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Abstract

In the present paper, the static behaviour iof ifotropic skew plates under uniformly distribditoad is analyzed with the
geometric nonlinearity of the model properly haddlé variational method based on total potentiakrgg has been
implemented through assumed displacement field.cbimputational work has been carried out on a sgnarmalized domain
based on an appropriate domain mapping technigakdation study for the present work has been edroiut quite extensively
to establish its accuracy and stability. The dgwetbmethod is quite general to be applied readityahy classical boundary
condition, but to maintain brevity results haverb&gnished for clamped and simply supported botiadanly.
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1. Introduction

Skew plates have quite a good number of apmitcsitin modern structures. Skew plate structuresbeafound frequently in
modern construction in the form of reinforced slabsstiffened plates. Such structures are widegduss floors in bridges, ship
hulls, buildings, etc. Skew plates are also usetthénconstruction of wings, tails and fins of a#its and missiles. Simulation of
static behaviour of skew plates is an interestieg &f work for the researchers.

Alwar and Rao (1973) presented the non-linealyais of orthotropic skew plates of constant thess subjected to uniform
transverse load. They developed a numerical teakn@f dynamic relaxation to carry out the analyBignamic relaxation is
essentially a step by step integration of criticalamped vibration using viscous damping to enseeattainment of a steady-
state solution. Alwar and Rao (1974) used the swuknique of dynamic relaxation. They have inveddd the non-linear
behaviour of clamped isotropic skew plate of camsthickness under uniformly distributed load. &@&san and Ramachandran
(1976) presented large deflection elastic behavifuclamped, uniformly loaded orthotropic skew pkat They obtained the
solution by using Newton-Raphson method to solh ribn-linear algebraic equations transformed frawegning non-linear
partial differential equations. Buragohain and Eaf{@978) investigated the large deflection skeat@lproblem and formulated it
by energy principle to derive a set of nonlineayellraic equations which are solved by using NevRaphson iterative method
with incremental loading. They claimed their foratidn to be independent of boundary conditions amdished results for
clamped and simply supported isotropic skew platesonstant thickness with immovable edges andestiél to uniformly
distributed transverse load. Chia (1980) considénednoderately large deflection elastic behavimfunomogenous isotropic and
laminated anisotropic rectangular as well as skiatep by analytical method. Xiaref al. (1995) studied the elastic buckling
behaviour of skew Mindlin plate under shear loads&l on the Rayleigh-Ritz method, new critical sHead factors and
buckling mode shapes for two kinds of shear loagstangular shear (R-shear) and skew shear (3)sheave been investigated.

Liew and Han (1997) presented the bending aisalysa simply supported thickkew plate based on the first-order shear
deformation using Reissner/Mindlin theomhey introduced the geometric transformation of dbgerning differential equations
and boundargonditions of the plate from the physidaimain into a unit square computational domain.s8gbently they derived
a set oflinear algebraic equations from the transformeéedihtialequations via differential quadrature method (DQaviy the
approximate solutions of the problem are obtaingddiving the set of algebraic equations. Using BeupdElement Method
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(BEM), a fundamental solution in oblique coordirsafer the analysis of isotropic skew plates undansverse loading has been
obtained by Rajamohan and Raamachandran (1997) lo&sthe analogy with the anisotropic plates bepdjoverning equation
in Cartesian coordinates. They have used Chargel&ion Method (CSM), a version of BEM, to obtahetsolution and the
simplicity of the method was demonstrated by avajdnumerical integration due to the fact that tloendin integrals, which
appear in any boundary element method is avoidessbyming a suitable polynomial particular intefmattion.

Saadatpouet al (1998)developed a numerical method for the stability ysialof arbitrary quadrilateral-shaped elastic gdat
with internal supports and used the Galerkin metimodonjunction with the natural coordinates of hlate as a basis for the
analysis of general plates. Waegal. (2003) proposed a new version of differential qafute method (DQM) to obtain buckling
loads of thin anisotropic rectangular and isotrcgkiew plates for clamped and simply supported bagndonditions. In this new
technique, two degrees of freedom in boundary pdimt determination of the weighting coefficien&vh been introduced in the
existing differential quadrature element method EM). Duan and Mahendran (2003) had developed a newtlinear
quadrilateral hybrid/mixed shell element with fidegrees of freedom at each node, using obliquedewaie systems to analyze
the large deflection behavior of skew plate undeifoumly distributed and concentrated loads. Théhars have claimed to
overcome the shortcomings for carrying out thedadgflection analyses of the skew plates that [za86° skew angle under a
concentrated load. Singh and Elaghabash (2003gmexs a numerical method for the linear and geadoadlr nonlinear static
analysis of thin plates having quadrangular boundasith four straight edges. They have derived thatrim equation of
equilibrium using the work-energy principle withethssumed displacement fields expressed by alggiwhinomials.

Liew et al (2004) employed a mesh-free radial basis fundfiRBF) method for the buckling analysis of non-onifily loaded
thick plates. They obtained initial (i.e., pre-blicf) stresses by discretizing the variational fasfithe static system of equations
and calculated the static buckling loads of thegsldy solving the resultant Eigen value equatidnhammad and Singh (2004)
presented an energy method for the linear statidysis of first order shear deformable plates ofowss shapes. In this method,
the displacement fields are defined in terms of shape functions, which correspond to a set of gfieeld points and are
composed of significantly higher order polynomialdalekzadeh and Fiouz (2007) have presented twierdift differential
guadrature (DQ) approaches based on the thin gletey (TPT-DQ) and the first order shear defororatplate theory (FSDT-
DQ) to investigate the large deformation analydethio and moderately thick orthotropic skew platath rotationally restrained
edges. In both approaches, they have modeled tmaaigcal nonlinearity of the plate by using Greestrain and Von Karman
assumption. Daripa and Singha (2009) studied ttheeimce of corner stresses on the stability behawid composite skew plates.
Prakashet al (2008) analyzed thermal post-buckling of skewtgdahaving functionally graded materials while Whd &hih
(2006) considered the dynamic instability of adpily laminated skew plates.

Several researchers have addressed the linghrnan-linear dynamic problems of skew plates inocafing various
complicating effects. Singét al (2006) considered the vibration behaviour of ity stressed composite plates whereas Ashour
(2009) analyzed free vibration behaviour of syminetly laminated clamped skew plates. Deisal (2008, 2009) used a
variational method to study large amplitude dynamioblem of skew plates under simply supported eladhped boundary
conditions. Differential quadrature method has dsen used for non-linear vibration problems ofifeted composite skew
plates (Malekzadeh, 2007, 2008; Malekzadeh andrifia2006).

In the present work, a simulation model for &adgflection static analysis of a thin isotropiewkplate under uniform transverse
pressure has been presented. The mathematical l&tionuis based on variational form of energy pipie The displacement
fields are assumed as orthogonal polynomials incttaputational domain that satisfy the plate bomndaanditions and the
resulting nonlinear set of equations are solveddbigct substitution method using relaxation par@meResults have been
validated successfully with the available ones argbod amount of new results has been presentezhwiili be of great help to
designers. It is found that convergence in redolitslarge skew angle plates poses numerical ditficand to this end a new
extrapolation technique has been prescribed.

2. Mathematical for mulation

A skew plate &xbxt) with skew angled is shown in Figure 1. For large displacement fdation, it is assumed that the
material of the plate is isotropic and homogenedt® thickness of the plate is considered to bécgeritly small so as to avoid
the effect of shear deformation. Also the stresssirain measures are based on the original dimesnsif the plate.

2.1 Mapping of physical domain into computationairghin
The physical domain of interest is mapped todbeputational domain i —/) coordinate system as shown in Figure 2. In

this domain, the intersections of constantand constanty lines passing through the gauss points are selesteahe reference

points for computation. The coordinates of all faaiss points in the computational domain are catledlnumerically in the -

plane by suitable grid generation techniques. Téhnique of numerical grid generation is not usgténsively by any other
researcher, and it can be used for similar otheblpms involving irregular geometry such as rectdengplate with a central
circular cut-out.
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Figure 2. Gauss point locations for skew plate.
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2.2 Variational principle
Variational principle states that
o(U+Vv)=0 1)
where,U =U, +U,, is total strain energy), is strain energy due to pure bending &ng is strain energy due to stretching of

its middle surfacey is the potential energy of the external forces d@nd the variational operator in configuration spdtés to

be noted here that geometric nonlinearity, i.ee, tbnlinear strain-displacement relationship istakito consideration through
inplane stretching.

U, is given by (Timoshenko and Woinowsky, 1959),
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where,D :ﬁ, flexural rigidity of plate andl,V and W are components of displacement along X, y andertions
12 1-v

respectively.
U,, is given by (Timoshenko and Woinowsky, 1959),
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For a plate loaded with uniform transverse prespungotential energy is given by,

bcosg ytand+a
v=-1[ [ (pw) dxdy (4)
0 ytand

2.3 Approximate displacement field
The displacement fields, uand v are expressed by linear combinations of unknowarpatersd, as follows:

W(E!”) = % d|¢ (51’7) ’
i=1

u(é,n) = nwinu da;_n (&.17), (5)
i=nw+1

vEm)= Y dBownu(én)

i=nw+nu+ 1
where, ¢(&,7), a(&n) and B(&,n7) are sets of orthogonal functions ana/, nu and nv are number of functions fov, uand
V respectively.

The start functions of these orthogonal setssatected to satisfy the flexural and membrane Bagnconditions of the plate.
As the entire computation is carried out in norzedi computational domain, all the start functiores @efined in computational
domain. The basic functions for the definition d¢ditp deflectionw come from the flexural boundary conditions, eitbkrmped
or simply supported. The start functions foand v are selected to satisfy the zero displacementitions at the boundary, being
considered as the only form of in-plane boundamd@on. The higher order functions are generatdiding a two dimensional
implementation of Gram—-Schmidt scheme and thisiedor the first time in this type of study.

In conventional method of generating higher offdactions, first the higher order one dimensidiuaictions are generated from
the corresponding start functions and then thedriginder two dimensional functions are generatedrogred multiplication of
the one dimensional functions corresponding to oshogonal directions. In the present method, highreler functions in a
particular orthogonal direction are generated gmoading to different coordinate values in the ptiréhogonal direction through
Gram-Schmidt scheme. Then these values at a particoordinate are collected to generate the caeslet of higher order two-
dimensional functions through the implementatiorGoam-Schmidt scheme. The advantage of using eblsnique is that unlike
the earlier case, the start functions can be oMav@bles that need not be separable in spat@batates.
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2.4 Derivation of governing system of equations
The governing equations are obtained in the folhgwiorm using Egs. (2), (3), (4) and (5) in Eq., (1)

(]} ={ 1} ©
where,[K] = [kb] +[km] is the stiffness matrix of dimensic(mlw+ nu+ n\) , [kb] is the stiffness matrix due to bending action,
[km] is the stiffness matrix due to stretching actipd} is the unknown coefficient vector of dimensipmw+ nu+ ny and{ f}
is the load vector of dimensigmw+ nu+ ny.
[kb] is of the form given below:
ki Kz ki
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[km] is of the form given below:
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The load vectm{f} is of the forn{ f, fo fla]T :
where,

{f} = pzjj(p detJ d¢ dy

i=loo0

and { f1o} ={ f13} =0, as there is no in-plane loading.

Here, J is the Jacobian of the transformation frotm Yy plane to —/ plane given by,

[
) @

The set of governing equations (Eq. (6)) is im@@r in nature and solved by direct substitutiechhique using successive
relaxation scheme (Coa#t al., 1989). For each load-step, the values{dif} are assumed to evaluate the stiffness matrix.gJsin

3. Solution M ethodology

the stiffness matrix and based on assumed valess,values of{di} are calculated by matrix inversion technique frtra

expression{d} :[K]_l{ f} . Calculated values o{fdi} are compared with their values in the previousatten. If the difference
comes below a predefined value of error liif,the convergence of deflection field is assumditemvise the values ({fdi} are

modified with a relaxation parameter and it is take next approximation for the values{di}. Once the solution is obtained

for a load, stress and strain fields are computdidviing routine procedure. Subsequently an incrgnige given on load and
iteration starts with the present solution or watiother assumed deflection field, which may beagxlated from the previous
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solution set. In the present extrapolation techmidbe ratios of the unknown coefficier{tdi} for the preceding two load steps

are used to calculate the guess valueédp} at the present load step. Although this technitpe not been tried extensively, this

can be utilized as a useful numerical tool forgbkition of nonlinear set of equations, when cogeace gets difficult. The entire
program for the present study is developed in Rartr

4, Results and Discussions

All the results in this paper have been preskfdeuniform transverse pressure. Although, trespnt method is quite general to
be applied for any classical boundary conditiommnradized load-deflection plots are presented favskplates for two types of
flexural boundary conditions: all edges clamped QO and all edges simply supported (SSSS). In Hathcases, the edges of
the plate are modeled as immovable by imposing aeqaane displacement boundary conditions. Hered@d ‘S’ denote
clamped and simply supported boundaries, respégtifiar a single edge of the plate. Results fofetént possible combinations
of clamped and simply supported boundary conditiars omitted here to maintain brevity, but it wile taken up in the

subsequent study. The normalized logd Y is defined asp” = (pd')/(16Dt) and the maximum normalized deflection is defined

asw = W,.x/ t. The results are generated using the followingengitand geometric parameter valuéss 210 GPay = 1/3,
a=1.0 mandt = 0.01 m. The skew angle and the aspect ratlg) Of the plate have been separately indicated vgrgsenting the
results.

The convergence of the present method with theber of functions used to approximate the disples# fields is carried out
for CCCC skew plate witta/b=1. The convergence study is carried out for défies at two different locations namely, (0.5,
0.5) and (0.25, 0.25). It is to be noted that therdinates of the points are given in normalizeanfand (0.5, 0.5) represents the
point at which maximum deflection occurs. The resof the convergence study in terms of normalidisgplacement /t) are

shown in Table 1 for two different skew angles® aAd 48 at p' =7.94. The numbers in the parentheses provide akhre for

the number of the functions for each plate disptam®s corresponding to two orthogonal directioreblé 1 clearly shows the
convergence of displacements with increase in numbtinctions. All the results presented in thigppr are generated using (7 X
7) number of functions for each plate displacements

Table 1: Convergence of displacements in normaliaed (w/t) at two different locations of rhombic CCCC skelatp for two
different skew angles ap’ =7.94

0 Normalized Number of functions in two orthogonal directions
coordinates 4X4 5X5 6 X6 7X7 8X8
($.17)
30° (0.5, 0.5) 0.0976 0.0974 0.0974 0.0972 0.097p
(0.25, 0.25) 0.0233 0.0232 0.0232 0.0232 0.0231
45’ (0.5, 0.5) 0.0478 0.0478 0.0479 0.0478 0.047B
(0.25, 0.25) 0.00824 0.00827 0.00816 0.00814 0.0080

4.1 Validation of the present approach
In order to validate the present formulatiore tkesults from the present analysis for CCCC boyndandition are contrasted
with the results available in the existing liter&twand also with the results generated by the camaidinite element package

ANSYS. The results fow againstp” from present study for aspect ratio 2/3 with tiffedent skew angles have been compared
with analytical solution (Chia, 1980) and with thessults generated by ANSYS (version 8.0) and shiovfigure 3(a). The results

in ANSYS are generated using SHELL 63 element 8@ 120 uniform meshes. The plot shows agreementtterbeith the
results of ANSYS. It also indicates that the amonintieviation in the results of Chia (1980) is mprenounced for 60skew
angle. The validation of the present approachiithéu shown in Figure 3(b) with the results of $irapd Elaghabash (2003) for
rhombic (a/b=1) skew plates having 3@&nd 48 skew angles. The normalized load-deflection behavof simply supported
rhombic skew plate is also compared with the resfitSingh and Elaghabash (2003) fof géew angle and it is shown in Figure
3(c). In view of Figures 3(a) — 3(c), it may be cluded that the present formulation has the acgumad stability to analyze large
deflection behaviour of skew plates.
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Figure 4. Normalized load-deflection plots of CC@lates with varying aspect ratios and skew angle.



26 Das et al./ International Journal of Engineering;i@ce and Technology, Vol. 1, No. 1, 2009, pp326-

03

g=73

0 T | T | T T T
0 400 200 1200 1600

¥

P
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Figure 6. Normalized load-deflection plots of CC@iates with 38 skew angle for varying aspect ratios.

4.2 Results for plate with all edges clamped
The variation of normalized load—deflection babar of skew plates with the variation of skew kesgwith all edges clamped
has been obtained for different values of aspaisda/b). The skew angles selected in each case de30% 45 and 66.

Figures 4(a) - 4(c) show vs. w plots for a/ b=1, 2/3 and 1/2 respectively. It is to be mentiotteat the results for skew
angles 18and 78 for all three aspect ratios and for skew anglesa8@l 45 for aspect ratio 1/2 are new in this paper. ltders

that deflection (v ) decreases as the skew angle increases for aévaf load parameter. This is due to the factwiittincrease
in skew angles, the system stiffness increasedalirerease in stretching force in the middle plah¢he plate. Further, for any
particular value of load parameter, the slope efltdad-deflection plots in the normalized planerdases with increase in skew
angles. This nature of the plots shows a consistentl for all values of aspect ratio.

The normalized load deflection behaviour 75" has been separately shown in Figure 5 correspgridisame values of
aspect ratios. These plots have not been accomadatigure 4 to maintain greater clarity andvoid significant difference in
normalized load scale. However, this plot becomegative to show the effect of different aspediorfor a particular value of
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skew angle in normalized load-deflection behavidwr.get further insight to this phenomenon, anotfiet is shown in Figure 6
for 30° skew angle, which also agrees well with the presioends in results. From the above results, quige obvious that the
nature of the normalized load-deflection plot tetms straight line with increase in skew angle sl is true for three different
cases of aspect ratio values. Although generatitfen normalized load-deflection behaviour for gefi value of skew angle is
shown in Figure 6, it may change significantly as be seen from the plots for aspect ratio 2/31ddn Figures 5 and 6. A close
examination of Figures 5 and 6 reveal that the adimed load-deflection behaviour for aspect rati® &hd 1/2 have interchanged
their positions with respect to the same for aspaéd 1. This appears to be intriguing but simttend had also been reported in
Duan and Mahendran (2003) f&=60 of clamped skew plate. This finding points towatlds existence of a strong interaction
among aspect ratio, skew angle and boundary condith the load-deflection behaviour of the plateémmalized plane, which
need further investigation through generation afitahal results. It should be mentioned that tbenmalized loads in Figures 4(a-
c), Figure 5 and Figure 6 are different becausesyséem stiffness changes with change in skew angleaspect ratio. Generally,
the stiffness of the skew plate increases withéase in skew angle and/ or increase in aspect ratio

4.3 Results for plate with all edges simply supgbrt
The variation of normalized load—deflection babar of skew plates with the variation of skew Esgwith all edges simply

supported has been obtained for different fixedieslof aspect ratiosa(/ b) and they are shown in Figs. 7(a) — 7(c) &t b=1,
2/3 and 1/2 respectively. The trends for thesespleimain the same as discussed for CCCC platestdtbe mentioned that the
results for skew angles 18nd 78for all three aspect ratios, for skew angle$ &td 45 for aspect ratio 2/3 and for skew angles
45’ for aspect ratio 1/2 are new in this paper.

The normalized load deflection behaviour with thariation of aspect ratio fa#=75" has also been shown separately in Figure
8 due to the same reason mentioned in sectiondsimilar plot for #=45" has been shown in Figure 9. Both these plots show
that for a particular value of skew angle, the slagp the normalized load-deflection plot increasét decrease in aspect ratio.
Unlike the case of clamped plates #8r75° (Figure 5), the normalized load-deflection behavifor simply supported plates with
similar skew angle show a consistent trend in conity with the general behaviour as mentioned utisa 4.2

In order to visualize the static deflection bé tplate, an enlarged plot for deflected positibm 63 skew plate with clamped
boundary for aspect ratio 2/3 has been shown iar€igO0. It is to be noted that the deflected shadgbe plate is represented by
considering only the vertical displacement. Singld &laghabash (2003) indicated that there are manyerical results in the
literature but only a limited quantity of them rsily available. Moreover it is found during comptida that the convergence of
the solution is really a critical issue. In gengeitis found that the convergence of the solutias serious difficulties for skew
angles 6Band above, and in such situations an assumed déspknt field extrapolated from previous solutioyis)ds better
convergence. It should be noted that the normaliaads in Figures 7(a-c), Figure 8 and Figure 9different due to the same
reason stated in section 4.2 for clamped plate.

1

(a) a/b=1
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Figure 7. Normalized load-deflection plots of S§#&8es with varying aspect ratios and skew angle.
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5. Conclusions

In this paper, a simulation model for large defilon static analysis of a thin isotropic skewt@lander uniform transverse
pressure has been presented based on variationaldfoenergy principle. The displacement fields assumed as admissible
orthogonal polynomials and the resulting nonlineat of equations is solved by direct substitutioethnd using relaxation
parameter. The validation of the present methaauised out successfully with the available resuliss establishing the accuracy
of the present method. The results indicate a gtioteraction between aspect ratio and skew angld¢he load-deflection
behaviour of skew plates. Also, a new extrapolatemhnique for the solution of the set of nonlinakgebraic equations has been
introduced. A good amount of new results are preskeim this paper. This method of analysis esthbighe basic kernel, which
can be extended to various other types of staticdgnamic skew plate problems.

Nomenclature

a Length of the plate

b Width of plate along skew direction

{d} Vector of unknown coefficients

D Flexural rigidity of the plate

E Young's modulus of the plate

{f} Load vector

J Jacobian of the coordinate transformation

[K] Stiffness matrix

(K] Stiffness matrix due to bending

[k]  Stiffness matrix due to stretching

nw Number of functions fow

nu Number of functions fou

nv Number of functions fov

Uniform transverse pressure
Non-dimensional load parameter
Thickness of the plate

Displacement along direction

Strain energy

Strain energylue to flexural action
Strain energy due to membrane action
Displacement alongy direction

Work potential

Transverse displacement

Maximum transverse displacement
Poisson’s ratio

Set of functions defining approximate displacenfed w

Set of functions defining approximate displacendit u
Set of functions defining approximate displacendid v
Skew angle

3
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