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Abstract 
 
   In the present paper, the static behaviour of thin isotropic skew plates under uniformly distributed load is analyzed with the 
geometric nonlinearity of the model properly handled. A variational method based on total potential energy has been 
implemented through assumed displacement field. The computational work has been carried out on a square normalized domain 
based on an appropriate domain mapping technique. Validation study for the present work has been carried out quite extensively 
to establish its accuracy and stability. The developed method is quite general to be applied readily for any classical boundary 
condition, but to maintain brevity results have been furnished for clamped and simply supported boundaries only.  
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1. Introduction 
    
   Skew plates have quite a good number of applications in modern structures. Skew plate structures can be found frequently in 
modern construction in the form of reinforced slabs or stiffened plates. Such structures are widely used as floors in bridges, ship 
hulls, buildings, etc. Skew plates are also used in the construction of wings, tails and fins of aircrafts and missiles. Simulation of 
static behaviour of skew plates is an interesting area of work for the researchers. 
   Alwar and Rao (1973) presented the non-linear analysis of orthotropic skew plates of constant thickness subjected to uniform 
transverse load. They developed a numerical technique of dynamic relaxation to carry out the analysis. Dynamic relaxation is 
essentially a step by step integration of critically damped vibration using viscous damping to ensure the attainment of a steady-
state solution. Alwar and Rao (1974) used the same technique of dynamic relaxation. They have investigated the non-linear 
behaviour of clamped isotropic skew plate of constant thickness under uniformly distributed load. Srinivasan and Ramachandran 
(1976) presented large deflection elastic behaviour of clamped, uniformly loaded orthotropic skew plates. They obtained the 
solution by using Newton-Raphson method to solve the non-linear algebraic equations transformed from governing non-linear 
partial differential equations. Buragohain and Patodi (1978) investigated the large deflection skew plate problem and formulated it 
by energy principle to derive a set of nonlinear algebraic equations which are solved by using Newton-Raphson iterative method 
with incremental loading. They claimed their formulation to be independent of boundary conditions and furnished results for 
clamped and simply supported isotropic skew plates of constant thickness with immovable edges and subjected to uniformly 
distributed transverse load. Chia (1980) considered the moderately large deflection elastic behaviour of homogenous isotropic and 
laminated anisotropic rectangular as well as skew plates by analytical method. Xiang et al. (1995) studied the elastic buckling 
behaviour of skew Mindlin plate under shear load. Based on the Rayleigh-Ritz method, new critical shear load factors and 
buckling mode shapes for two kinds of shear loads - rectangular shear (R-shear) and skew shear (S-shear) - have been investigated.  
   Liew and Han (1997) presented the bending analysis of a simply supported thick skew plate based on the first-order shear 
deformation using Reissner/Mindlin theory. They introduced the geometric transformation of the governing differential equations 
and boundary conditions of the plate from the physical domain into a unit square computational domain. Subsequently they derived 
a set of linear algebraic equations from the transformed differential equations via differential quadrature method (DQM) and the 
approximate solutions of the problem are obtained by solving the set of algebraic equations. Using Boundary Element Method 
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(BEM), a fundamental solution in oblique coordinates for the analysis of isotropic skew plates under transverse loading has been 
obtained by Rajamohan and Raamachandran (1997) based on the analogy with the anisotropic plates bending governing equation 
in Cartesian coordinates. They have used Charge Simulation Method (CSM), a version of BEM, to obtain the solution and the 
simplicity of the method was demonstrated by avoiding numerical integration due to the fact that the domain integrals, which 
appear in any boundary element method is avoided by assuming a suitable polynomial particular integral function.  
   Saadatpour et al. (1998) developed a numerical method for the stability analysis of arbitrary quadrilateral-shaped elastic plates 
with internal supports and used the Galerkin method in conjunction with the natural coordinates of the plate as a basis for the 
analysis of general plates. Wang et al. (2003) proposed a new version of differential quadrature method (DQM) to obtain buckling 
loads of thin anisotropic rectangular and isotropic skew plates for clamped and simply supported boundary conditions. In this new 
technique, two degrees of freedom in boundary points for determination of the weighting coefficients have been introduced in the 
existing differential quadrature element method (DQEM). Duan and Mahendran (2003) had developed a new non-linear 
quadrilateral hybrid/mixed shell element with five degrees of freedom at each node, using oblique coordinate systems to analyze 
the large deflection behavior of skew plate under uniformly distributed and concentrated loads. The authors have claimed to 
overcome the shortcomings for carrying out the large deflection analyses of the skew plates that have a 60º skew angle under a 
concentrated load. Singh and Elaghabash (2003) presented a numerical method for the linear and geometrically nonlinear static 
analysis of thin plates having quadrangular boundary with four straight edges. They have derived the matrix equation of 
equilibrium using the work-energy principle with the assumed displacement fields expressed by algebraic polynomials.  
   Liew et al. (2004) employed a mesh-free radial basis function (RBF) method for the buckling analysis of non-uniformly loaded 
thick plates. They obtained initial (i.e., pre-buckling) stresses by discretizing the variational form of the static system of equations 
and calculated the static buckling loads of the plates by solving the resultant Eigen value equation. Muhammad and Singh (2004) 
presented an energy method for the linear static analysis of first order shear deformable plates of various shapes. In this method, 
the displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are 
composed of significantly higher order polynomials. Malekzadeh and Fiouz (2007) have presented two different differential 
quadrature (DQ) approaches based on the thin plate theory (TPT-DQ) and the first order shear deformation plate theory (FSDT-
DQ) to investigate the large deformation analyses of thin and moderately thick orthotropic skew plates with rotationally restrained 
edges. In both approaches, they have modeled the geometrical nonlinearity of the plate by using Green’s strain and Von Karman 
assumption. Daripa and Singha (2009) studied the influence of corner stresses on the stability behaviour of composite skew plates. 
Prakash et al. (2008) analyzed thermal post-buckling of skew plates having functionally graded materials while Wu and Shih 
(2006) considered the dynamic instability of arbitrarily laminated skew plates. 
   Several researchers have addressed the linear and non-linear dynamic problems of skew plates incorporating various 
complicating effects. Singh et al. (2006) considered the vibration behaviour of thermally stressed composite plates whereas Ashour 
(2009) analyzed free vibration behaviour of symmetrically laminated clamped skew plates. Das et al. (2008, 2009) used a 
variational method to study large amplitude dynamic problem of skew plates under simply supported and clamped boundary 
conditions. Differential quadrature method has also been used for non-linear vibration problems of laminated composite skew 
plates (Malekzadeh, 2007, 2008; Malekzadeh and Karami, 2006). 
   In the present work, a simulation model for large deflection static analysis of a thin isotropic skew plate under uniform transverse 
pressure has been presented. The mathematical formulation is based on variational form of energy principle. The displacement 
fields are assumed as orthogonal polynomials in the computational domain that satisfy the plate boundary conditions and the 
resulting nonlinear set of equations are solved by direct substitution method using relaxation parameter. Results have been 
validated successfully with the available ones and a good amount of new results has been presented which will be of great help to 
designers. It is found that convergence in results for large skew angle plates poses numerical difficulty and to this end a new 
extrapolation technique has been prescribed.  
 
2. Mathematical formulation 
 
   A skew plate (a x bx t ) with skew angle θ  is shown in Figure 1. For large displacement formulation, it is assumed that the 
material of the plate is isotropic and homogeneous. The thickness of the plate is considered to be sufficiently small so as to avoid 
the effect of shear deformation. Also the stress and strain measures are based on the original dimensions of the plate.  

 
2.1 Mapping of physical domain into computational domain 
   The physical domain of interest is mapped to the computational domain in ηξ −  coordinate system as shown in Figure 2. In 

this domain, the intersections of constant ξ  and constant η  lines passing through the gauss points are selected as the reference 

points for computation. The coordinates of all the gauss points in the computational domain are calculated numerically in the x-y 
plane by suitable grid generation techniques. This technique of numerical grid generation is not used extensively by any other 
researcher, and it can be used for similar other problems involving irregular geometry such as rectangular plate with a central 
circular cut-out. 
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Figure 1. Skew plate in x-y plane. 

  

 
(a) Physical domain 

 

 
 

(b) Computational domain 
 

Figure 2. Gauss point locations for skew plate. 
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2.2 Variational principle 
Variational principle states that        

    ( ) 0U Vδ + =                                       (1) 

 where, b mU U U= +  is total strain energy, bU  is strain energy due to pure bending and mU  is strain energy due to stretching of 

its middle surface, V  is the potential energy of the external forces and δ  is the variational operator in configuration space. It is to 
be noted here that geometric nonlinearity, i.e., the nonlinear strain-displacement relationship is taken into consideration through 
inplane stretching. 

bU  is given by (Timoshenko and Woinowsky, 1959), 

2 2tancos 2 2 2 2

2 2 2 2
0 tan

2
2

y ab

b
y

D w w w w
U

x y x y

θθ

θ

+     ∂ ∂ ∂ ∂ = + +        ∂ ∂ ∂ ∂     
∫ ∫ ( )

22 2 2

2 2
2 1

w w w
dxdy

x yx y
ν

  ∂ ∂ ∂ − − −     ∂ ∂∂ ∂    

            (2) 

where, ( )
3

212 1

Et
D

ν
=

−
, flexural rigidity of plate and u ,v  and w  are components of displacement along x, y and z directions 

respectively.  

mU  is given by (Timoshenko and Woinowsky, 1959), 

( )
22 2 22 2 2tancos

2
0 tan

1

42 1

y ab

m
y

Et u v u w v w w w
U

x y x x y y x y

θθ

θν

+         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        = + + + + +             ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      −            
∫ ∫          

2 22 2
1 1 1

2 2
2 2 2

u v v w u w u v u v

x y y x x y y x y x

νν
     ∂ ∂ ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂     + + + + + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

2
u v w w

dxdy
y x x y

 ∂ ∂ ∂ ∂ + +  ∂ ∂ ∂ ∂   
 (3) 

For a plate loaded with uniform transverse pressurep , potential energy V is given by, 
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2.3 Approximate displacement field 

The displacement fieldsw , u and v  are expressed by linear combinations of unknown parameters id  as follows: 
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where, ( ),φ ξ η , ( ),α ξ η  and ( ),β ξ η  are sets of orthogonal functions and nw, nu  and nv  are number of functions for w , u and 

v  respectively.  
   The start functions of these orthogonal sets are selected to satisfy the flexural and membrane boundary conditions of the plate. 
As the entire computation is carried out in normalized computational domain, all the start functions are defined in computational 
domain. The basic functions for the definition of plate deflection w  come from the flexural boundary conditions, either clamped 
or simply supported. The start functions for u and v  are selected to satisfy the zero displacement conditions at the boundary, being 
considered as the only form of in-plane boundary condition. The higher order functions are generated following a two dimensional 
implementation of Gram–Schmidt scheme and this is done for the first time in this type of study. 
   In conventional method of generating higher order functions, first the higher order one dimensional functions are generated from 
the corresponding start functions and then the higher order two dimensional functions are generated by ordered multiplication of 
the one dimensional functions corresponding to two orthogonal directions. In the present method, higher order functions in a 
particular orthogonal direction are generated corresponding to different coordinate values in the other orthogonal direction through 
Gram-Schmidt scheme. Then these values at a particular coordinate are collected to generate the complete set of higher order two-
dimensional functions through the implementation of Gram-Schmidt scheme. The advantage of using this technique is that unlike 
the earlier case, the start functions can be of two variables that need not be separable in spatial coordinates. 
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2.4 Derivation of governing system of equations 
The governing equations are obtained in the following form using Eqs. (2), (3), (4) and (5) in Eq. (1), 

[ ]{ } { }K d f=                              (6) 

where, [ ]K = bk 
  + mk 

   is the stiffness matrix of dimension ( )nw nu nv+ + , bk 
   is the stiffness matrix due to bending action, 

mk 
   is the stiffness matrix due to stretching action, { }d  is the unknown coefficient vector of dimension ( )nw nu nv+ +  and { }f  

is the load vector of dimension ( )nw nu nv+ + . 

bk 
  is of the form given below: 
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The load vector { }f  is of the form[ ]Tfff 131211 , 

where, 

                              { }
1 1

11
10 0

det
nw

j
j

f p J d dφ ξ η
=

= ∑∫ ∫  
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Here, J  is the Jacobian of the transformation from yx−  plane to ηξ −  plane given by, 
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3. Solution Methodology 
 
   The set of governing equations (Eq. (6)) is nonlinear in nature and solved by direct substitution technique using successive 

relaxation scheme (Cook et al., 1989). For each load-step, the values of { }id  are assumed to evaluate the stiffness matrix. Using 

the stiffness matrix and based on assumed values, new values of { }id  are calculated by matrix inversion technique from the 

expression { } [ ] { }1
d K f

−= . Calculated values of { }id  are compared with their values in the previous iteration. If the difference 

comes below a predefined value of error limit,ε , the convergence of deflection field is assumed, otherwise the values of { }id  are 

modified with a relaxation parameter and it is taken as next approximation for the values of { }id . Once the solution is obtained 

for a load, stress and strain fields are computed following routine procedure. Subsequently an increment is given on load and 
iteration starts with the present solution or with another assumed deflection field, which may be extrapolated from the previous 
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solution set. In the present extrapolation technique, the ratios of the unknown coefficients { }id  for the preceding two load steps 

are used to calculate the guess values of { }id  at the present load step. Although this technique has not been tried extensively, this 

can be utilized as a useful numerical tool for the solution of nonlinear set of equations, when convergence gets difficult. The entire 
program for the present study is developed in Fortran. 

 
4. Results and Discussions 
 
   All the results in this paper have been presented for uniform transverse pressure. Although, the present method is quite general to 
be applied for any classical boundary condition, normalized load-deflection plots are presented for skew plates for two types of 
flexural boundary conditions: all edges clamped (CCCC) and all edges simply supported (SSSS). In both the cases, the edges of 
the plate are modeled as immovable by imposing zero in-plane displacement boundary conditions. Here ‘C’ and ‘S’ denote 
clamped and simply supported boundaries, respectively, for a single edge of the plate. Results for different possible combinations 
of clamped and simply supported boundary conditions are omitted here to maintain brevity, but it will be taken up in the 

subsequent study. The normalized load (*p ) is defined as * 4( ) /(16 )p pa Dt=  and the maximum normalized deflection is defined 

as *
max /w w t= . The results are generated using the following material and geometric parameter values, E = 210 GPa, ν  = 1/3, 

a=1.0 m and t  = 0.01 m. The skew angle and the aspect ratio (a/b) of the plate have been separately indicated while presenting the 
results. 
   The convergence of the present method with the number of functions used to approximate the displacement fields is carried out 
for CCCC skew plate with /a b=1. The convergence study is carried out for deflections at two different locations namely, (0.5, 
0.5) and (0.25, 0.25). It is to be noted that the coordinates of the points are given in normalized form and (0.5, 0.5) represents the 
point at which maximum deflection occurs. The results of the convergence study in terms of normalized displacement ( /w t ) are 

shown in Table 1 for two different skew angles, 300 and 450 at *p =7.94. The numbers in the parentheses provide a break up for 

the number of the functions for each plate displacements corresponding to two orthogonal directions. Table 1 clearly shows the 
convergence of displacements with increase in number of functions. All the results presented in this paper are generated using (7 X 
7) number of functions for each plate displacements.     
 
Table 1: Convergence of displacements in normalized form ( /w t ) at two different locations of rhombic CCCC skew plate for two 

different skew angles at *p =7.94 

Number of functions in two orthogonal directions θ  Normalized 
coordinates 

( ,ξ η ) 
4 X 4 5 X 5 6 X 6 7 X 7 8 X 8 

(0.5, 0.5) 0.0976 0.0974 0.0974 0.0972 0.0972 300 
(0.25, 0.25) 0.0233 0.0232 0.0232 0.0232 0.0231 
(0.5, 0.5) 0.0478 0.0478 0.0479 0.0478 0.0478 450 

(0.25, 0.25) 0.00824 0.00827 0.00816 0.00814 0.00807 
 
4.1 Validation of the present approach 
   In order to validate the present formulation, the results from the present analysis for CCCC boundary condition are contrasted 
with the results available in the existing literature and also with the results generated by the commercial finite element package 

ANSYS. The results for *w  against *p  from present study for aspect ratio 2/3 with two different skew angles have been compared 

with analytical solution (Chia, 1980) and with the results generated by ANSYS (version 8.0) and shown in Figure 3(a). The results 

in ANSYS are generated using SHELL 63 element with 80 × 120 uniform meshes. The plot shows agreement is better with the 
results of ANSYS. It also indicates that the amount of deviation in the results of Chia (1980) is more pronounced for 600 skew 
angle. The validation of the present approach is further shown in Figure 3(b) with the results of Singh and Elaghabash (2003) for 
rhombic ( /a b=1) skew plates having 300 and 450 skew angles. The normalized load-deflection behaviour of simply supported 
rhombic skew plate is also compared with the results of Singh and Elaghabash (2003) for 450 skew angle and it is shown in Figure 
3(c). In view of Figures 3(a) – 3(c), it may be concluded that the present formulation has the accuracy and stability to analyze large 
deflection behaviour of skew plates. 



          Das et al./ International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 16-32 

 

23 
 

 
(a) CCCC, a/b=2/3 

 
(b) CCCC, a/b=1 
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 (c) SSSS, a/b=1 

Figure 3. Validation plots for load-deflection behaviour: (a) CCCC, a/b=2/3, (b) CCCC, a/b=1 and (c) SSSS, a/b=1. 

 
(a) a/b=1 
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(b) a/b=2/3 

 
(c) a/b=1/2 

Figure 4. Normalized load-deflection plots of CCCC plates with varying aspect ratios and skew angle. 
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Figure 5. Normalized load-deflection plots of CCCC plates with 750 skew angle for varying aspect ratios. 

 

    
Figure 6. Normalized load-deflection plots of CCCC plates with 300 skew angle for varying aspect ratios. 

 
4.2 Results for plate with all edges clamped   
   The variation of normalized load–deflection behaviour of skew plates with the variation of skew angles with all edges clamped 
has been obtained for different values of aspect ratios ( /a b). The skew angles selected in each case are 150, 300, 450 and 600. 

Figures 4(a) - 4(c) show *p  vs. *w  plots for /a b=1, 2/3 and 1/2 respectively. It is to be mentioned that the results for skew 

angles 150 and 750 for all three aspect ratios and for skew angles 300 and 450 for aspect ratio 1/2 are new in this paper. It is seen 

that deflection ( *w ) decreases as the skew angle increases for all values of load parameter. This is due to the fact that with increase 
in skew angles, the system stiffness increases due to increase in stretching force in the middle plane of the plate. Further, for any 
particular value of load parameter, the slope of the load-deflection plots in the normalized plane decreases with increase in skew 
angles. This nature of the plots shows a consistent trend for all values of aspect ratio. 
   The normalized load deflection behaviour for θ =750 has been separately shown in Figure 5 corresponding to same values of 
aspect ratios. These plots have not been accommodated in Figure 4 to maintain greater clarity and to avoid significant difference in 
normalized load scale. However, this plot becomes indicative to show the effect of different aspect ratio for a particular value of 
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skew angle in normalized load-deflection behaviour. To get further insight to this phenomenon, another plot is shown in Figure 6 
for 300 skew angle, which also agrees well with the previous trends in results. From the above results, it is quite obvious that the 
nature of the normalized load-deflection plot tends to a straight line with increase in skew angle and this is true for three different 
cases of aspect ratio values. Although general trend for normalized load-deflection behaviour for a fixed value of skew angle is 
shown in Figure 6, it may change significantly as can be seen from the plots for aspect ratio 2/3 and 1/2 in Figures 5 and 6. A close 
examination of Figures 5 and 6 reveal that the normalized load-deflection behaviour for aspect ratio 2/3 and 1/2 have interchanged 
their positions with respect to the same for aspect ratio 1. This appears to be intriguing but similar trend had also been reported in 
Duan and Mahendran (2003) for θ =600 of clamped skew plate. This finding points towards the existence of a strong interaction 
among aspect ratio, skew angle and boundary condition on the load-deflection behaviour of the plate in normalized plane, which 
need further investigation through generation of additional results. It should be mentioned that the normalized loads in Figures 4(a-
c), Figure 5 and Figure 6 are different because the system stiffness changes with change in skew angle and aspect ratio. Generally, 
the stiffness of the skew plate increases with increase in skew angle and/ or increase in aspect ratio.  
 
4.3 Results for plate with all edges simply supported  
   The variation of normalized load–deflection behaviour of skew plates with the variation of skew angles with all edges simply 
supported has been obtained for different fixed values of aspect ratios (/a b) and they are shown in Figs. 7(a) – 7(c) for /a b=1, 
2/3 and 1/2 respectively. The trends for these plots remain the same as discussed for CCCC plates. It is to be mentioned that the 
results for skew angles 150 and 750 for all three aspect ratios, for skew angles 300 and 450  for aspect ratio 2/3 and for skew angles 
450 for aspect ratio 1/2 are new in this paper.  
   The normalized load deflection behaviour with the variation of aspect ratio for θ =750 has also been shown separately in Figure 
8 due to the same reason mentioned in section 4.2. A similar plot for θ =450 has been shown in Figure 9. Both these plots show 
that for a particular value of skew angle, the slope of the normalized load-deflection plot increases with decrease in aspect ratio. 
Unlike the case of clamped plates for θ =750 (Figure 5), the normalized load-deflection behaviour for simply supported plates with 
similar skew angle show a consistent trend in conformity with the general behaviour as mentioned in section 4.2  
   In order to visualize the static deflection of the plate, an enlarged plot for deflected position of a 600 skew plate with clamped 
boundary for aspect ratio 2/3 has been shown in Figure 10. It is to be noted that the deflected shape of the plate is represented by 
considering only the vertical displacement. Singh and Elaghabash (2003) indicated that there are many numerical results in the 
literature but only a limited quantity of them is truly available. Moreover it is found during computation that the convergence of 
the solution is really a critical issue. In general, it is found that the convergence of the solution has serious difficulties for skew 
angles 600 and above, and in such situations an assumed displacement field extrapolated from previous solutions, yields better 
convergence. It should be noted that the normalized loads in Figures 7(a-c), Figure 8 and Figure 9 are different due to the same 
reason stated in section 4.2 for clamped plate. 
 

 
(a) a/b=1 
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(b) a/b=2/3 

 
                (c)  a/b=1/2 

Figure 7. Normalized load-deflection plots of SSSS plates with varying aspect ratios and skew angle. 



          Das et al./ International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 16-32 

 

29 
 

 
Figure 8. Normalized load-deflection plots of SSSS plates with 750 skew angle for varying aspect ratios. 

 
Figure 9. Normalized load-deflection plots of SSSS plates with 450 skew angle for varying aspect ratios. 

 

 
Figure 10. Enlarged view of deflected shape of a CCCC plate with 600 skew angle. 
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5. Conclusions 
 
   In this paper, a simulation model for large deflection static analysis of a thin isotropic skew plate under uniform transverse 
pressure has been presented based on variational form of energy principle. The displacement fields are assumed as admissible 
orthogonal polynomials and the resulting nonlinear set of equations is solved by direct substitution method using relaxation 
parameter. The validation of the present method is carried out successfully with the available results, thus establishing the accuracy 
of the present method. The results indicate a strong interaction between aspect ratio and skew angle on the load-deflection 
behaviour of skew plates. Also, a new extrapolation technique for the solution of the set of nonlinear algebraic equations has been 
introduced. A good amount of new results are presented in this paper. This method of analysis establishes the basic kernel, which 
can be extended to various other types of static and dynamic skew plate problems.  
 
Nomenclature 
 
a Length of the plate 
b Width of plate along skew direction 
{ d}  Vector of unknown coefficients 
D Flexural rigidity of the plate 
E Young’s modulus of the plate 
{ f}  Load vector 
J Jacobian of the coordinate transformation 
[K] Stiffness matrix 
[kb] Stiffness matrix due to bending 
[km] Stiffness matrix due to stretching 
nw Number of functions for w 
nu Number of functions for u 
nv Number of functions for v 
p Uniform transverse pressure 
p* Non-dimensional load parameter 
t Thickness of the plate 
u Displacement along x direction 
U Strain energy 
Ub Strain energy due to flexural action 
Um Strain energy due to membrane action 
v Displacement along  y direction 
V Work potential 
w Transverse displacement 
w* Maximum transverse displacement 
ν  Poisson’s ratio 

iφ  Set of functions defining approximate displacement field w 

iα  Set of functions defining approximate displacement field u 

iβ  Set of functions defining approximate displacement field v 

θ  Skew angle 
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