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Abstract 
 
   Network Security plays an essential role in the modern world. Current network services mainly rely on processing of payload 
in packets. Deep Packet Inspection (DPI) is a key factor in examining the packet payload which uses the signatures to identify 
the packet that carries any viruses, worms, malicious traffic, unauthorized access and attacks. DPI uses regular expression 
matching as a core operator to examine the packet payload. Finite State Automata (FSA) are natural representations for regular 
expression. FSA is usually too large to be constructed or deployed and has a huge overhead. Finite State Automata frequently 
leads to state explosion problem which require more storage space, high bandwidth and more computational time. To overcome 
this problem, Intelligent Optimization Grouping Algorithms (IOGA) can be used to distribute the regular expressions into 
various groups and for each group the Deterministic Finite Automata (DFA) are built independently. Grouping the regular 
expression efficiently solves the state explosion problem by achieving large-scale best tradeoff among the memory utilization 
and computational time. This paper reviews the various Intelligent Optimization Grouping Algorithms like Genetic Algorithm, 
Ant Colony Optimization, Particle Swarm Optimization, Bacterial Foraging Optimization, Artificial Bee Colony Algorithm, 
Biogeography Based Optimization, Cuckoo Search, Firefly Algorithm, Bat Algorithm and Flower Plant Optimization. The 
discussions states that by effectively using these grouping algorithms along with finite state automata can reduce the number of 
states by solving the state explosion blow up problem, providing a balance between the memory consumption, number of 
groups and provide faster convergence. 
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1. Introduction 
 
   In recent years network security has acquired a tremendous interest due to the anxiety in mounting the security in today’s 
network. An extensive variety of algorithms have been proposed which can detect and battle with these security threats. Amongst 
these proposals, Network Intrusion Detection System (NIDS) have been a commercial success and have seen a tremendous 
adoption (Paxson, 1998). The events that occur in a computer system are captured by NIDS and it analyses the signs of possible 
events in the data packets such as computer security policy violation and standard security policy violation. Network devices have 
a stipulate growing demand and have the capability of analyzing the data packet contents so as to facilitate network security and to 
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offer application specific services. NIDS makes use of Deep Packet Inspection (DPI) that allows the network holder to analyze 
internet traffic, throughout the network, in real-time and to differentiate them according to their packet payload (Nitin et al., 2012). 
   Network services use signatures recognized from the packet payload to perform intrusion detection system. DPI matches the set 
of predefined patterns with the content of the payload byte by byte and examines whether the patterns are identified in the payload 
content. DPI uses regular expressions to represent complex string patterns as attack signatures. DPI examines whether a packets 
payload matches any of a set of predefined regular expressions. Regular expressions are highly preferred because of its 
compactness, flexibility and expressive power to specify attack signatures. Finite state automata are abstract model that recognizes 
the same language that is expressed by the regular expression. FSA plays a major role in matching regular expression (Hopcroft et 
al., 2001). Finite state automata comprises of a set of states, set of state transitions, input alphabet, start state and set of accept 
states. Each final state corresponds to a pattern or a signature. Regular expression matching proceeds from the start state and reads 
the payloads first byte. For each byte read, the state transition occurs based on the current state and the payload byte read. At a 
course of time accept state is reached and the payload is matched with the equivalent signature. Each byte is processed and each 
byte requires one or many main memory accesses therefore regular expression matching in DPI is time consuming and depends on 
the efficiency of the matching algorithm. 
   FSA can be broadly classified into Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata (NFA). The 
expressive power of NFA and DFA are same but the processing is different (Hopcroft et al., 2001). DFA have only one state 
transition for each character while NFA can have multiple state transitions for a character. Thus a DFA have only one state active 
at a time whereas NFA have multiple states active. Thus the processing cost for each step for DFA is O(1) whereas it is O(n2m) for 
NFA, where m denotes number of regular expression and n denotes the average length of regular expression and to convert NFA to 
DFA it is as large as O(2nm) which leads to state explosion problem (Yu et al., 2006). NFA and DFA have a conflicting feature in 
the consumption of memory and bandwidth. As there is a huge increase in the network applications, the number of signatures that 
is to be matched with the patterns simultaneously becomes very difficult. Thus the storage and scalability of regular expression 
becomes a big challenge. A majority of ongoing research are searching for a substitute for storage and performance. Thus the main 
objective is to perform the matching as fast as DFA at the same time keep the storage as small as NFA for handling a large set of 
regular expressions. 
   In the recent years, to improve the overall performance of DPI a significant effort has been done to optimize the automaton based 
on pattern matching. To implement the DFA bases regular expression matching the primary obstacle is the blow up of states. To 
avoid state explosion, rule grouping method (Rohrer et al., 2009; Liu et al., 2014; Yu et al., 2006) was used which groups the rules 
into several groups and for each group a DFA is generated. Each combination of patterns has varying magnitude of interactions 
therefore the objective of rule grouping is to split the patterns to different groups based on the interaction and to leave the patterns 
with least interaction without splitting. Yu’s grouping algorithm (Yu et al., 2006) tactically compiled a set of regular expressions 
into several groups that showed an increase in the regular expression matching speed without much rise in the usage of memory. 
Rohrer et al. (2009) enumerated the method of rule grouping based on Yu’s algorithm (Yu et al., 2006) and also computed the 
measure of how the patterns interact. The enumeration resulted in an optimal grouping. But Yu’s and Roherer’s algorithm 
consumed more computational time and memory utilization. Liu et al. (2014) proposed an algorithm called DFA size estimator 
that estimated the size of the DFA for the given set of regular expression without building the actual DFA. DFA size estimator is 
orders of magnitude faster, has better grouping results and more efficient than the Yu’s algorithm (Yu et al., 2006).   
   Based on the performance of these existing rule grouping method, grouping multiple regular expressions can be transformed into 
an optimization problem to obtain a better result. The key goal of the optimization problem is to determine the objective functions 
maximum or minimum value (Konar, 2005). It literally means finding the best possible or desirable solution. Intelligent 
optimization grouping algorithms such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm 
Optimization (PSO), Bacterial Foraging Optimization (BFO), Artificial Bee Colony (ABC), Biogeography Based Optimization 
(BBO), Cuckoo Search, Firefly Algorithm, Bat Algorithm and Flower Plant Optimization can be used efficiently to group the 
regular expression and IOGA plays a major role in improving the overall performance of DPI. In this paper, a detailed study on 
IOGA is done to build memory efficient and compact automaton based regular expression matching. 
   The rest of the paper is structured as follows. Section 2 illustrates about the regular expression its common features and how it 
works in DPI, the finite state automaton, its basic types namely NFA and DFA and the state of the art system of evolutionary 
strategies that are implied to finite state automata. Section 3 discusses and analyses about the various Intelligent Optimization 
Grouping Algorithms that are used in the last three decades and a basic idea of how it can be used with finite state automata and 
section 4 discusses about the proposed approach for FSA in DPI which is used to group the regular expression efficiently using 
Intelligent Optimization Grouping Algorithms thereby to compress the memory space and improve the convergence speed and 
section 5 delivers the concluding remarks. 
 
2. Finite automata based on regular expression matching 
 
   The techniques that are used for designing automaton based regular expression matching are discussed in this section. The 
regular expression plays a major part in pattern matching so a detailed background about the regular expression and its importance 
in popular DPI systems and how it works in DPI is illustrated. The next core part of matching regular expression is the relationship 
between regular expression and finite state automaton, which is explained in this section. The two traditional FSA namely NFA 
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and DFA are discussed in detail. Finally the automaton based DPI is illustrated which can obtain high throughput, low 
implementation cost, reduced memory utilization, high inspection speed and fast convergence. 

 
2.1 Regular Expression 
   A regular expression is a formula that was first developed by Kleene, 1956 (Kleene, 1951) for identifying the basic classes of 
strings. A string represents a sequence of symbols. Each symbol in a regular expression is either a regular ASCII character or a 
meta-character that has a special meaning. Regular expression can be described by a formal language known as regular language. 
Regular language is one of the basic classes of the Chomsky Formal Language (Harrison, 1978).  The regular language over 
alphabet Σ is defined as: 

1. Φ is a regular language. 
2. For any a, a   Σ, {a} is a regular language. 
3. If R1 and R2 are regular language, then so are: 

a. R1.R2 = ],|[ 21 RbRaab  , the concatenation of R1 and R2 

b. R1 Ս R2, then union of R1 and R2 
c. R1 *, Kleene closure of R1 

   The languages that satisfy the above properties are called the regular language. Regular expression has been widely used in 
programming languages, compiler design, text editors, text processing, network security etc. In network applications, regular 
expression matching is mainly focused on application protocol identification and NIDS, where packet payloads is inspected at line 
rate over large sets of complex patterns. As regular expressions are widely adopted for packet content scanning, it is essential that 
they handle packet header processing. A regular expression pattern may represent the unique characteristics of an application level 
protocol, a virus, a spam and a malware. The expressive power and flexible characteristics of regular expression has the ability to 
be widely used in open source DPI and commercial DPI applications. 
 
2.2 Functions of Regular Expression in DPI 
   The set of strings which are unspecified explicitly are represented using regular expression. Table 1 lists the frequent features of 
regular expression patterns (Yu et al., 2006) that are widely used in packet payload scanning.  

 
Table 1. Features of regular expression (Yu et al., 2006) 

Syntax Meaning Example 

. A single character wildcard  
* A quantifier that refers to zero or more  S* means an arbitrary number of Ss.  
? A quantifier that refers to one or less  pq?r  represents pr and pqr  
+ A quantifier that refers to one or more p+q represents pq, ppq, pppq, etc 

| OR relationship  P|Q represents P or Q 
^ Patterns that are matched at the start  

of the input  
^PQ represents the input that begins with PQ. A pattern without “^”, e.g., PQ, can be matched 
anywhere in the input.  

[] A class of characters  [pqr] denotes a letter p or q or r.  
[^] Anything but  [^pq] denotes any character other than p or q 
{} Repeat  P{100} denotes 100 Ps.  

 
2.3 Finite State Automaton 
   Finite State Automata are computing devices that recognizes the regular languages. The operations of finite state automata are 
simulated by a simple basic computer program. A finite state automaton consists of a finite set of states which are classed to be 
either accepting or not accepting. A string of input symbols are taken in by the finite state automata. After processing all the input 
if the current state is an accepting state then the input is accepted or else the input is rejected. The regular expression matching 
problem determines whether a given string belongs to the member of the language defined by a particular regular expression. For 
an automaton based regular expression matching in DPI the given string is considered as the packet payload. 
 
2.4 Deterministic Finite Automata 
   In deterministic finite automata from each and every state there is only one transition that takes place on each input symbol of 
the alphabet (Σ) i.e., δ(s,a) is unique (Koza et al., 1994). This implies that for an input w, the execution is predictable. 

A DFA is defined as a 5–tuple (S, Σ, δ, s0, A) where, 
• S is a set of finite states. 
• Σ is the set of finite input symbols. 
• δ is the transition function where δ: S × Σ   S e.g., δ (s,a) =p gives the transition from state s on the input a. 
• q0 Є S is the initial state. 
• A  S is the set of accepting states. 

   Let M be a DFA such that M = (S, Σ, δ, q0, A). String w is acceptable by M if δ *(q0, w) = p for some p in A. 
   A primary characteristic of DFA is that only one state can be active at any point of time. However this characteristic becomes 
infeasible for regular expressions that are present in the repeatedly used rule - sets. Particularly, when the regular expression 
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contains repeated wildcards it becomes difficult to construct a DFA with a reasonable number of states (Hopcroft, 1971). It takes 
only one main memory accesses per byte. A worst case analysis (Hopcroft et al., 2001) illustrates that a an NFA which contains a 
single regular expression of size n has O(n) states. The same expression when transformed into a DFA generates O(∑n) states. In a 
DFA the processing complexity for every character in the input is O(1) and however in a NFA it is O(n2) when all n states are 
active at the same time. 

 
2.5 Nondeterministic Finite Automata 
   Nondeterministic Finite Automata (NFA) has multiple or null state transitions for each input symbol. Non determinism therefore 
implies that there may not be a unique execution trace as in DFAs. There are multiple paths of possible executions. For NFAs a 
string is accepted if there exists at least one execution path that ends in a final state, whereas a string is rejected if all possible 
execution paths end in a non accept state. NFAs also allow for ε–transitions i.e. transitions which do not read a character of the 
input string. For every NFA there is an equivalent DFA which accepts exactly the same language L. It is therefore possible to 
convert any NFA to a DFA. NFAs are necessary as it is easier to construct whereas DFAs can become very complex. DFAs on the 
other hand are easier to implement and interpret on a computer. 

An NFA is defined as a 5–tuple (S, Σ, δ, s0, A) where,  
• S is the set of finite states. 
• Σ is the set of finite input alphabet. 
• δ is the transition function where δ: S× (Σ Ս ε)  P(S) where P(S) is the power set of S and ε is the empty string. 
• s0  Є S is the start state. 
• A    S is the set of accepting states. 

   Therefore, Sidhu and Prasanna (2001) proposed a NFA-based automaton which improves the memory utilization problem. All 
the states in NFA can be active at the same time which needs a prohibitive amount of memory bandwidth. To match a regular 
expression of size m, the memory required by a serial machine is O(2m) and requires the time complexity of O(1) per input 
character. However, the authors proposed a method that requires the O(m2) space and a text character can be processed in O(1) 
time. Furthermore, they obtained a simple and fast algorithm that rapidly constructs the NFA for the given regular expression. To 
construct an NFA rapidly is crucial because the NFA structure depends upon the regular expression, which is known only during 
runtime. 

 
2.6 Automaton based DPI 
The packets are organized in a Network Intrusion Detection System with the help of a predefined rule set and the malicious 
packets are identified by scanning the packet payloads for any signature in the rule set. Automaton based approaches such as HFA, 
H-FA, XFA, D2FA, δFA etc discussed in Prithi et al. (2016) are used extensively for pattern matching or regular expression 
matching. These approaches can be used along with the IOGA to obtain an optimal solution. To accomplish high throughput in 
regular expression matching and to reduce memory access frequency is critical for the overall intrusion detection performance 
based on the metrics such as detection rate, intrusion detection capability, false alarm rate, base rate etc. The classical automaton 
based Aho-Corasick algorithm (Aho and Corasick, 1975), Commentz-Walter algorithm (Commentz-Walter, 1979) and Wu-
Manber algorithm (Wu and Manber, 1994) for string matching have been proposed to reduce memory requirement but these 
algorithms slow down the matching speed for large pattern set. To solve these problems automaton based DPI approach has been 
analyzed and discussed to obtain high processing throughput, low implementation cost, reduced memory consumption, high 
inspection speed, high intrusion detection capability, better detection rate, better false alarm rate and fast convergence. 

 
3. Intelligent optimization grouping algorithms 
 
   Intelligent Optimization Grouping Algorithms are used to solve optimization problems (Fu et al., 2014). A variety of intelligent 
optimization grouping algorithms can be used to allocate the multiple regular expressions into groups and for each group the 
algorithm constructs DFAs independently to efficiently solve the state explosion blowup by obtaining most favorable global 
solution between memory consumption and computational time. Typical IOGAs include Genetic Algorithm (GA), Ant Colony 
Optimization (ACO), Artificial Bee Colony Algorithm (ABC), Bacterial Foraging Optimization (BFO), Particle Swarm 
Optimization (PSO), Biogeography Based Optimization (BBO), Firefly Algorithm (FA), Bat Algorithm (BA), Cuckoo Search 
(CK) and Flower Plant Optimization (FPO). In this section the various intelligent optimization grouping algorithms are studied and 
brief idea of how to apply these algorithms along with finite state automaton are discussed. 
 
3.1 Genetic Algorithm(GA) 
   GA is an evolutionary based stochastic optimization algorithm that was proposed by Holland in 1975 (Koza, 1992; Holland, 
1975). They go behind the doctrines of Charles Darwin Theory of survival of the fittest (Darwin, 2007). In GA, the population is 
defined to be the group of individuals. A chromosome is a collection of genes which corresponds to individual population. Each 
individual chromosome finds a feasible solution for the optimization problem. The algorithm starts by initializing a population for 
the solution. Then for each chromosome the fitness is evaluated by means of a proper fitness function appropriate for the problem. 
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Based on this, the best chromosomes are selected, where they go through crossover and mutation thus giving new set of solutions 
which are also known as offspring.  
   The most important genetic operators in GA are the selection, crossover, and mutation. The selection procedure selects the good 
individuals from the current population and generates next population based on the assigned fitness by implementing the survival-
of-the-fittest and natural selection principle. Crossover also known as the recombination operator replaces parents and merges 
these parts to obtain new individuals known as children by means of crossover probability. Mutation modifies some portion of 
individuals to generate perturbed solutions. It operates only on a single individual while crossover operates on two or more 
individuals. 
   The pseudo code to implement genetic algorithm is as follows: 

1. Select initial population 
2. Estimate the individual fitness  
3. Repeat 
4. Choose the best ranking individuals to reproduce 
5. Obtain new generation through crossover and mutation and reproduce children 
6. Evaluate the individual fitness of the children population 
7. Restore the best ranking individuals 
8. Until terminating condition is met. 

 
   In case of complex search space or the search space is not clearly defined and when mathematical investigation is not available 
GA provides an efficient result (Mabu et al., 2007). GAs has the ability to locate good solutions faster for the complicated search 
space but converges towards the local optima when the fitness function is not defined properly. The main problems of GAs are it 
does not operate on dynamic data and selecting encoding and fitness function is very difficult. Certain simple optimization 
algorithms obtain a better solution for certain optimization problems than GA when the same amount of computation time is given. 
Finally GAs does not have the ability to solve constraint optimization problems. 

 
3.1.1 Genetic Algorithm and Finite State Automata  
   Genetic algorithm can be applied in Finite State Automata by considering the population as the collection of individuals. Each 
individual consists of one regular expression and for every individual; fitness function is calculated based on the total number of 
states. Each possible path in the search space is encoded in the form of a binary string which represents the chromosome c. This 
chromosome represents the distribution of the present individual i.e. distribution of regular expression. The chromosomes length is 
denoted as N. Each genes value represents the serial number of the corresponding regular expression that is distributed into the 
groups.  
   After initializing the individuals, each regular expression is distributed randomly to allow space for the entire range of the search 
space. The fitness of the population is calculated based on the number of states. The individuals are selected by the standard 
selection schemes such as proportionate selection, linear ranking selection, tournament selection and genitor selection (Goldberg 
and Deb, 1991). Select the distinct chromosome individuals by probabilistic method and perform crossover and mutation. The 
operations of crossover and mutation guarantee that this approach does not fall into local optimum. Since the method can find 
global optimal solution in distributing the regular expression, the system reduces memory consumption, improves compression 
rate, increases convergence speed and reduces number of groups. 

 
3.2 Ant colony optimization 
   Ant Colony Optimization (ACO) is a population based search technique that takes inspiration from the manners of real ants 
proposed by the Italian scholar Dorigo et al. (1991). The inspirational behavior for ACO is the way ants discover the shortest paths 
between the nest and the food source. This behavior is known as ant’s foraging behavior. Initially ants travel around the place 
neighboring their nest in an indiscriminate way in search of food. Ants depart a substance known as pheromone on the ground. 
When searching the way the ants select the path that contains strong pheromone concentration. Once the source of the food is 
found it calculates the quality and quantity of food and takes some back to their nest. The pheromone trails leads a way for the ants 
to find the food source. Ants coordinate their activities by means of stigmergy which is an indirect communication intervened by 
the changes in the environment in which they move.  
   As a general rule, there are three principle operations that must be repeated until a feasible solution is obtained or a terminating 
condition is satisfied. 
1. BuildSolutions. Each ant travels around the graph in a definite way searching for food. Based ont eh heuristic and 

pheromone value of the edge the ant decides the subsequent edge to visit. After selecting the edge, it attaches to its path and 
continues to move to the next node. Generally, it keeps on searching the graph to check whether an entire solution to the 
problem has been constructed. 

2. PheromonesUpdate: On all the edges of the graph the pheromone values are updated. If the edge is been travelled by the ant 
the pheromone value is incremented or else the pheromone value is decremented. The fitness function is used to calculate 
the amount of pheromone that each ant drops on the graph edges. 

3. DaemonActions: Individual ants cannot perform actions that are executed by certain procedure. Local optimization is 
one such procedure. 
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The pseudo code for ACO algorithm is as follows: 
1. Start 
2. Initialize the parameters and pheromone trails 
3. Generate population of k solutions; 
4. Calculate fitness(n) for each individual ant n ε k 
5. For each ant find out its best position 
6. Determine the best global ant 
7. Revise the pheromone trail 
8. Until terminating condition is satisfied 
9. End 

 
   ACO can be used in dynamic applications such as circuit switched networks, network routing applications, scheduling problems, 
etc. It has optimistic feedback which directs to fast innovation of good solutions and the dispersed computations avoid early 
convergence. It performs better against the genetic algorithm. Convergence is certain, but time to convergence is uncertain. Coding 
is not simple and theoretical analysis is difficult. 

 
3.2.1 Ant Colony Optimization and Finite State Automata 
   Initially, one regular expression is randomly selected by each of m ants. Then one of the ungrouped regular expressions is 
randomly selected by each ant. The probability of including that to the current group is calculated. Check whether the group 
condition is met. If so add the regular expression into the current group and the pheromone value between each of the current 
group and regular expression is increased. Else the previous step is repeated until at least one regular expression is added. If none 
of the regular expression meets the criteria, one regular expression from the ungrouped expression is selected randomly and 
considered as the start of the next round grouping. When the destination is achieved the best solution is recorded, the pheromones 
are evaporated and all m ants are placed at the starting point. The algorithm ends after deterministic iterations. The final solution is 
found to be optimum and is superior to the solutions recorded in round iteration (Janakiriman and Vasudevan, 2009).  
   The advantage of grouping regular expressions with probability value can avoid the convergence to a local optimum solution, 
and the pheromones introduction can make the positive feedback easy and can increase the speed of convergence, improve 
computational time and reduce the number of groups. 
 
3.3 Particle swarm optimization 
   Particle Swarm Optimization (PSO) is a biologically inspired algorithm evolved by Kennedy et al in 1995 that simulates the 
behavior of bird gathering, fish schooling or swarming of bee communication in search for food. PSO is broadly implemented in a 
variety of fields for optimization and design applications (Yang, 2010). PSO is proved to be better than Genetic Algorithm (GA) 
(Robinson and Rahmat-Samii, 2004) with a very simple concept of calculation and design pattern of only some computational 
codes. The most important advantages of PSO is that it has a very few parameters to regulate and able to compute a solution as 
GA. Further PSOs are more appropriate for online parameter tuning (Hopcroft et al., 2001). The primary idea of PSO is not just 
only on fish/bee/bird swarming behavior, it is also related to reproduce human social behavior which is the main factor of 
abstractness. 
   The particles position is inclined by velocity. Let xi(t) represent the position of particle in the search space at time t step; where t 
represents discrete time steps. The position of the particle is changed by including velocity vi(t), to the current position: 

 
xi(t + 1) = xi(t) + vi (t+1)          (1) 

 
where velocity is given by: 
 

vi(t) = vi(t-1) + c1 r1 (local best (t) - xi(t-1)) + c2 r2 (global best (t) - xi(t-1))    (2) 
 
With acceleration coefficients c1 and c2, and random vectors r1 and r2. 

PSO algorithm determines its candidate solutions by making use of the objective function and it functions upon the 
resulting fitness value. The position, fitness evaluated, candidate solution and velocity is maintained by each particle and it 
remembers the individual best fitness and individual best candidate solution. It also maintains the global best fitness and the 
candidate solution that attained this fitness is called as global best candidate solution. 

The following steps are continued in a PSO algorithm until the terminating condition is satisfied. 
1. Initialize the population, particle position and velocity. 
2. Assess the localbest location i.e. the fitness of the individual particle. 
3. Keep track of the individual highest fitness i.e. the globalbest location. 
4. Adjust velocity based on localbest and globalbest location. 
5. Revise the velocity and particle position. 
6. End if condition is satisfied else go to step 3. 
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One of the prime advantages of basic particle swarm optimization algorithm is its intelligence (Bai, 2010). It is used in both 
scientific research and engineering purpose. PSO does not have overlapping and mutation calculation. The process takes place by 
considering the particles speed. The exploration speed is very fast. In PSO, all the calculations that are done are very simple and 
can be completed easily.  
   The limitations of the basic particle swarm optimization algorithm are the methods effortlessly endure from the partial optimism, 
which makes the regulation of its speed and the direction less exact. Spreading cannot be done and the method cannot effort out 
the troubles of non-coordinate system, such as the result to the energy field and the moving rules of the particles in the energy 
field.  

 
3.3.1 Particle Swarm Optimization and Finite State Automata 
   The population or the search space represents the set of regular expressions. Each particle is a regular expression and the group 
of particle is called as swarm. At each step of the PSO algorithm, the swarm size is fixed or varied depending upon the 
convergence speed. The algorithm works by randomly choosing a regular expression from the search space and the fitness function 
is computed for each particle and uses this function to evaluate the candidate solution (Wang et al., 2009). The position, fitness 
value and velocity of each particle are maintained. The best fitness and the candidate solution are also remembered among all the 
particles in the swarm. PSO parameters such as the velocity and position are adjusted and another particle or regular expression is 
chosen. The same process is continued till the convergence conditions are reached.  
   The main advantage of grouping regular expression through PSO is that all the particles are likely to come together to the best 
solution quickly and information sharing is done only one way through globalbest. Thus it will provide global optimal solution 
with increased convergence speed, high throughput, improved time complexity and reduced number of groups. 

 
3.4 Bacterial foraging optimization algorithm 
   Bacterial Foraging Optimization Algorithm (BFOA) is a bio-inspired optimization algorithm that was proposed by Passino 
(2002). The key idea of this algorithm is the group foraging strategy of a swarm of Escherichia Coli bacteria in multi modal 
function optimization. Each bacterium searches for food in order to maximize the energy E per unit time T. Foraging is an 
occurrence of a colony of bacteria instead of individual behavior. The foraging strategy of the E-coli is administered by four core 
operations.  

 Chemo tactics 
   The movement of E-coli is simulated through swimming and tumbling. The bacterium either swims or tumbles in the same 
direction or changes the direction. Let S represents total number of bacterium, information of the ith bacterium is represented by 

),...,,( 11
i
D

ii
i   where i =1,2,…,S. ),.,( lkji represents the ith bacterium at jth chemo tactic, kth reproductive and lth 

elimination and dispersal step. 
 Reproduction 

   After the chemo taxis process is completed each bacterium’s fitness is estimated.  The sum of cost function is calculated as  





cN

j

lkjii
fitness PJ

1

,,,  where Nc represents the total number of steps in complete chemo taxis process. The bacterium which has the 

least value dies and the healthier bacteria asexually splits the bacterium into two which are then placed in same location. This 
process maintains the swarm size constant.  

 Elimination and Dispersal Operation 
   Elimination operation occurs when the bacterium gets fascinated into local optima and it improves the ability of global search. 
The dispersion operation occurs when the bacteria gets randomly positioned in the environment.  

 The Swarming 
   As the bacteria move it sends a signal to other bacteria to swarm towards it. Each bacterium signals the bacteria to maintain a 
safe distance between each other. 

The pseudo code for the BFOA algorithm is given below: 
1. Initialize the population and parameters. 
2. For each variable in elimination dispersal loop 
3. For each variable in reproduction loop 
4. For each variable in chemo tactic loop 

a. Compute the fitness function 
b. Generate a random vector and apply tumbling 
c. Move in the direction of the tumble 
d. Compute the fitness function  
e. Swim and again calculate the fitness function 

5. If chemo tactic loops terminating condition is not satisfied go to step 4. 
6. Reproduction 

a. Calculate heath cost for each bacterium 
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b. Sort bacteria and chemo tactic parameters in the increasing order of health cost. 
c. The highest health cost value is died and the remaining bacteria with best value are splitted. 

7. Repeat till the reproductions loop terminating condition is satisfied else go to step 3 
8. Elimination dispersal 

a. Eliminate and disperse each bacterium 
9. Repeat till the elimination dispersals terminating condition is satisfied. 

   The main advantage of BFOA is that it is not affected by size and non-linearity of the problem. It has less computational burden, 
global convergence, less computational time is needed and can handle more number of objective function. The disadvantages of 
the algorithms are that the elimination step makes the bacterium which obtained optimal solution to escape which slows down the 
convergence speed. 

 
3.4.1 Bacterial Foraging Optimization Algorithm and Finite State Automata 
   In BFO the population is represented by the set of regular expression. The fitness function is calculated and the set of regular 
expression is grouped based on the tumble move. Again the fitness value is estimated and the regular expression is grouped based 
on the swim move. The health cost for each group is calculated and the highest health cost value of the group is eliminated and 
regrouped. The process is repeated until the optimum group is formed. FSA using BFO algorithm will reduce the memory size and 
will provide a high throughput. It also will provide a better computational and regular expression grouping time. It does not 
improve the convergence speed as the optimal group that is formed is escaped in elimination process. 

 
3.5 Artificial bee colony algorithm 
   Artificial Bee Colony (ABC) algorithm was proposed by Karaboga D in 2005 in favor of the numerical optimization problems 
(Karaboga, 2005). It is a swarm based meta-heuristic optimization algorithm developed by (Tereshko and Loengarov, 2005; 
Karaboga and Akay, 2009) based on the intelligent foraging manners of honey bee swarm. There are three essential components of 
forage selection (Basturk and Karaboga, 2006). The first component is the food source. The food sources values depends on the 
factors such as its proximity to the nest, its energy, and the easy extraction of this energy. The second one is the employed foragers 
which are related with a scrupulous food source. The information concerning the particular source, its distance and direction from 
the nest, the profitability of the source are transmitted and this information is distributed with a firm probability. The last part is the 
unemployed foragers which constantly search for a food source to exploit. Communication between bees related to the quality of 
food sources acquires place in the dancing area which is called as waggle dance. 
   The ABC search cycle comprises of three rules (Chan and Tiwari, 2007).  The first one is to send the employed bees to a food 
source, to evaluate the nectar quality, secondly onlookers choose the food source from the employed bees to calculate the nectar 
quality and finally to formulate the scout bees and to distribute them to possible food sources.  

The following are the main steps of the ABC algorithm. 
1. Initialize population, optimization problem parameters and Food Source Memory (FSM) 
2. Repeat 
3. Position the employed bees on their food sources 
4. Position the onlooker bees on the food sources based on their nectar amounts 
5. Drive the scouts to the search area for determining new food sources 
6. Remember the best food source that are found so far 
7. Until terminating conditions are satisfied. 

   Each cycle of the search comprises of three steps. The first step is to send the employed bees onto their food sources and the 
amount of nectars are calculated and secondly the nectar information of food sources are shared and after that the food source 
regions are selected by the onlookers and the nectar amount of the food sources are evaluated and the last step is to determine the 
scout bees and are sent randomly onto promising new food sources. Repeat these steps throughout a predetermined number of 
cycles known as Maximum Cycle Number (Bahriye and Dervis, 2012) or until a terminating condition are satisfied. 
   Some of the advantages of ABC algorithm are strong robustness, convergence is fast, highly flexible, fewer setting parameters 
(Civicioglu and Besdok, 2011), ease of hybridization with other optimization techniques (Karaboga and Akay, 2009) such as GA, 
PSO, Differential Evolution, Evolutionary Strategies and easily implemented with common mathematical and logical operators. 
Few disadvantages of ABC are in later search period there are chances of premature convergence and it sometimes cannot satisfy 
the requirements of the accuracy of optimal value. 
   ABC remains an interesting and promising algorithm, which are comprehensively used by researchers athwart various fields. Its 
main advantage is that it can be easily hybridized with various meta-heuristic algorithms and is robustly feasible for continued 
utilization and improvements are possible. 

 
3.5.1 Artificial Bee Colony Algorithm and Finite State Automata 
   In ABC, the bees are considered as the set of regular expression and the values are randomly assigned. The parameters of the 
optimization problem and the food source memory are initialized. The set of regular expression is divided into two groups and 
initialized to employed bees and onlooker bees. For each regular expression the fitness value is calculated and based on the fitness 
value the probability to form the group is determined. Based on the probability the count of onlooker bees that are sent to the 
sources of food of employed bees is calculated. The fitness for each onlooker bee is calculated and based on this value the best 
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onlooker bee is found and replaced with respective employed bee and the best feasible onlooker is found and replaced with best 
solution. The iteration is repeated until optimal groups are formed.  
   When compared to other optimization algorithms ABC is fast and uses less time to group the regular expression. Because of its 
fast convergence and fewer setting parameters, FSA using ABC will provide limited memory utilization and have faster 
convergence speed.  
 
3.6 Biogeography based optimization (BBO) 
   Biogeography based optimization is an optimization technique which was proposed by Simon (2008). It is based on the 
geography concept of biological organisms. The algorithm works on the principle of migration and mutation. The two main 
processes in migration are immigration and emigration. Immigration and emigration are affected by the factors such as distance of 
an island to the nearest neighbor, size of the island, habitat suitability index (HSI) etc. HSI involves various factors such as 
rainfall, vegetation, climate etc. These factors favor the existence of species in a habitat. Mutation is the sudden drastic change 
made to the HSI of any habitat due to certain cataclysmic events. Mutation increases the diversity among the population. 

The pseudo code of the BBO algorithm is given as: 
1. Define the migration probability and mutation probability 
2. Initialize the population. 
3. Determine the immigration and emigration rate of each candidate in the population. 
4. Select the island to be modified based on the immigration rate. 
5. Using roulette wheel selection, select the island from which the SIV is to be emigrated. 
6. Randomly select an SIV from the selected island to be emigrated. 
7. Perform mutation based on the mutation probability of each island. 
8. Estimate the fitness of each individual island. If the fitness criterion is not satisfied go to step3. 
Immigration rate Ri can be defined as 

Ri = I (1-F(s)/n)  
Emigration rate Re can be defined as 

Re = E (F(s)/n)  
where I is the maximum immigration rate, E is the maximum emigration rate, F(s) is the fitness rank of solution s and n is 

the number of candidate solutions in the population. 
   BBO algorithm does not take unnecessary computational time. The solutions do not die at the end of each generation like other 
optimization algorithms. The exploration capability of BBO makes it attractive for solving many complex problems in various 
fields but the exploiting capability is very poor. It does not have provision for selecting the best members from each generation. In 
some cases infeasible solutions are generated. 

 
3.6.1 Biogeography Based Optimization Algorithm and Finite State Automata 
   In BBO, the population is considered as the set of regular expression and the values are randomly assigned. The probability of 
migration and mutation are defined. For each regular expression the immigration rate and emigration is calculated and based on the 
values the probability to form the group is determined. For each regular expression the SIV is calculated and the random value is 
selected to perform emigration and based on the SIV the group is formed. The fitness value for each group is calculated and the 
iteration is repeated until optimal groups are formed.  

When compared to other optimization algorithms BBO has very less computational time and also can group the regular 
expression in very less time. The exploration capability of BBO can make the FSA to be designed easily and complex regular 
expression can be easily grouped. 

 
3.7 Cuckoo search 
   Cuckoo Search is a meta heuristic bio-inspired optimization algorithm deployed by Yang and Deb S. (2009). Cuckoo Search is 
inspired by obligate blood parasitism behavior of cuckoo’s by laying their eggs into nest of host birds and by characteristics of 
Levy Flights. The Cuckoo Search algorithm is implemented by three basic characteristics.  

a. A Cuckoo randomly selects a nest to lay the egg and it lays egg at a time. 
b. The very good quality eggs nest is considered as best nest and it is carried to the next generation. 
c. The available host nests value is fixed and the probability of a host bird to discover cuckoo’s egg is Paε[0,1]. In this 

scenario the host bird destructs the egg or the nest completely and goes for a new nest in new location. 
These three characteristics are represented in simple form by representing each egg in a nest by a solution and each cuckoo 

signifies a new solution. The objective is to make use of the new and most likely superior solution to alternate a least solution in 
the nests. Pseudo code for cuckoo search is given below: 

1. Begin 
2. Define objective function f(X), where X = {x1,x2…,xd} 
3. Generate initial population of host nests xi, where i=1,2,3,…,n. 
4. While terminating condition is not met 
5. Generate a cuckoo selection randomly using Levy Flight. 
6. Evaluate the fitness function, FN 
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7. Select a random nest j among n 
8. If(FN >Fj) Replace j by new solutions 
9. Discard worst nest with a fraction of Pa and generate new nests. 
10. Maintain the best solutions  
11. Grade the solutions and find the current nest 
12. End While 
13. Post process results and visualization. 

The main advantage of Cuckoo Search is that it deals with multi criteria optimization. It is simple and easy to 
implement. It aims to speed up the convergence and it can be hybridized with other swarm based optimization algorithms. 
 
3.7.1 Cuckoo Search and Finite State Automata 
   The population of the cuckoo search is represented by the set of regular expression. The cuckoo is selected randomly using Levy 
Flight from the set of regular expression. Calculate the fitness function and the nest is selected randomly. The worst nest is 
discarded and the new nest is generated and based on this the regular expression is grouped. Maintain the best solution and find the 
current group. Repeat the process till optimal regular expression groups are formed. It is easy and simple to design FSA using 
Cuckoo Search. FSA with Cuckoo search will increase the convergence speed and it can be easily hybridized with other 
optimization algorithms to provide improved memory consumption, throughput and better inspection speed 

 
3.8 Firefly algorithm 
   Firefly algorithm that was projected by Yang (2009) is an unconventional swarm based heuristic algorithm for constrained 
optimization problems inspired by the flashing behavior of fireflies. The algorithm is represented by a population-based iterative 
process with various fireflies simultaneously taking care of a considered optimization problem. Agents correspond to each other 
through bioluminescent sparkling which allows the cost function space to be investigated more efficiently than in standard 
distributed random search. The firefly algorithm comprises of three idealized rules (Farahani et al., 2011; Yang, 2010) which 
depends on the basic flashing distinctiveness of real fireflies. The first rule is unisex behavior of all fireflies that moves toward 
more attractive and brighter ones. Secondly, the attractiveness of firefly is relative to its brightness. Lastly, the light intensity of the 
firefly is obtained by the objective function of the specified problem.  
   The two main issues of firefly algorithm are the formulation distinction of light intensities, I and attractiveness, β. The 
attractiveness is relative that varies by distance among firefly i and firefly j. Light is also absorbed by medium and diminishes by 
increasing distance, therefore the attractiveness also varies with a factor of absorption. 

The light intensity I varying with distance r is expressed by the following equation: 
2

0)( reIrI                                       (3) 

whereas 0I  denotes intensity of the light at the source, and  is a coefficient of fixed light absorption. The attractiveness β 

is defined as: 
2

0
re                 (4) 

With βo is the attractiveness when r is 0 and is a defirepresents the light absorption coefficient.  
 The distance between two fireflies i and j is represented by the Euclidian distance 
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where ikS is the position of the kth element of the ith firefly within the search space. Each firefly i moves to the more attractive 

firefly j, as follows: 
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r
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0                      (6) 

The first term in eq. (6) specifies the ith firefly’s position. The next term represents the ith firefly’s attractiveness and the last 
term refers the randomized move with the randomized argument α and the random number εi ϵ (0, 1). 

The firefly algorithm is given as 
2. Initialize general counter, attractiveness and best solution 
3. Initialize the population of firefly 
4. While t is less than or equal to MAX_GEN do 
5.          Find out new value of α 

6.          Evaluate )(t
iS  according to )( iSf  

7.          Sort )(t
iP  according to )( iSf  

8.          Determine best solution *S   
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9.         Vary attractiveness according to iS  

10. End While 
11. Post process. 

   Firefly algorithm can deal with highly non-linear multi-modal optimization problems proficiently. The speed of convergence of 
FA is very high in terms of finding the global optimized respond. It has the flexibility of integration with other optimization 
techniques such as GA and PSO to form hybrid tools. Firefly algorithm suffers from diminishing returns once the swarm size 
grows or when the solution space grows immensely large and is impossible to predict the future moves of a firefly so there is no 
opportunity to allow pre-caching of values. 

 
3.8.1 Firefly Algorithm and Finite State Automata 
   In firefly algorithm the agents or fireflies act as the regular expression and the values are initialized randomly. The regular 
expressions interact through bioluminescent glowing which allows estimating the cost function space efficiently. The degree of 
attractiveness is determined by the objective function and the attractiveness varies by distance between two regular expressions. 
The light intensity is estimated based on the cost function. The best solution is determined and the attractiveness is varied 
according to the best solution. This process is repeated until the terminating condition is satisfied. 
   When compared with GA and PSO, firefly algorithm deals with multi modal optimization problem and will use less time to 
group the regular expression. Firefly algorithm has high flexibility in hybridizing with GA and PSO algorithms. By hybridizing FA 
with GA and PSO optimization algorithms, it will provide a better memory utilization, high throughput, increased convergence 
speed and better regular expression grouping time. 

 
3.9 Bat algorithm 
  Yang (2010) developed Bat Algorithm which was very efficient in terms of frequency tuning, automatic zooming and parameter 
control. Bat algorithm depends on the echolocation features of micro bats. There are around 1000 distinct types of bats (Tudge, 
2000; Yilmaz and Kucuksille, 2013). The sizes are differed broadly, extending from the little bumblebee bat of around 1.5 to 2 
grams to the mammoth bats with wingspan of around 2m and may weigh up to around 1 kg. Most bats uses echolocation to a 
specific degree; among every one of the species, micro bats use echolocation expansively, while mega bats don’t. Micro bats 
typically use a type of sonar, called, echolocation, to sense prey, avoid obstacles, and position their roosting crevices in the dark. 
They can transmit a very loud sound pulse and listen for the reverberation that bounces back from the encompassing objects. Their 
pulses range in properties and can be corresponded with their searching procedures, relying on the species. Most bats utilize short, 
frequency-modulated signals to clear through around an octave, and every heartbeat keeps going a couple of thousandths in the 
frequency range of 25 kHz to 150 kHz (Yang, 2013). 
   BA has three salient features (Guang-Qiu et al., 2013) in which the first is it uses a frequency-tuning technique to improve the 
diversity of the solutions in the population, second feature is that it uses the automatic zooming to aim to balance exploration and 
exploitation throughout the search process by impersonating the variations of pulse emission rates and loudness of bats when 
searching for prey. Accordingly, it has quick convergence rate when compared with GA and PSO, and the last feature is that it 
uses parameter control which can vary the values of parameters such as frequency, velocity, solution, loudness and pulse emission 
rate as the iterations proceed. This provides a way to automatically toggle from exploration to exploitation as soon as optimal 
solution is impending. 
   Based on the above explanation and uniqueness of bat echolocation, Xin-She Yang (2010) built up the bat algorithm with the 
three idealized rules. The primary rule is that each one bats use echolocation to feel distance, and they also recognize the 
distinction between prey and heritage limitations in a few supernatural way. Second rule is that bats fly arbitrarily with speed vi at 
position xi with a frequency fmin, differing wavelength λ and loudness A0 to hunt for prey. They can consequently modify the 
wavelength (or frequency) of their discharges heartbeats and change the rate of heartbeat emission r ϵ [0, 1], depending on the 
proximity of their goal. The last rule is in spite of the fact that the loudness can change from multiple points of view; expect that 
the loudness fluctuates from a substantial (positive) A0 to a minimal constant value Amin. 

 
A. Initialize Bat Population 
   Initial population is randomly generated from real-valued vectors with the measurement d and number of bats n, by enchanting 
into account lower and upper limits. 

))(1,0( minmaxmin jjjij xxrandxx          (7) 

where i=1, 2, n, j=1, 2….d, xminj and xmaxj denotes lower and upper limits for dimension j respectively. 
 
B. Update Frequency, Velocity and Solution 
   The frequency element controls step size of a solution in BA. This element is assigned to random value for each bat between 
upper and lower limits [fmin, fmax]. Velocity of a solution is relative to frequency and new solution relies upon its new velocity. 

 

)( minmaxmin ffffi           (8) 
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in which β ϵ [0, 1] shows arbitrarily generated number,  represents current global best solutions. 
For local search part of algorithm (exploitation) is chosen among the selected best solutions and random walk is applied. 

t
oldnew Axx            (11) 

Where tA  is average loudness of all bats,   ε [0, 1] is random number and represents direction and intensity of arbitrary-
walk. 

 
C. Update Pulse Emission Rate and Loudness 
   As the cycle continues the loudness and pulse emission rate must be upgraded. When the bats move in the direction of its food 
then there is an increase in the pulse emission rate and there is a drop in the loudness A. The following equation describes the how 
the Loudness A and pulse emission rate r are updated. 

t
i

t
i AA 1                     (12) 
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i

t
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where α and γ are constants. 0
ir and Ai represents the factors of random values and 0

iA can generally be [1, 2], while 0
ir can 

usually be [0, 1]. 
The pseudo code for Bat Algorithm is as follows: 

1. Initialize bat population xi and speed vi , i=1, 2,..n 
2. Describe frequency of pulse fi at xi 
3. Compute loudness Ai  and pulse rate ri 
4. while 
5. Generate new solutions by adjusting frequency, velocities and solutions. 
6. Choose a solution from the best solutions 
7. Generate a local solution from the chosen best solution 
8. Accept new solutions 
9. Reduce loudness Ai and increase pulse rate ri 
10. Ranks the bats to obtain the current best x* 
11. Until terminating condition is satisfied. 

In this algorithm the behavior of bat is captured into fitness function of problem to be solved. The algorithm is very 
straightforward, flexible and simple to implement.  It solves a wide range of non linear problems more efficiently and at initial 
stage it provides a very fast convergence by toggling from exploration to exploitation. Automatic control and auto zooming 
mechanism can be achieved by the loudness and pulse emission rate. If the algorithm enters the exploitation phase very rapidly, 
then stagnation may occur after some initial stage. 

 
3.9.1 Bat Algorithm and Finite State Automata 
   In FSA designing, the bats are considered as the set of regular expressions. The number of regular expressions, the velocity, 
pulse rate, frequency and loudness are initialized. The frequency, velocity and locations are updated. The procedure is repeated till 
the terminating conditions are met and the best solution is attained. When compared to GA and PSO optimization algorithms bat 
algorithm is simple, easy to implement and solves non linear problems effectively. Thus it will provide low implementation cost, 
high processing throughput, reduced memory utilization, high detection rate and fast convergence. 

 
3.10 Flower pollination algorithm 
Xin She Yang in 2012 proposed the flower pollination algorithm (Yang, 2012) which is a bio-inspired optimization algorithm that 
evolved from the idea of processes of flower pollination. The flower pollination algorithm is formed and structured by four 
pollination policies based on the stimulation of flower plants. The four policies are defined as: 

1. In global pollination process, biotic and cross-pollination are considered and pollinators that carry pollens move by 
obeying levy flights. 

2. In local pollination process, biotic and self pollination are considered. 
3. Insect pollinators expand flower constancy and are equal to the probability of reproduction which is relative to the match 

between two flowers that are involved. 
4. The local and global pollinations interactions are controlled by a switch probability between 0 and 1.  

The algorithm to perform flower pollination optimization is given below. 
1. Define objective function 
2. Initialize the population of n flowers 
3. Find the best solution in the population 
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4. Define switch probability 
5. Define stopping critera 
6. While 
7. For all n flowers in the population 

a. If rand<p  
b. Draw a d-dimensional step vector L that obeys Levy distribution and perform global optimization 
c. Else 
d. Draw from uniform distribution and perform local optimization 

8.       Evaluate new solutions  
9.       Update the better solutions in the population 
10. Find current best solution 
11. Repeat till the terminating condition is satisfied. 

   Flower Pollination Algorithm is very efficient than GA and PSO due to the two key components long distance pollinators and 
flower consistency. The pollinators can travel long distance and they have the ability to escape any local landscape and can explore 
larger search space. Flower consistency ensures that same pieces of flowers are chosen more frequently and guarantees 
convergence more quickly. These two components ensure that the algorithm is very efficient. 

 
3.10.1 Flower Pollination Algorithm and Finite State Automata 
   Initialize the population by representing the set of regular expression as the flowers. Based on the regular expression define the 
switch probability and the stopping criteria. For all the set of regular expressions in the population perform global and local 
optimization using Levy distribution and uniform distribution. Evaluate new solutions and form groups. Update the group by better 
solutions and repeat this procedure until optimal solution is obtained. When compared to GA and PSO, the FPA is very efficient in 
terms of convergence and space because of long distance pollinations and flower consistency.  

 
4. Discussions and proposed approach 
 
   The main reason that was analyzed from the finite state automata is that the number of states gets increased due to the state 
explosion problem. The problem with explosion in states can be competently alleviated by grouping the regular expression. 
Grouping the regular expression falls into two cases. The first one is if number of groups is given, the DFA states can be 
minimized and second is if the maximum number of DFA states is known, number of groups can be minimized (Back, 1996). The 
performance of the regular expression grouping method is assessed by considering these two cases based on the various practical 
demands. 
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Fig.1. Flow graph of Proposed Approach 

 
   Grouping the regular expression can be done by Intelligent Optimization Grouping Algorithms. The various types of intelligent 
optimization grouping algorithms discussed in section 3 were studied and analyzed. These intelligent optimization grouping 
algorithms can be used to optimize the finite state automata and can efficiently alleviate the problem of state blowup thereby it will 
obtain the universal best distribution among the consumption of memory and number of groups. In Fig.1 the overall flow graph of 
the proposed approach for Finite State Automata in Deep Packet Inspection which is used to group the regular expression 
efficiently using the Intelligent Optimization Grouping Algorithms and memory efficient automata is shown. The packet payload 
files are extracted from the rule sets such as Snort (Roesch, 1999), Bro NIDS (Paxson, 1998), and Linux L-7 filter (Levandoski et 
al., n.d) are used as input. The set of regular expressions are determined using these packet payload files. Initially the parameters 
are assigned depending on the Intelligent Optimization Grouping Algorithms such as GA, ACO, PSO, BFO, BBO, CS, ABC, 
Firefly, Bat, FPA and the initial population is generated by randomly distributing the regular expression on the search space. As 
discussed in section 3 each IOGA algorithm has certain advantages and disadvantages and as discussed GA and ACO algorithms 
are already applied by authors in Fu et al. (2014) to group the regular expression. They found that by applying GA and ACO a 
global optimal solution can be obtained, the convergence to local optimum is avoided, accelerates convergence speed and reduces 
memory consumption but obtains in efficient time and the time cost increases exponentially with the number of regular expression 
groups. Hence by appropriately selecting IOGAs there will be a variation in the performance. The various IOGA algorithms can 
also be hybridized and applied with FSA so as to improve the performance metrics such as memory, throughput, time complexity, 
grouping time, inspection speed and convergence speed.  Based on the performance of the IOGAs the parameters listed in Table.2 
are adjusted and the process is continued until the optimal groups are formed or until the maximum iteration is obtained. Once the 
optimal solution is obtained, the regular expressions are grouped and the finite state automata is designed based on the design 
technique (Prithi et al., 2016) such as HFA, H-cFA, XFA, δFA etc and FSA is integrated with the DPI search engine to identify the 
packets that hold the viruses, unauthorized access and attacks. By using Intelligent Optimization Algorithms with Automaton 
based DPI, the state explosion problem can be reduced and the overall performance of the system can be enhanced. A comparative 
study about various IOGA’s for FSA based DPI is analyzed and the anticipated advantages and disadvantages for each grouping 
algorithm are highlighted in Table 3. 
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Table 2. Parameters used in various IOGA Algorithms 
Genetic 
Algorithm 

Ant Colony 
Optimization 

Particle 
Swarm 
Optimization 

Artificial 
Bee 
Colony 

Firefly 
Algorithm 

Bat 
Algorithm 

Cuckoo 
Search 

Bacterial 
Foraging 
Optimization 

Biogeography 
Based 
Optimization 

Flower 
Pollination 
Algorithm 

Number of 
Chromosome 

Number of 
Ants 

Population 
Size 

Colony 
Size 

Population of 
Fireflies 

Population 
of Bat 

Search 
Dimension 
& Number 
of Host 
Nests 

Number of 
Bacterium 

Population 
Size 

Leaf area 
index of 
each plant & 
Specific leaf 
area 

Chromosome 
size 

Weight of 
Pheromone 
Trail 

Initial 
Position 

Number 
of Food 
Sources 

Light 
Intensity 

Initial 
Velocity 

Tolerance Maximum 
Number of 
Steps 

Number of 
Habitats 

Light 
Extinction 
coefficient 

Number of 
generations 

Weight of 
Heuristic 
Information 

Initial 
Velocity 

Food 
Source 
Limit 

Absorption 
Coefficient 

Pulse 
Frequency 

Discovery 
Rate 

Number of 
Chemo 
tactic, 
elimination 
dispersal & 
reproduction 
steps 

Maximum 
Immigration 
& Emigration 
Rate 

Maintenance 
Respiration 

Selection 
Method 

Pheromone 
Evaporation 
Parameter 

Cognitive 
Factor 

Number 
of 
Employed 
bees 

Attractiveness Pulse 
Emission 
Rate 

Upper & 
lower 
bounds of 
search 
domain 

Elimination 
Dispersion 
Probability 

HIS and SIV 
Value 

Leaf Carbon 
content 

Crossover & 
Mutation 
Type 

Initial 
Pheromone 
Level 

Social 
Factor 

Number 
of 
Onlooker 
bees 

Maximum 
Number of 
Generations 

Loudness Levy 
Exponent 
& Step 
Size 

Size of the 
Step 

Number of 
elites 

Light use 
efficiency 

Crossover & 
Mutation 
Rate 

Constant for 
Pheromone 
updating 

Maximum 
Number of 
Iterations 

Maximum 
Number 
of 
Iterations 

Maximum 
Number of 
Iterations 

Maximum 
Number 
of 
Iterations 

Maximum 
Number of 
Iterations 

Swimming 
Length 

Maximum 
Number of 
iterations 

Fraction of 
Mass in 
Leaves 

 



 
 

 

Table 3 Comparative study of various IOGAs for FSA Based DPI 
Intelligent 
optimization 
grouping 
algorithms 

Proposed 
year 

Proposed by Algorithm basis Objective function 
defined by 

Advantages of IOGA for FSA based 
DPI 

Disadvantages of IOGA for FSA based 
DPI 

Genetic algorithm  1975[9, 38] Holland Principles of 
evolution  

Collection of genes or 
chromosome 

Reduces memory consumption 
improves compression rate, reduces 
number of groups 

Converges towards local optima, does not 
operate on dynamic data 

Antcolony 
o**ptimization 

1992[10] Marco Dorigo, 
VittoriManiezzo, 
Alberto Colorni 

Interaction of ant 
species 
 

 

Pheromone value Increases convergence speed, 
improves computational time, 
reduces number of group and 
memory space 

Sequence of random decisions is 
dependent, time to convergence is 
uncertain, theoretical analysis is difficult.  

Particle swarm 
optimization  

1995[1] Eberhart and 
Kennedy 

Swarming 
behavior of 
fish/bee/bird 

Particles position and 
velocity  

High throughput, improved time 
complexity and reduces number of 
groups  

Slow convergence in advanced search 
stage, does not support scattering and non 
co-ordinate system problem 

Bacterial foraging 
optimization  

2002[12] Kevin Passino Foraging 
behavior of E. 
coli bacteria 

Movement of bacteria 
(swimming/tumbling) 

Reduces memory space, better 
computational and grouping time, 
high throughout 

Slows down the convergence speed 

Artificial bee 
colony algorithm 

2005[58] Karaboga D Intelligent 
foraging 
behavior of 
honey bee 
swarm  

Food source memory Improves grouping time, faster 
convergence speed, limited memory 
utilization  

Premature convergence, not accurate 

Firefly algorithm 2008[16] Xin-She Yang Flashing 
behavior of 
swarming 
fireflies 

Light 
intensity/brightness and 
attractiveness 

Less grouping time, improves 
convergence speed, better memory 
utilization and high throughput  

Pre-caching of values not allowed, poor 
exploiting capability 

Biogeography 
based optimization  

2008[14] Simon D Geography 
concept of 
biological 
organisms 

Immigration rate and 
emigration rate 

Very less computational and 
grouping time 

Exploiting capability is very poor and in 
some case infeasible solutions obtained. 

Cuckoo search  2009[15] Xin-She Yang, 
Suash Deb 

Brooding 
parasitism of 
cuckoo bird 

Color of eggs Increase convergence speed, 
improves memory consumption and 
throughput 

Number of iterations is high, difficult to 
find best solution, accuracy is poor 

Bat algorithm  2010[17] Xin-She Yang Echolocation 
behavior of 
mciro bats 

Pulse emission rate, 
loudness frequency and 
velocity 

Reduced memory utilization, high 
detection rate, high throughput and 
improves convergence rate 

Unable to memorize any history of better 
solution, unable to get rid of local search 
complexity  

Flower pollination 
algorithm 

2012[18] Xin-She Yang Stimulation of 
pollination 
process of flower 
plants 

Local and global 
pollination  

Improves memory utilization, high 
throughput and better inspection 
speed 

Global search ability gets weaker, 
convergence speed gets worse and the 
quality of the solution gets weaker for 
solving multidimensional problems. 



 
 

 

The experiments are evaluated in future on the various performance metrics such as memory consumption, throughput,  time 
complexity, inspection speed, grouping time and convergence speed in the optimal FSA based DPI search engine and the expected 
outcome is analyzed and plotted in fig.2, 3 and 4. Fig. 2 depicts the memory consumption and throughput for the various IOGA 
algorithms and it shows that the hybridized approach reduces the number of states to a great extent and thereby it will provide a 
reduced memory consumption and high throughput. 

 

 
Fig.2. Memory Consumption and Throughput for the IOGA algorithms 

 
Fig. 3 shows the inspection speed and convergence speed for the various IOGA algorithms. As discussed in 3.2.1 and 3.3.1 by 
grouping the regular expression through ACO/PSO the convergence speed can be increased and it can also improve the inspection 
speed and thus it depicts that the hybridized approach has high inspection speed and fast convergence speed. 

 

 
Fig.3. Inspection Speed and Convergence Speed for the IOGA algorithms 

Fig. 4 illustrates the time consumption and grouping time for the various IOGA algorithms. It shows that by using the IOGA 
algorithms such as firefly/ABC the grouping time of the regular expression can be reduced and thus by implementing the 
hybridized approach it will provide a better time complexity and improved grouping time. 

 



  
 

Fig.4. Time Complexity and Grouping Time for the IOGA algorithms 

 
5. Conclusions and future scope 
 
   In this paper, the various Intelligent Optimization Grouping Algorithms for FSA in DPI has been surveyed and analyzed. The 
first discussion that was done is on the basic features of regular expression and how the regular expression works in Deep Packet 
Inspection. A brief discussion is given on the finite state automata; the problems that occur in designing the FSA and how 
efficiently automation based DPI approach can be designed. The various Intelligent Optimization Grouping Algorithms such as 
GA, ACO, PSO, ABC, BBO, BFO, Cuckoo Search, Firefly, Bat and FPA algorithms are presented and how it can be used with 
FSA are illustrated. The strengths and weakness of each algorithm is studied. GA can perform efficiently for complex space search 
and GA cannot support constraint optimization problems. Since GA can find global optimal solution in distributing the regular 
expression, the system can reduce memory consumption and reduce number of groups. PSO occupies bigger optimization ability 
and all the particles can quickly converge to the best solution and it can provide increased convergence speed, improved time 
complexity and reduced number of groups. It is also easy to implement but suffers from partial optimism and cannot work out on 
scattering problems. ACO can be used in dynamic applications and avoids premature convergence. Positive feedback is made 
easily by introducing the pheromones which results in increase in the inspection speed, improves computational time and reduces 
memory but convergence time is tentative and coding is not straight forward. BFO algorithm will provide a reduced memory size 
and high throughput. When used with FSA, BFO will provide a reduced computational and grouping time but does not improve 
the convergence speed. BBO has very less computational time when compared with other optimization algorithms and can group 
the regular expression in very less time. It can be easily designed and even complex regular expressions can be easily grouped. CS 
increases the speed of convergence and can be easily hybridized with other optimization algorithms in order to provide improved 
memory space, throughput and better inspection speed. ABC is fast and uses less time to group the regular expression. Because of 
its fast convergence and fewer setting parameters it can provide limited memory utilization and faster convergence speed. Firefly 
algorithm deals with multi modal optimization problem and is highly flexible in hybridizing with GA and PSO and also provides 
better memory utilization, high throughput, increased convergence and better regular expression grouping time. When compared to 
GA and PSO bat algorithm is simple, easy to implement and will provide low implementation cost, high processing throughput, 
reduced memory utilization, high detection rate and fast convergence. FPA is very efficient when compared to GA and PSO 
because of its long distance pollinators and flower consistency. These algorithms can be used along with the implementation of 
finite state automata in DPI so as to reduce the state explosion problem, to provide optimal and memory efficient finite state 
automata and to provide high throughput along with accuracy at very high inspection speed. 
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