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Abstract 
 
   The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress 
assumption is presented in this paper. The beam is subjected to harmonic excitation with a point load at tip and a uniformly 
distributed load along the bottom surface of the mild steel beam. Numerical results are presented for clamped free boundary 
condition for the first three modes of the structure. The sensor response is dominated by the first mode, but the third mode 
response become significant when the sensor is placed at the free end of the mild steel beam.  
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1. Introduction 
    
   Smart material is a continuum whose mechanical constitutive response is coupled with non-mechanical phenomena. Magneto-
electro-elastic (MEE) materials belong to the family of smart materials; exhibit a significant coupling between mechanical, electric 
and magnetic fields. The composite consisting of piezoelectric phase shows a coupling between mechanical and electric field 
whereas the piezomagnetic phase shows the coupling between mechanical and magnetic field .In addition to this, a magneto-
electric coupling effect which is absent in the constituent phases is exhibited by these classes of magneto-electro-elastic materials. 
Due to exceptional nature of these materials to convert one form of energy into another, these materials are widely substituted in 
acoustic devices, medical ultrasonic imaging etc. Another identified area of application is as sensors and actuators. Response 
characteristics of MEE sensors under dynamic loading will help to determine the best operating conditions of MEE devices which 
in turn will lead to emerging areas for application of magneto-electro-elastic materials as sensors and actuators. 
   Fibrous composites consisting of piezomagnetic cobalt iron oxide CoFe2O4 matrix reinforced by piezoelectric barium titanate 
BaTiO3 fibers (Buchanan, 2004) are analysed for the sensory response. Both phases are traversely isotropic with the axis of 
symmetry oriented in the z-direction. Aboudi (2001) has employed a homogenization method assuming that the composites have a 
periodic structure, for predicting the effective moduli of magneto-electro-elastic composites. Ramirez et al. (2006) presented 
approximate solution to a free vibration problem of a two dimensional MEE laminate assuming perfect bonding between each 
interface. Bhangale et al. (2005) conducted free vibration studies on functionally graded MEE cylindrical shells and evaluated the 
influence of piezomagnetic and piezoelectric effect on structural frequency. Transient response of magneto-electro-elastic hollow 
cylinder to axisymmetric mechanical and electromagnetic loading was done by Hou et al. (2004). Transient responses of 
displacements, stresses, electric and magnetic potentials, electric displacements, magnetic induction are obtained by the study. Dai 
et al. (2006) have presented an analytical solution for magneto-thermo-electro-elastic transient response of a piezoelectric hollow 
cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric excitation. 
Sirohi et al. (2000) investigated the piezoelectric strain sensor in which strain is measured in terms of charge developed by direct 
piezoelectric effect. Huang et al. (2000) examined the dynamic electromechanical response of piezoelectric sensors and actuators 
which are modeled as rectangular plate and the variation of electric potential, stresses and electric displacements across the 
thickness were evaluated. Pietrzakowski et al. (2008) dealt with active vibration control of rectangular plates containing 
piezoelectric sensor/actuator layers using velocity control feed back to suppress vibration. Galopin et al. (2008) has done finite 
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element modeling of magnetoelectic sensors and the magnetoelectric effect stemming from piezoelectric and magnetosticive 
composite was studied. Daga et al. (2009) has studied the behavior of MEE sensors under transient mechanical loading.  
   This paper deals with response to harmonic mechanical loading of magneto-electro-elastic sensor, which has not been hither to 
address. The sensor is bonded on the top surface of a mild steel beam. Finite element method with plane stress assumption is used 
in the analysis. Dynamic response of the sensor is studied when the beam is subjected to clamped free boundary condition with the 
sensor placed at different positions on the top surface of the beam. A point load at the tip of the beam and a uniformly distributed 
load along the length of the beam in the negative z-direction are used for the numerical studies. These studies will be highly useful 
when we use MEE sensors and actuators for active vibration control of structures. Ansys 10.1 is used to validate the computer 
code developed for the study. Ansys cannot model fully coupled magneto-electro-elastic materials but it can model piezoelectric 
PZT-5 which is used to compare the results of the code. 

 
2. Constitutive equations 
 
   The constitutive equations for the MEE medium relating stress jσ , electric displacement  and magnetic induction lD lB  to 

strain , electric field  and magnetic field , exhibiting linear coupling between magnetic, electric and elastic field can be 
written as (Daga et al., 2008) 

kS mE mH

 
                         (1)  -  -  j jk k jm m jmC S e E q Hσ = m

m

m

                                               (2)    l lj k lm m lmD e S E m Hε= + +

   l lj k lm m lmB q S m E Hμ= + +                                                            (3) 
 
where jkC , lmε  and lmμ  are elastic, dielectric and magnetic permeability coefficients respectively and ,  and  are the 
piezoelectric, piezomagnetic and magnetoelectric material coefficients. Here j,k = 1,…,6 and l,m = 1,..,3. 

lje ljq lmm

 
3. Finite element modeling of magneto-electro-elastic beam 
 
   The potential for MEE solid (Sunar et al., 2002) can be written as 
 

1 1 1
2 2 2

T T TG S CS E E H H SeE SqH EmHε μ= − − − − −     (4) 

 
   In the present formulation body forces, free charge density and free current density are absent. In the absence of free charge 
density, Gauss law can be written as where D is the electric displacement vector. The scalar electric potential φ  is 
defined so that the electric field E can be written as . Gauss law for magnetic field is written as where B is the 
magnetic induction vector.  The magnetic scalar potential 

.D∇ = 0
0E φ=−∇ .B∇ =

ψ  which satisfies the above relation is defined so that the magnetic field 
H can be written as H ψ= −∇ . 
   The mild steel beam with sensor bonded to its top surface is modeled using four nodded rectangular plate element with 4 degrees 
of freedom per node i.e. displacement in axial direction ( )xu , displacement in transverse direction ( , electric potential)zu ( )φ  and 

magnetic potential ( )ψ . Figure 1 schematically represents the finite element discretization of the mild steel beam with a magneto-
electro-elastic sensor bonded at the top surface using four nodded rectangular plate element. 

   The displacements{ } , electric potential ({ }T
x zu u u= )φ  and magnetic potential ( )ψ  within the element can be expressed in 

terms of suitable shape functions  and the corresponding nodal quantities as given below. iN
 

{ } [ ]{ }e
iu N u= ; [ ]{ }e

iNφ φ= ; [ ]{ }e
iNψ ψ=  where i = 1,…., 4.    (5) 
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Figure 1. Finite Element discretization of the mild steel beam with sensor bonded at the clamped end. 
 
   For a plane stress problem the stress components 2 4 6( ) ( ) ( ) 0yy yz xyσ σ σ τ σ τ= = = , electric displacement component 

 and magnetic induction component
2 ( ) 0yD D = 2 ( ) 0yB B = . The strain displacement relation for a 2D plane stress problem can be 

written as 
 

 
1

x
xx

uS S
x

∂
= =

∂
;  

2
z

zz
uS S
z

∂
= =

∂
 ;   

5
x z

xz
u uS S
z x

∂ ∂
= = +

∂ ∂
       (6) 

 
The relation of electric field to the electric potential can be expressed as  
 

1 xE E
x
φ∂

= =
∂

; 3 zE E
z
φ∂

= =
∂

        (7) 

 
The relation of magnetic field to the magnetic potential can be expressed as  
 

               1 xH H
x
ψ∂

= =
∂

; 
3 zH H

z
ψ∂

= =
∂

        (8) 

 
   Jiang et al. (2004) have derived the reduced material constants under a plane stress assumption, which are used to evaluate the 
stiffness matrices. A finite element formulation for the fully coupled magneto-electro-elastic continuum can be expressed as  
 

[ ]{ } [ ] { } { } { } { i t
uu uu u u }M u K u K K Fe ω

φ ψφ ψ⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦⎣ ⎦     (9a) 

{ } { } { } 0
T

uK u K Kφ φφ φψφ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=  

      (9b) 

                                     (9c) { } { } { } 0
T T

uK u K Kψ φψ ψψφ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 
where i tFe ω is the harmonically applied mechanical load which is varying with the circular frequency ω . Since no electric charge 
or current density is applied, the right hand side of equation 9b and 9c is zero. Elemental mass and stiffness matrices 
corresponding to the above equations are derived as follows. 
 

[ ] [ ] [ ][ ]
T

uu u uv
K B C B dV= ∫         (10a) 

[ ] [ ]
T

u uv
K B e B dVφ φ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫                      (10b) 

[ ] [ ]
T

u uv
K B q Bψ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫ dVψ         (10c) 
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dV[ ]
T

v
K B Bφφ φ φε⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫                      (10d) 

             [ ]
T

v
K B Bψψ ψ ψμ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ dV                       (10e) 

             [ ]
T

v
K B m B dφψ φ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ V                          (10f) 

[ ] [ ] [ ][ ]
T

uu v
M N N dρ= ∫ V                      (10g) 

 
[ ]uB , Bφ⎡ ⎤⎣ ⎦ and Bψ⎡ ⎤⎣ ⎦  represent the shape function derivative matrices for strain-displacement, electric field-electric potential and 

magnetic field-magnetic potential respectively. Three point Gauss quadrature is used to evaluate the integrals.  
   Using standard condensation techniques, the electric potential and magnetic potential are eliminated from equation (9) which can 
be written as  
 
       [ ]{ } { } { }i t

uu eqM u K u Fe ω⎡ ⎤+ =⎢ ⎥⎣ ⎦         (11) 

 
where  is the equivalent stiffness matrix.   

eqK⎡ ⎤⎣ ⎦
 

[ ] [ ] [ ] [ ] [ ]1
eq uu u II I u IV IIIK K K K K K K Kφ ψ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎣ ⎦
1−                                 (12) 

 
The component matrices in equation 11 can be written as 
 

[ ] 1T T

I u uK K K K Kφ φψ ψψ ψ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                   (13a) 

[ ] 1 T

IIK K K K Kφφ φψ ψψ φψ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                               (13b) 

                                                   (13c) [ ] 1T T

III u uK K K K Kψ φψ φφ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T

φ

                 [ ] 1T

IVK K K K Kψψ φψ φφ φψ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                               (13d) 

 
The Eigen vectors corresponding to φ and ψ is given by 
 

{ } [ ] [ ]{ }1
II IK K uφ −=          (14a) 

               { } [ ] [ ]{ }1
IV IIIK K uψ −=                                      (14b) 

 
4. Validation 
 
   A computer code has been developed to study the response of magneto-electro-elastic sensor bonded on the top surface of a 
cantilever beam while the beam is excited harmonically. Ansys 10.1 used for validation studies cannot model fully coupled 
magneto-electro-elastic materials but it can model piezoelectric materials. The present code is validated using piezoelectric 
material PZT-5 whose material properties (Chen et al., 2007) are given in Table 1. The dimensions of mild steel beam are as 
follows: length=0.3m, thickness=0.02m. The dimensions of the sensor patch are length=0.015m, thickness=0.002m. The PZT 
sensor is placed at the clamped end of the beam and a point load of 1N is applied at the free end in the negative z-direction.  
   Finite element mesh for the mild steel beam and the sensor patch are 40 x 2 and 2 x 2 respectively. Full method is used as the 
solution technique and a constant damping ratio of 0.01 is used. Response is taken from that node of the sensor which shows 
maximum value of electric potential. The absolute value of transverse displacement ( ) and the electric potential (φ ) 
corresponding to the above said node are obtained for the first two natural frequencies of the structure. Log scale plots of the 
responses using code and Ansys are shown in Figure 2(a) and 2(b), which are in good agreement. Hence the above computer code 
is used to study the response of magneto-electro-elastic sensors under harmonic mechanical loading. 

zu
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Table1. Material properties of PZT-5 and different volume fraction vf of multiphase  

magneto-electro-elastic BaTiO3-CoFe2O4 (Aboudi, 2001) 
 0.0 vf 0.2 vf 0.4 vf 0.6 vf 0.8 vf 1.0 vf PZT-5 
Elastic constants        
C11=C22 286 250 225 200 175 166 99.2 
C12 173 146 125 110 100 77 54.01 
C13=C23 170 145 125 110 100 78 50.77 
C33 269.5 240 220 190 170 162 86.85 
C44=C55 45.3 45 45 45 50 43 21.1 
Piezoelectric constants        
e31=e32 0 -2 -3.0 -3.5 -4.0 -4.4 -7.20 
e33 0 4 7.0 11.0 14.0 18.6 15.11 
e24=e15 0 0 0 0 0 11.6 12.32 
Dielectric constants        

11 22ε ε=  0.08 0.33 0.8 0.9 1.0 11.2 1.53 
33ε  0.093 2.5 5.0 7.5 10 12.6 1.5 

Magnetic permeability 
constants        

11 22μ μ=  -5.9 -3.9 -2.5 -1.5 -0.8 0.05 0 
33μ  1.57 1.33 1.0 0.75 0.5 0.1 0 

Piezomagnetic constants        
q31=q32 580 410 300 200 100 0 0 
q33 700 550 380 260 120 0 0 
q24=q15 560 340 220 180 80 0 0 
Magnetoelectric constants        
m11=m22 0 2.8 4.8 6.0 6.8 0 0 
m33 0 2000 2750 2500 1500 0 0 
Density        
ρ  5300 5400 5500 5600 5700 5800 7750 

 
Cij in 109N/m2, eij in C/m2,   in 10lkε -9C/Vm, qij in N/Am,  lkμ in 10-4Ns2/C2, mlk in 10-12Ns/VC,ρ inkg/m3   
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Figure 2 (a) Transverse displacement and (b) Electric potential ( )φ  at the top surface of the PZT-5 sensor 
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5. Results and discussion  
 
   Response of magneto-electro-elastic sensors bonded on the top surface of a cantilever beam with clamped-free boundary 
condition under harmonic mechanical loading is discussed below. Numerical results are presented for clamped free boundary 
condition for the first three modes of the structure.  
   Two types of loadings are used. (i) A point load of 1N at the tip of the beam in the negative z-direction (ii) Uniformly distributed 
load of 1N at the bottom surface of the beam in the negative z-direction. The location of the sensor is varied along the length of the 
beam i.e. at the clamped end, at the centre and at the tip of the beam. The harmonic response of the system is analysed with the 
base beam subjected to clamped-free boundary condition with xu = = = =0 at the clamped end. The electric potential (φ ) 
at the interface between base beam and sensor is also assumed to be zero. The material properties of multiphase MEE material 
with volume fraction of BaTiO

zu φ ψ

3 varying from 0.0 to 1.0 in a composite of   BaTiO3-CoFe2O4 are listed in Table 1. Volume fraction 
of 0.0 represents pure CoFe2O4 and volume fraction of 1.0 represents pure BaTiO3. The material properties of mild steel beam are 
as follows: Young’s modulus (E) = 210GPa, Poisson ratio ( ) = 0.3, Magnetic permeability constant ( ) = 2.51e-4, density (ρ ) 
= 7800 kg/m

υ μ
3. The sensor response during the first three modes for different volume fraction of the MEE composite is plotted 

graphically. 
 
5.1 A point load at the tip of the beam   
   The beam is clamped at one end and response of the sensor is studied when the beam is subjected to a harmonic excitation of 1N 
in the negative z-direction at the free end of the beam.  
5.1.1 Sensor patch located at the clamped end 
   Figure 3 shows the transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the 
MEE sensor when the sensor is located at the clamped end of the mild steel beam. The transverse displacement is found maximum 
at the first mode. It goes on increasing as the volume fraction increases attributing to the fact that the elastic constants decreases as 
the volume fraction increases. The electric potential (φ ) is found maximum for 0.2 vf of the composite and the electric potential 
decreases considerably at higher modes. Volume fraction 1.0 which corresponds to pure BaTiO3 also gives electric potential 
comparable to 0.2 vf. The magnetic potential ( )ψ  is found maximum for 0.6 vf of the composite and the magnetic potential also 
decreases at higher modes. Volume fraction 0.0 which corresponds to pure CoFe2O4 gives less comparable magnetic potential out 
put with 0.6 vf. 
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Fig 3 (a) Transverse displacement ( , (b) Electric potential ( ) )zu φ

  
 



                 Biju et al. / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 216-227 222

0 500 1000 1500 2000 2500 3000 3500

1E -5

1E -4

1E -3

0.01

Ψ
 (A

)

f  (H z)

 V f=0 .0
 V f=0 .2
 V f=0 .4
 V f=0 .6
 V f=0 .8

 
     (c) 

Fig 3 (c) Magnetic potential ( )ψ  at the top surface of the MEE sensor for point load 
 
5.1.2 Sensor patch located at the middle 
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Figure 4 (a) Transverse displacement , (b) Electric potential (φ ) and (c) Magnetic potential( )zu ( )ψ at the top surface of the 
MEE sensor for point load 
 
   The transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the MEE sensor when 

the sensor is located at the middle of the mild steel beam is shown in Figure 4. The sensor output i.e. electric potential ( ) and φ
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magnetic potential ( )ψ decreases considerably when the sensor is placed at centre. This is because the sensor is less strained as it 
is moved away from the clamped end. The absolute values of sensor out put during second mode of vibration of the beam are very 
much close to that of first mode when the sensor is placed at the middle.  
5.1.3 Sensor patch located at the tip 
   Figure 5 shows the transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the 
MEE sensor when the sensor is located at the free end of the mild steel beam. The third mode of vibration becomes dominant when 
the sensor is placed at the free end. The sensor is strained very little that the absolute values of sensor out put decreases 
considerably. Volume fraction 1.0 which corresponds to pure BaTiO3 gives maximum electric potential (φ ). It is also seen that 
volume fraction 0.0 which corresponds to pure CoFe2O4 gives maximum magnetic potential ( )ψ . 
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(c) 

Figure 5 (a) Transverse displacement ( , (b) Electric potential (φ ) and (c) Magnetic potential)zu ( )ψ   at the top surface of the 
MEE sensor for point load 
 
5.2 Uniformly distributed load at the bottom surface of the beam  
The beam is clamped at one end and response of the sensor is studied when the beam is subjected to a harmonic excitation of 1N in 
the negative z-direction along the entire bottom surface of the beam.  
5.2.1 Sensor patch located at the clamped end 
   Figure 6 shows the transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the 

MEE sensor when the sensor is located at the clamped end of the mild steel beam. The sensor output i.e. electric potential (φ ) and 
magnetic potential ( )ψ  is high compared with point loading, as expected. It is also noticed that over a wide range of frequencies 
the sensor shows significantly large response when the applied load is uniformly distributed compared to point load.  
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Fig 6 (a) Transverse displacement , (b) Electric potential (φ ) and (c) Magnetic potential( )zu ( )ψ  at the top surface of the MEE 
sensor for UDL 
 
5.2.2 Sensor patch located at the middle 
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Figure 7 (a) Transverse displacement ( , (b) Electric potential (φ ) )zu
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Figure 7 (c) Magnetic potential ( )ψ at the top surface of the MEE sensor for UDL 
 
   The transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the MEE sensor when 
the sensor is located at the middle of the mild steel beam is shown in Figure 7. The second mode domination for response is less 
when the sensor is placed at the middle and the applied load is distributed uniformly. This is because strains are developed in the 
sensor during first mode of vibration also. The magnetic potential ( )ψ  response become out of phase during the third mode.   
5.2.3 Sensor patch located at the tip 
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Fig 8 (a) Transverse displacement , (b) Electric potential (φ ) and (c) Magnetic potential( )zu ( )ψ  at the top surface of the MEE 
sensor for UDL 
 
   Figure 8 shows the transverse displacement ( , electric potential (φ ) and magnetic potential)zu ( )ψ  at the top surface of the 
MEE sensor when the sensor is located at the free end of the mild steel beam. When the sensor is placed at the free end, vf 1.0 
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which corresponds to pure BaTiO3 gives maximum   electric potential (φ ) and volume fraction 0.0 which corresponds to pure 
CoFe2O4 gives maximum magnetic potential ( )ψ . 
 
6. Conclusions 
 
   The finite element formulation for coupled magneto-electro-elastic sensor bonded to a mild steel beam with plane stress 
assumption is presented in this paper. The location of the sensor is varied along the length of the beam to study the effect on sensor 
response. Two types of harmonic loading i.e. a point load and a uniformly distributed load is applied harmonically to observe the 
sensor response at various locations.  
   The sensor out put viz. electric potential (φ ) and magnetic potential ( )ψ  reduces considerably as the sensor is placed away from 
the fixed end. This is due to the fact that the first natural frequency is the dominant mode and the beam is strained maximum at the 
fixed end. The electric potential (φ ) is found maximum for 0.2 vf of the composite where as the magnetic potential ( )ψ  is found 
maximum for 0.6 vf of the composite. The electric and magnetic potential decreases at higher modes. It is beneficial to place the 
sensor at the fixed end because it will be protected from damage as well as maximum sensor out put will be obtained. When the 
sensor is placed at the free end of the cantilever beam, the third mode dominates the response of the sensor.          
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