states is known, number of groups can be minimized (Back, 1996). The
performance of the regular expression grouping method is assessed by considering these two cases based on the various practical
demands.

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

61

Fig.1. Flow graph of Proposed Approach

 Grouping the regular expression can be done by Intelligent Optimization Grouping Algorithms. The various types of intelligent
optimization grouping algorithms discussed in section 3 were studied and analyzed. These intelligent optimization grouping
algorithms can be used to optimize the finite state automata and can efficiently alleviate the problem of state blowup thereby it will
obtain the universal best distribution among the consumption of memory and number of groups. In Fig.1 the overall flow graph of
the proposed approach for Finite State Automata in Deep Packet Inspection which is used to group the regular expression
efficiently using the Intelligent Optimization Grouping Algorithms and memory efficient automata is shown. The packet payload
files are extracted from the rule sets such as Snort (Roesch, 1999), Bro NIDS (Paxson, 1998), and Linux L-7 filter (Levandoski et
al., n.d) are used as input. The set of regular expressions are determined using these packet payload files. Initially the parameters
are assigned depending on the Intelligent Optimization Grouping Algorithms such as GA, ACO, PSO, BFO, BBO, CS, ABC,
Firefly, Bat, FPA and the initial population is generated by randomly distributing the regular expression on the search space. As
discussed in section 3 each IOGA algorithm has certain advantages and disadvantages and as discussed GA and ACO algorithms
are already applied by authors in Fu et al. (2014) to group the regular expression. They found that by applying GA and ACO a
global optimal solution can be obtained, the convergence to local optimum is avoided, accelerates convergence speed and reduces
memory consumption but obtains in efficient time and the time cost increases exponentially with the number of regular expression
groups. Hence by appropriately selecting IOGAs there will be a variation in the performance. The various IOGA algorithms can
also be hybridized and applied with FSA so as to improve the performance metrics such as memory, throughput, time complexity,
grouping time, inspection speed and convergence speed. Based on the performance of the IOGAs the parameters listed in Table.2
are adjusted and the process is continued until the optimal groups are formed or until the maximum iteration is obtained. Once the
optimal solution is obtained, the regular expressions are grouped and the finite state automata is designed based on the design
technique (Prithi et al., 2016) such as HFA, H-cFA, XFA, δFA etc and FSA is integrated with the DPI search engine to identify the
packets that hold the viruses, unauthorized access and attacks. By using Intelligent Optimization Algorithms with Automaton
based DPI, the state explosion problem can be reduced and the overall performance of the system can be enhanced. A comparative
study about various IOGA’s for FSA based DPI is analyzed and the anticipated advantages and disadvantages for each grouping
algorithm are highlighted in Table 3.

Prithi and Sumathi /.International Journal of Engineering, Science and Technology, Vol. 16, No. 2, 2024 pp. 48-67

62

Table 2. Parameters used in various IOGA Algorithms
Genetic
Algorithm

Ant Colony
Optimization

Particle
Swarm
Optimization

Artificial
Bee
Colony

Firefly
Algorithm

Bat
Algorithm

Cuckoo
Search

Bacterial
Foraging
Optimization

Biogeography
Based
Optimization

Flower
Pollination
Algorithm

Number of
Chromosome

Number of
Ants

Population
Size

Colony
Size

Population of
Fireflies

Population
of Bat

Search
Dimension
& Number
of Host
Nests

Number of
Bacterium

Population
Size

Leaf area
index of
each plant &
Specific leaf
area

Chromosome
size

Weight of
Pheromone
Trail

Initial
Position

Number
of Food
Sources

Light
Intensity

Initial
Velocity

Tolerance Maximum
Number of
Steps

Number of
Habitats

Light
Extinction
coefficient

Number of
generations

Weight of
Heuristic
Information

Initial
Velocity

Food
Source
Limit

Absorption
Coefficient

Pulse
Frequency

Discovery
Rate

Number of
Chemo
tactic,
elimination
dispersal &
reproduction
steps

Maximum
Immigration
& Emigration
Rate

Maintenance
Respiration

Selection
Method

Pheromone
Evaporation
Parameter

Cognitive
Factor

Number
of
Employed
bees

Attractiveness Pulse
Emission
Rate

Upper &
lower
bounds of
search
domain

Elimination
Dispersion
Probability

HIS and SIV
Value

Leaf Carbon
content

Crossover &
Mutation
Type

Initial
Pheromone
Level

Social
Factor

Number
of
Onlooker
bees

Maximum
Number of
Generations

Loudness Levy
Exponent
& Step
Size

Size of the
Step

Number of
elites

Light use
efficiency

Crossover &
Mutation
Rate

Constant for
Pheromone
updating

Maximum
Number of
Iterations

Maximum
Number
of
Iterations

Maximum
Number of
Iterations

Maximum
Number
of
Iterations

Maximum
Number of
Iterations

Swimming
Length

Maximum
Number of
iterations

Fraction of
Mass in
Leaves

Table 3 Comparative study of various IOGAs for FSA Based DPI
Intelligent
optimization
grouping
algorithms

Proposed
year

Proposed by Algorithm basis Objective function
defined by

Advantages of IOGA for FSA based
DPI

Disadvantages of IOGA for FSA based
DPI

Genetic algorithm 1975[9, 38] Holland Principles of
evolution

Collection of genes or
chromosome

Reduces memory consumption
improves compression rate, reduces
number of groups

Converges towards local optima, does not
operate on dynamic data

Antcolony
o**ptimization

1992[10] Marco Dorigo,
VittoriManiezzo,
Alberto Colorni

Interaction of ant
species

Pheromone value Increases convergence speed,
improves computational time,
reduces number of group and
memory space

Sequence of random decisions is
dependent, time to convergence is
uncertain, theoretical analysis is difficult.

Particle swarm
optimization

1995[1] Eberhart and
Kennedy

Swarming
behavior of
fish/bee/bird

Particles position and
velocity

High throughput, improved time
complexity and reduces number of
groups

Slow convergence in advanced search
stage, does not support scattering and non
co-ordinate system problem

Bacterial foraging
optimization

2002[12] Kevin Passino Foraging
behavior of E.
coli bacteria

Movement of bacteria
(swimming/tumbling)

Reduces memory space, better
computational and grouping time,
high throughout

Slows down the convergence speed

Artificial bee
colony algorithm

2005[58] Karaboga D Intelligent
foraging
behavior of
honey bee
swarm

Food source memory Improves grouping time, faster
convergence speed, limited memory
utilization

Premature convergence, not accurate

Firefly algorithm 2008[16] Xin-She Yang Flashing
behavior of
swarming
fireflies

Light
intensity/brightness and
attractiveness

Less grouping time, improves
convergence speed, better memory
utilization and high throughput

Pre-caching of values not allowed, poor
exploiting capability

Biogeography
based optimization

2008[14] Simon D Geography
concept of
biological
organisms

Immigration rate and
emigration rate

Very less computational and
grouping time

Exploiting capability is very poor and in
some case infeasible solutions obtained.

Cuckoo search 2009[15] Xin-She Yang,
Suash Deb

Brooding
parasitism of
cuckoo bird

Color of eggs Increase convergence speed,
improves memory consumption and
throughput

Number of iterations is high, difficult to
find best solution, accuracy is poor

Bat algorithm 2010[17] Xin-She Yang Echolocation
behavior of
mciro bats

Pulse emission rate,
loudness frequency and
velocity

Reduced memory utilization, high
detection rate, high throughput and
improves convergence rate

Unable to memorize any history of better
solution, unable to get rid of local search
complexity

Flower pollination
algorithm

2012[18] Xin-She Yang Stimulation of
pollination
process of flower
plants

Local and global
pollination

Improves memory utilization, high
throughput and better inspection
speed

Global search ability gets weaker,
convergence speed gets worse and the
quality of the solution gets weaker for
solving multidimensional problems.

The experiments are evaluated in future on the various performance metrics such as memory consumption, throughput, time
complexity, inspection speed, grouping time and convergence speed in the optimal FSA based DPI search engine and the expected
outcome is analyzed and plotted in fig.2, 3 and 4. Fig. 2 depicts the memory consumption and throughput for the various IOGA
algorithms and it shows that the hybridized approach reduces the number of states to a great extent and thereby it will provide a
reduced memory consumption and high throughput.

Fig.2. Memory Consumption and Throughput for the IOGA algorithms

Fig. 3 shows the inspection speed and convergence speed for the various IOGA algorithms. As discussed in 3.2.1 and 3.3.1 by
grouping the regular expression through ACO/PSO the convergence speed can be increased and it can also improve the inspection
speed and thus it depicts that the hybridized approach has high inspection speed and fast convergence speed.

Fig.3. Inspection Speed and Convergence Speed for the IOGA algorithms

Fig. 4 illustrates the time consumption and grouping time for the various IOGA algorithms. It shows that by using the IOGA
algorithms such as firefly/ABC the grouping time of the regular expression can be reduced and thus by implementing the
hybridized approach it will provide a better time complexity and improved grouping time.

Fig.4. Time Complexity and Grouping Time for the IOGA algorithms

5. Conclusions and future scope

 In this paper, the various Intelligent Optimization Grouping Algorithms for FSA in DPI has been surveyed and analyzed. The
first discussion that was done is on the basic features of regular expression and how the regular expression works in Deep Packet
Inspection. A brief discussion is given on the finite state automata; the problems that occur in designing the FSA and how
efficiently automation based DPI approach can be designed. The various Intelligent Optimization Grouping Algorithms such as
GA, ACO, PSO, ABC, BBO, BFO, Cuckoo Search, Firefly, Bat and FPA algorithms are presented and how it can be used with
FSA are illustrated. The strengths and weakness of each algorithm is studied. GA can perform efficiently for complex space search
and GA cannot support constraint optimization problems. Since GA can find global optimal solution in distributing the regular
expression, the system can reduce memory consumption and reduce number of groups. PSO occupies bigger optimization ability
and all the particles can quickly converge to the best solution and it can provide increased convergence speed, improved time
complexity and reduced number of groups. It is also easy to implement but suffers from partial optimism and cannot work out on
scattering problems. ACO can be used in dynamic applications and avoids premature convergence. Positive feedback is made
easily by introducing the pheromones which results in increase in the inspection speed, improves computational time and reduces
memory but convergence time is tentative and coding is not straight forward. BFO algorithm will provide a reduced memory size
and high throughput. When used with FSA, BFO will provide a reduced computational and grouping time but does not improve
the convergence speed. BBO has very less computational time when compared with other optimization algorithms and can group
the regular expression in very less time. It can be easily designed and even complex regular expressions can be easily grouped. CS
increases the speed of convergence and can be easily hybridized with other optimization algorithms in order to provide improved
memory space, throughput and better inspection speed. ABC is fast and uses less time to group the regular expression. Because of
its fast convergence and fewer setting parameters it can provide limited memory utilization and faster convergence speed. Firefly
algorithm deals with multi modal optimization problem and is highly flexible in hybridizing with GA and PSO and also provides
better memory utilization, high throughput, increased convergence and better regular expression grouping time. When compared to
GA and PSO bat algorithm is simple, easy to implement and will provide low implementation cost, high processing throughput,
reduced memory utilization, high detection rate and fast convergence. FPA is very efficient when compared to GA and PSO
because of its long distance pollinators and flower consistency. These algorithms can be used along with the implementation of
finite state automata in DPI so as to reduce the state explosion problem, to provide optimal and memory efficient finite state
automata and to provide high throughput along with accuracy at very high inspection speed.

References

Aho A.V., Corasick M.J., 1975. Efficient string matching: An aid to bibliographic search. Communications of the ACM, Vol. 18,

No. 6, pp. 333–340. https://dl.acm.org/doi/10.1145/360825.360855
Bai Q. 2010. Analysis of particle swarm optimization algorithm. Computer and Information Science, Vol. 3, No.1.

https://doi.org/10.5539/cis.v3n1p180
Basturk B, Karaboga D. 2006, An artificial bee colony (ABC) algorithm for numeric function optimization. IEEE Swarm

Intelligence Symposium
Back T. 1996: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming and Genetic

Algorithms. Oxford University Press US, January

Bahriye A., Dervis K. 2012. Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal
of Intelligent Manufacturing, Vol. 23, No. 4, pp.1001-1014

Civicioglu P., Besdok E. 2011: A Conceptual Comparison of Cuckoo-Search, Particle Search Optimisation, Differential Evolution
and Artificial Bee Colony Algorithms. Springer Science and Business Media (2011)
https://doi.org/10.1007/s10462-011-9276-0

Commentz-Walter B. 1979. A string matching algorithm fast on the average. Proceedings of ICALP, pp. 118–132 (1979)
Chan F.T.S., Tiwari M.K. 2007. Swarm Intelligence: Focus on Ant and Particle Swarm Optimization. Itech Education and

Publishing, Vienna, Austria. ISBN 978-3-902613-09-7, pp. 532 (2007)
Darwin C. 2007, On the Origin of Species. John Murray, sixth edition. http://www.gutenberg.org/etext/1228 (1859). Accessed 05

August 2007
Dorigo M., Maniezzo V. and Colorni A. 1991. Positive Feedback as a Search Strategy. Politecnico di Milano, Italy, Technical

Report, Report No. 91-016
Farahani S.M., Abshouri A.A., Nasiri B., Meybodi M.R. 2011. A gaussian firefly algorithm, International Journal of Machine

Learning and Computing, Vol.1, No. 5, pp.448-453 (2011)
Fu Z., Wang K., Cai L., and Li J. 2014, Intelligent grouping algorithms for regular expressions in deep inspection, IEEE/ACM

Transaction on Networking, Vol. 22, No. 2, pp. 644-651. https://doi.org/10.1109/ICCCN.2014.6911804
Guang-Qiu H., Wei-Juan Z., Qiu-Qin L.: Bat algorithm with Global Convergence for Solving Large-Scale Optimization Problem.

Application Research of Computers, Vol. 30, No. 3, 1-10 (2013)
Ghalia,M.B.: Particle Swarm Optimization with an Improved Exploration-Exploitation Balance. 51st Midwest Symposium on

Circuits and Systems (2008) https://doi.org/10.1109/MWSCAS.2008.4616910
Goldberg D.E., Deb K.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. Urbana, 51 61801-2996

(1991)
Harrison,M.A. 1978, Introduction to Formal Language Theory. Addison-Wesley Longman Publishing Co., Inc.
Hopcroft J.E., Motwani R., Ullman J.D. 2001. Introduction to Automata Theory, Languages, and Computation. Second Edition,

Addison-Wesley Series in Computer Science, Addison-Wesley-Longman, ISBN 978-0-201-44124-6, pp. I-XIV, 1-521
Hopcroft J. 1971. An nlogn Algorithm for Minimizing States in a Finite Automaton. Stanford University Stanford, CA, USA,

STANCS-71-190
Janakiriman, S., Vasudevan,V. 2009, ACO based distributed intrusion detection system. International Journal of Digital Content

Technology and its Applications, Vol. 3, No.1, pp.66-72
Karaboga D. 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report - TR06, Erciyes University

Press
Karaboga D., Akay B. 2009: A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, Vol.

214, pp.108–132. https://doi.org/10.1016/j.amc.2009.03.090
Kleene, S. C.: Representation of Events in Nerve Nets and Finite Automata. RAND Research Memorandum RM-704, RAND

Corporation (1951)
Konar,A. 2005: Computational Intelligence: Principles, Techniques and Applications. Springer, Berlin Heidelberg New York
Holland,J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Koza J.R. 1992. Genetic Programming, on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge,

MA
Koza J.R., 1994. Genetic Programming II, Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA
Levandoski J., Sommer E., Strait M.: Application Layer Packet Classifier for Linux. http://l7-filter.sourceforge.net/
Liu T., Liu A.X., Shi J., Sun Y., and Guo L. 2014. Towards fast and optimal grouping of regular expressions via DFA size

estimation. IEEE Journal on Selected Areas in Communications, Vol.32, No.10, pp. 1797 - 1809.
https://doi.org/10.1109/JSAC.2014.2358839

Mabu S., Hirasawa K., Hu J. 2007, A graph-based evolutionary algorithm: Genetic network programming (GNP) and its extension
using reinforcement learning, Evolutionary Computation, Vol. 15, No. 3, pp. 369-398.
https://doi.org/10.1162/evco.2007.15.3.369

Nitin T., Singh S.R., Singh P.G. 2012. Intrusion detection and prevention system (IDPS) technology - network behavior analysis
system (NBAS). ISCA Journal of Engineering Sciences, Vol. 1, No. 1, pp.51-56, July (2012)

Paxson V. 1998, Bro: A system for detecting network intruders in real time. Proceedings of the 7th UNISEX Security Symposium
Passino K.M. 2002, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems, Vol.22, No.

3, pp. 52-67. https://doi.org/10.1109/MCS.2002.1004010
Prithi,S, Sumathi.S. 2016, A review on deterministic finite automata compression strategies for deep packet inspection.

International Journal of Innovations & Advancement in Computer Science, Vol. 5, No. 6, pp. 7323-7325
Robinson J., Rahmat-Samii Y., 2004. Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and

Propagation, Vol. 52, No. 2, pp. 397 – 407. https://doi.org/10.1109/TAP.2004.823969
Roesch M. 1999. Snort: Light weight intrusion detection for networks. Proceedings of the 13th USENIX Conference on System

Administration, pp. 229-238

Rohrer J., Atasu K., Van Lunteren J., Hagleitner C. 2009. Memory-efficient distribution of regular expressions for fast deep packet
inspection. Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis,
pp. 147–154. https://doi.org/10.1145/1629435.1629456

Sidhu R., Prasanna V.K. 2001. Fast regular expression matching using FPGAs. Proceedings of the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 227-238

Simon D. 2008. Biogeography-based optimization, IEEE Transactions on Evolutionary Computation, Vol. 12, No. 6, pp. 702-713,
December 2008

Tereshko V. and Loengarov A. 2005. Collective decision making in honey-bee foraging dynamics. Computing and Information
Systems, Vol. 9, No. 3, p. 1

Tudge C.: The Variety of Life. Oxford University Press, Oxford (2000) ISBN: 0-19-850311-3
Wang J., Hong X., Ren R.-R., Li T.-H. 2009. A real-time intrusion detection system based on PSO-SVM. Proceedings of

International Workshop on Information Security and Application
Wu S., Manber U. 1994. A Fast Algorithm for Multi Pattern Searching. Technical Report TR-94-17, University of Arizona
Yang X.-S. 2009. Firefly Algorithm for Multimodal Optimization. Proceedings of the Stochastic Algorithms, Foundations and

Applications (SAGA 109), Lecture notes in Computer Sciences Springer, Vol.5792. https://doi.org/10.1007/978-3-642-04944-
6_14

Yang X.-S. 2013. Bat algorithm: Literature review and applications. International Journal on Bio-Inspired Computation, Vol. 5,
No. 3, pp. 141–149. https://doi.org/10.1504/IJBIC.2013.055093

Yang X.-S., 2010, Nature-Inspired Metaheuristic Algorithms. Second Edition, University of Cambridge, Luniver Press
Yilmaz S., Kucuksille E.U. 2013, Improved Bat Algorithm (IBA) on Continuous Optimization Problems. Lecture Notes on

Software Engineering, Vol. 1, No. 3. https://doi.org/10.7763/LNSE.2013.V1.61
Yang X.-S. 2010: Nature - Inspired Metaheuristic Algorithms. Second Edition, Universtiy of Cambridge, Luniver Press, UK
Yang X.-S., Deb S. 2009, Cuckoo search via levy flights. Proceedings of World Congress on Nature & Biologically Inspired

Computing (NaBIC 2009), IEEE Publications, USA. https://doi.org/10.1109/NABIC.2009.5393690
Yang X.S. 2012, Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation

2012, Lecture Notes in Computer Science, Vol. 7445, 240-249. https://link.springer.com/chapter/10.1007/978-3-642-32894-
7_27

Yu F., Chen Z.F., Diao Y., Lakshman T.V. and Katz R.H. 2006.: Fast and Memory-Efficient Regular Expression Matching for
Deep Packet Inspection. University of California at Berkeley, Technical Report No.UCB/EECS-2006-76.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/ EECS-2006-76.html (2006)

Biographical notes
S. Prithi is of the Department of Computer Science and Engineering, Sri Rajalakshmi Engineering College, Chennai. Tamil Nadu, India and S. Sumathi is in the
Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore , India

