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Abstract 
 
   In the present paper we study the propagation of horizontally polarised shear waves (SH waves) in an internal magnetoelastic 
monoclinic stratum with rectangular irregularity in lower interface and is sandwiched between two semi-infinite isotropic elastic 
media. The dispersion equation has been obtained. It is observed that the dispersion equation is in assertion with the classical 
Love-type wave equation, for isotropic layer sandwiched between two isotropic half spaces, in the absence of magnetic field and 
irregularity. The effects of depth of irregularity and monoclinic-magnetoelastic coupling parameters on dispersion curves are 
depicted by means of graphs. This study shows the remarkable effect of wave number, size of irregularity and magnetic field on 
the phase velocity.  
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1. Introduction 
    
   Many results of theoretical and experimental studies revealed that a real earth is considerably more complicated than the models 
presented earlier. This has led to a need for more realistic representation as a medium through which seismic waves propagate. The 
study of wave propagation in elastic medium with different boundaries is of great importance to seismologists as well as to 
geophysicists to understand and predict the seismic behaviour at the different margins of earth. 
   The propagation of Love waves has been studied by many authors with assuming different forms of irregularities at the interface. 
Bhattacharya (1962) discussed the dispersion curves for Love wave propagation in a transversely isotropic crustal layer with an 
irregularity in the interface. Chattopadhyay (1975) studied the Love wave propagation due to irregularity in the thickness of non-
homogeneous crustal layer. The wave propagation in crystalline media plays a very interesting role in geophysics and also in 
ultrasonic and signal processing. Chattopadhyay and Bandyopadhyay (1986) studied the propagation of shear waves in an infinite 
monoclinic crystal plate as well as in infinite anisotropic non-homogeneous monoclinic plate. The study of wave propagation in 
irregular boundaries is also of equal importance to seismologists and geophysicists. Ge and Chen (2007) proposed a direct 
boundary element method for calculating elastic wave propagation in two-dimensional irregularly stratified models. Further a more 
efficient approach was developed by same authors (Ge and Chen, 2008) for seismic-wave simulation in a stratified medium with 
irregular interfaces. In particular different authors have done the study of SH-wave propagation in different irregular mediums. 
Chattopadhyay et al. (1983) studied the propagation of SH guided wave in an internal stratum with parabolic irregularity in the 
lower interface. Campillo (2006) studied the case of a dome in a stratified medium for modelling of SH-wave propagation in an 
irregularly layered medium. Ding and Dravinski (1998) studied the scattering of SH-waves in irregular interfaces. Reflection and 
transmission of SH-wave at a corrugated interface has been studied before. Kaur et al. (2005) obtained the Reflection and 
transmission coefficients due to incident plane SH-waves at a corrugated interface between two isotropic, laterally and vertically 
heterogeneous visco-elastic solid half spaces. Tomar and Kaur (2007) studied the reflection and transmission of SH-waves at a 
corrugated interface between anisotropic elastic and viscoelastic solid half-spaces.  
   Keeping in the mind the characteristic and structure of earth, the medium of monoclinic is of core interest for seismologists to 
study the seismic wave propagation. Singh and Tomar (2007) studied the propagation of quasi-P wave at the interface between two 
monoclinic half-spaces. Kalyani et al. (2008) studied the propagation of SH waves in the plane of mirror symmetry of a 
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monoclinic multilayered medium with displacement normal to the plane. Recently, the propagation of SH waves in an irregular 
monoclinic crustal layer has been studied by Chattopadhyay et al. (2008). In this paper we have discussed the propagation of SH 
waves in an irregular magnetoelastic monoclinic layer lying in between two isotropic half-spaces. The irregularity is in the form of 
rectangle. The perturbation technique indicated by Eringen and Samuels (1959) has been used. It is observed that phase velocity is 
strongly influenced by the depth of irregularity and magnetic field. These important peculiarities are highlighted by means of 
graphs. 
 
2. Formulation of the problem 
   

                                         

          1M     Isotropic Medium 

  y H= −  

   

 2M  Magnetoelastic Monoclinic layer             H     

 0y =         / 2s−     O       / 2s    z  

             H ′  

 3M          d  

     Isotropic Medium  

            S 

    y  

   Figure 1: Geometry of the problem 

   We consider the model, which is comprised of perfectly conducting magnetoelastic monoclinic irregular internal stratum, 

2M sandwiched between two isotropic elastic semi-infinite media 1M (upper) and 3M (lower) as shown in Figure 1. The 
irregularity is considered in the form of rectangle on the lower interface of the internal stratum. We assume the rectangular 
irregularity with the length s  and depth H ′ . Let us choose the rectangular coordinate system with the origin O at the middle point 
of the span, ,s  of the irregularity. We have taken y-axis vertically downwards and z axis along the regular interface between the 
lower semi-infinite medium and the monoclinic magnetoelastic layer. Let H  be the thickness of the internal stratum except for the 
irregular region and S be the position of the source on the y-axis at a depth d  below the origin ( d H ′> ).  
 The equation of the interface between layer and lower half space is defined as 

( )y h zε=               (1)   
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where 
H

s
ε

′
=  and 1ε << . 

Let us consider , , ( 1, 2, 3)r r ru rμ ρ = as the rigidities, densities and displacements of the upper half space, sandwiched layer, lower 
half space respectively.  
For upper ( 1M ) and lower ( 3M ) semi-infinite medium, 

2 2 2

1 1 1

2 2 2 2

1

1u u u

y z tβ

∂ ∂ ∂
+ =

∂ ∂ ∂
                 (2) 

and  
2 2 2

3 3 3

2 2 2 2

3

1u u u

y z tβ

∂ ∂ ∂
+ =

∂ ∂ ∂
                              (3) 

where 1
1

1

μ
β

ρ
=  and 3

3

3

μ
β

ρ
=  are the shear wave speed in the semi-infinite medium 1M and 3M . 

For the monoclinic magnetoelastic layer ( 2M ), the stain-displacement relations for monoclinic layer are  

1 2 3 4 5 6, , , , ,
u v w w v u w v u

S S S S S S
x y z y z z x x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = = + = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

             (4) 

where , ,u v w  are displacement components in the direction x, y, z respectively, and 

  ( 1, 2, ..., 6)iS i =  are the strain components. 
Also, the stress-strain relation for a rotated y-cut quartz plate, which exhibits monoclinic symmetry with x being the diagonal axis 
are 

1 11 1 12 2 13 3 14 4

2 12 1 22 2 23 3 24 4

3 13 1 23 2 33 3 34 4

4 14 1 24 2 34 3 44 4

5 55 5 56 6

6 56 5 66 6

,

,

,

,

,

T C S C S C S C S

T C S C S C S C S

T C S C S C S C S

T C S C S C S C S

T C S C S

T C S C S

= + + +

= + + +

= + + +

= + + +

= +

= +

            (5) 

where ( )1, 2, ..., 6iT i =  are the stress components and ( )1, 2, ..., 6ij jiC C i= =  are the elastic constants. 
Equations governing the propagation of small elastic disturbances in a perfectly conducting monoclinic medium having 
electromagnetic force ×J B  (the Lorentz force, J being the electric current density and B being the magnetic induction vector) as 
the only body force are 

( )

( )

( )

2

6 51 2
2 2

2

6 2 4 2
2 2

2

5 34 2
2 2

,

,

x

y

z

T TT u
J B

x y z t

T T T v
J B

x y z t

T TT w
J B

x y z t

ρ

ρ

ρ

∂ ∂∂ ∂
+ + + × =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + × =

∂ ∂ ∂ ∂

∂ ∂∂ ∂
+ + + × =

∂ ∂ ∂ ∂

            (6) 

where 2ρ  is the density of the layer. 
For SH wave propagating in the z- direction and causing displacement in the x- direction only, we shall assume that 

( )2 2 2 2, , , 0u u y z t v w= = = and 0.
x

∂
≡

∂
           (7) 

Using  Eqs. (4) and (7), the stress-strain relation (5) becomes 
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1 2 3 4

2 2
5 55 56

2 2
6 56 66

0,

,

.

T T T T

u u
T C C

z y

u u
T C C

z y

= = = =

∂ ∂
= +

∂ ∂

∂ ∂
= +

∂ ∂

             (8) 

Using Eq. (8) in Eq. (6), we have 

( )
2 2 2 2

2 2 2 2
66 56 55 22 2 2

2 .
x

u u u u
C C C J B

y y z z t
ρ

∂ ∂ ∂ ∂
+ + + × =

∂ ∂ ∂ ∂ ∂
         (9) 

The well known Maxwell’s equations governing the electromagnetic field are . 0, ,
t

∂
= × = − × =

∂
∇ ∇ ∇

B
B E H J  with  

, i
e

u

t
μ σ

∂
= = + ×

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

B H J E B                         (10) 

where E  is the induced electric field, J  is the current density vector and magnetic field H  includes both primary and induced 
magnetic fields. eμ and σ are the induced permeability and conduction coefficient respectively. 

The liberalized Maxwell’s stress tensor ( )0 xM

ijτ due to the magnetic field is given by ( ) ( )0 xM

ij e i j j i k k ijH h H h H hτ μ δ= + − . 

Let ( )1 2 3, ,H H H=H  and ( )1 2 3, ,i h h h=h  where ih  is the change in the magnetic field. In writing the above equations, we have 
neglected the displacement current. 
From Eq. (10), we get 

{ }2 .i
e

u

t t
μ σ

∂∂
∇ = + × ×

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

∇
H

H H                        (11) 

In component form, Eq. (11) can be written as 

2 2
2 3

21
1

22
2

23
3

1
,

1
,

1
.

e

e

e

u u
H H

H t tH
t y z

H
H

t

H
H

t

μ σ

μ σ

μ σ

∂ ∂
∂ ∂

∂ ∂ ∂= ∇ + +
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∂

∂
= ∇
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               (12) 

For perfectly conducting medium, σ → ∞  the equation (12) become 

32 0,
HH

t t

∂∂
= =

∂ ∂
                                   (13) 

and  

2 2
2 3

1 .

u u
H H

H t t
t y z

∂ ∂
∂ ∂

∂ ∂ ∂= +
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠                        (14) 

It is clear from Eq. (13) that there is no perturbation in 2H  and 3H , however from Eq. (14) there may be perturbation in 1H . 

Therefore, taking small perturbation, say 1h in 1H , we have 

1 01 1 2 02,H H h H H= + = and 3 03H H= , where ( )01 02 03, ,H H H are components of the initial magnetic field 0H . 

We can write ( )0 0 00, cos , sinH Hφ φ=H , where 0 0H = H  and φ  is the angle at which the wave crosses the magnetic field. 
Thus we have 

( )1 0 0, cos , sinh H Hφ φ=H .                        (15) 

We shall take initial value of 1h as 1 0h = . Using Eq. (15) in Eq. (14), we get 
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2 2
0 0

1

cos sin
.

u u
H H

h t t
t y z

φ φ
∂ ∂

∂ ∂
∂ ∂ ∂= +
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠                        (16) 

Integrating with respect to t , we get 

2 2
1 0 0cos sin .

u u
h H H

y z
φ φ
∂ ∂

= +
∂ ∂

                        (17) 

Considering ( ) ( )
2

.
2

H
= − × × +

⎛ ⎞
⎜ ⎟
⎝ ⎠

∇ ∇ ∇H H H H  and Eqs (10), we get 

( )
2

. .
2e

H
μ× = − +
⎧ ⎛ ⎞ ⎫
⎨ ⎬⎜ ⎟
⎩ ⎝ ⎠ ⎭

∇ ∇J B H H                        (18) 

In the component form Eq. (18) can be written as  
( ) ( )

( )
2 2 2

2 2 22 2 2
0 2 2

0

and

cos sin 2 sin .

y z

ex

u u u
H

y y z z
μ φ φ φ

× = × =
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× = + +
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⎛ ⎞
⎜ ⎟
⎝ ⎠

J B J B
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                          (19) 

Using Eqs. (9) and (19), we find the equation of motion for the magnetoelastic monoclinic layer in the form 
2 2 2 2

2 2 2 2
66 56 55 22 2 2

2 .
u u u u

M M M
y y z z t

ρ
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂ ∂

                       (20) 

where 
( )2

66 66

255
55 66
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φ φ
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⎝ ⎠
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Where 
2

0

66

e
H

H
m

C

μ
=  is monoclinic-magnetoelastic coupling parameter. Here in equations (2), (3) and (20) suffixes “1”, “2” and 

“3” are used to represent the upper semi-infinite medium ( 1M ), monoclinic layer ( 2M ) and lower semi-infinite medium ( 3M ) 
respectively. 
The boundary conditions are as follows: 
(i) The stresses are continuous at the interface of 1M  and 2M , 

1 2 2
1 56 66

u u u
M M at y H

y z y
μ

∂ ∂ ∂
= + = −

∂ ∂ ∂
.                      (22) 

(ii) The Displacements are continuous at the interface of 1M  and 2M , 

1 2u u at y H= = − .                         (23) 

  (iii) The stresses are continuous at the interface of 2M  and 3M , 

( ) ( ) ( )3 32 2
56 55 66 56 3

u uu u
M M h M M h h at y h z

z y y z
ε ε μ ε ε

∂ ∂∂ ∂
′ ′ ′− + − = − =

∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

                  (24) 

where 
( )dh z

h
dz

′ = . 

(iv) The Displacements are continuous at the interface of 2M  and 3M , 

( )2 3u u at y h zε= = .                         (25) 
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3. Solution of the problem 
 
Let us assume ( )( , ) 1, 2, 3i t

i iu U y z e iω= = . Under this assumption equations (2), (3) and (20) 
reduce to 

2 2 2

1 1
12 2 2

1

0,
U U

U
y z

ω

β

∂ ∂
+ + =

∂ ∂
                        (26) 

2 2 2

3 3
32 2 2

3

0
U U

U
y z

ω

β

∂ ∂
+ + =

∂ ∂
                        (27) 

and 
2 2 2

22 2 2
66 56 55 2 22 2

2 0.
U U U

M M M U
y y z z

ρ ω
∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

                       (28) 

where ω  is the circular frequency. 
Defining the Fourier transform ( , )rU y η  of ( , ) ( 1, 2, 3)rU y z r =  as 

( , ) ( , ) ,i z

r rU y U y z e dzηη
∞

−∞

= ∫  

We find the inverse Fourier transform as 
1

( , ) ( , ) .
2

i z

r rU y z U y e dηη η
π

∞
−

−∞

= ∫  

Using Fourier transform in equations (26), (27) and (28), we have 
2

21
1 12

0,
d U

p U
dy

− =                          (29) 

2
23

3 32
0

d U
p U
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and 
2

22 2
2 22

0
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a p U
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where  
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2 2 2 2 2 255 56
1 2 32 2 2

1 2 66 3 66
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p p p a i
M M

ω ω ω
η η η η

β β β
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The appropriate solutions of Eqs. (29) and (30) can be taken as 
1

1

p yU A e=                           (32) 
and 

3

3 .p yU E e−=                           (33) 
The solution of Eq. (31) is 

2
2 ( cos sin )

a
y

U e B py D py
−

= +                                      (34) 
where 

 
1/ 222 2
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M Ma
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ω
η η

β
= − = − +

⎛ ⎞
⎜ ⎟
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The constants , , andA B D E  are functions of η . 

The displacements in 
1 2

M , M  and 3M are 

1

1

1
( , )

2
p y i zU y z A e e dη η

π

∞
−

−∞

= ∫ ,                                  (35) 
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( )2
2

1
( , ) cos sin ,

2

a
y

i zU y z e B py D py e dη η
π

∞
−
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−∞

= +∫                                    (36) 

and 

3 3 3

3

3

1 2
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p y p y p d i zU y z E e e e e d

p
η η

π

∞
− − −

−∞
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∫ .                       (37) 

where the second term in the integrand of 3U  is introduced due to the effect of source at S in 3M  (Willis, 1948). We set the 
following approximations due to small value of ε  

0 1 0 1 0 1, , .B B B D D D E E Eε ε ε≅ + ≅ + ≅ +                        (38) 

   Since the boundary is not uniform at the interface of 2M  and 3M  so the term , andB D E  appearing in Eq.(38) are also function 
of ε , expanding these terms in ascending powers of ε  and keeping in view that ε  is small and so retaining the term up to the first 
order of ε , hence approximated as in Eq.(38). These assumptions are justified in the real earth model where the depth H ′ of the 
irregular boundary is too small with respect to the length of the boundary s . 
   Also for small ε , following approximations can be accepted 

1 , cos 1, sinhe h p h p h p hνε νε ε ε ε± ≅ ± ≅ ≅ . 
where ν  is any quantity. 
Using the boundary conditions (i), (ii) and (iv), we have the following equations 

( ) ( ){ }( ) ( ){

( ) } ( ) ( ){ }( )

1

2
56 0 1 0 1 66 0 1

2 2
0 1 66 0 1 0 1

1 1
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sin sin cos
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D D pH e M B B pH D D pH p e
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ε ε η ε
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( ) ( ){ } 12
0 1 0 1cos sin

aH
p HB B pH D D pH e Aeε ε −+ − + =                       (40) 

and 

3
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0 0 3 0

0 0 1 1
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2
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a
B pD p E e h z e d
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∫

∫
                      (41) 

Now applying the Fourier transform of ( )h z defined as  

( ) ( ) i zh h z e dzλλ
∞

−∞

= ∫                          (42) 

so that 
1

( ) ( )
2

i zh z h e dλλ λ
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and 
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i zi
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π

∞
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′ = − ∫ .                        (44) 

Now applying the transform (43) and (44) on (41), we have 
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∫
                      (45) 
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   Taking kη λ+ =  for the inner integral in the left-hand side of the Eq. (45), so that λ  may be treated as a constant such that 
d dkη = , replacing η  by k  in the right-hand side of the Eq.(45), and finally after taking Fourier transform as defined above we 
can have 

3

0 0 1 1 1

3

2
( ) ( )p dB E e B E R k

p
ε ε−− − + − =

⎛ ⎞
⎜ ⎟
⎝ ⎠

                       (46) 

where  
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λ λ
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From the boundary condition (iii), we obtain 
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where 

( )3

3

2
2 2

2 66 0 0 0 56 0 0 3 3 0 3

56 0 0 55 0 3 0

3

1
( ) 2

2 4 2

2
( ) .

2

p d

k

p d

a a
R k M B p B apD M B pD ik p E p e

a
iM D p B M kB k E e h d

p

η λ

μ
π

λ μ λ λ

∞
−

−∞

= −

−

= − − + − − +

+ − + − +

⎡⎧ ⎛ ⎞ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣⎩ ⎝ ⎠ ⎭

⎧ ⎛ ⎞⎫⎤⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎥⎝ ⎠⎩ ⎝ ⎠⎭⎦

∫
      (49) 

Equating the absolute term ( term not containingε ) and the coefficient of ε  from Eqs. (39), 
(40), (46) and (48) we get 
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2
0 56 66 66
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0 56 66 66 1 1
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( ) 12
0 0cos sin ,

aH
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1 1 1 ( ),B E R k− =                                        (55) 

( ) ( )3

0 66 56 66 0 3 3 0 2 0,
2

p da
B M ikM pM D p E eμ −+ − − − =⎛ ⎞
⎜ ⎟
⎝ ⎠

                     (56) 

and 
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Solving the above eight equations, we get 
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With the help of above obtained values the displacement in the monoclinic layer is given by 
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From Eq. (1), the interface for the rectangular irregularity gives 
2
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Further on simplification, we get 
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and 
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   Here the argument of ( )kψ λ−  is because of kη λ+ = . Following the asymptotic formula of Willis (1948) and neglecting the 
terms containing 2 / s  and higher powers of  2 / s  for large s , we get 
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 (61) 
Hence on using Eq. (61) on Eq. (60) one can have 
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Therefore, in view of Eq. (62) the displacement in the magnetoelastic monoclinic layer is 
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Since the value of this integral depends entirely on the contribution of the poles of the Integrand, the dispersion equation for SH 
waves is given by 
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The poles are located at the roots of above equation which has been examined in our study of shear waves (cf. Achenbach, 1975). 
Eq. (63) may be rewritten as 

2 3 4 5 6 7 8( ) 0
2

H
D D D D D D D

′
+ + − + + + =                                    (64) 

2 2 2 2

2 66 1 1 66 56 66 66

2 2

3 1 1 66 56 1 1 56 3 3 56

4 3 3 66 3 3 66 3 3 1 1

2 2 2 2 2

5 3 3 66 3 66 1 3

4 tan 4 4 tan tan ,

2 tan 4 tan 4 tan 4 tan ,

2 tan 4 4 tan ,

2 tan 2 8

D p M pH pp M ikaM M pH a M pH

D ap M pH k M pH ikp M pH ikp M pH

D p aM pH p pM p p pH

D a p M pH a pp M p p p

μ

μ μ μ

μ μ μ μ

μ

= − + +

= − + −

= − − −

= − − − 2

1 66 3

2 2 2 2 2

6 3 3 66 3 3 66 3 66

2 2 3 2

7 3 3 66 3 56 66 3 66

2 2 2 2 3 2

8 3 56 3 56 3 56 66 3 66

tan 2 ( ),

4 tan 8 tan 4 tan ,

8 4 tan tan ,

4 tan 8 8 8 .

M pH p E k

D iak p M pH p p M pH ap p M pH

D ikpp M ika p M M pH a p M pH

D ak p M pH k pp M iakpp M M p p M

μ

μ μ

μ

+

= − − +

= + +

= − + − −

 



Chattopadhyay et al. / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 228-244 238

Let us assume that the wave is propagating along the surface with c  as the common wave velocity, and then we can set the 
following 
  1 1 3 3, , andp kP p kP p kP a kA= = = =   
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In the view of above setting, Eq. (64) gives 
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The real part of the Eq. (65) gives the dispersion equation of SH waves. The dispersion relation for the SH waves is 
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4. Particular cases 
 
Case 1: 
When 0Hm =  the dispersion relation (66) reduces to  
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which is the dispersion relation for SH waves propagating in an irregular monoclinic layer sandwiched between two isotropic half 
spaces. 
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Case 2: 
When 1 0 and 0Hmμ = =  the dispersion relation (66) reduces to  
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Which is the result obtained by Chattopadhyay et al. (2008) for SH waves propagating in an irregular monoclinic layer lying over 
an isotropic half space. 
 
Case 3: 
When  0Hm =  and 0H ′ =  the dispersion relation (66) reduces to  

22

55 56 1 1 66 3 3 66

2 2 2 2

2 66 66 66 1 3 1 3

tan
C C PP C PP Cc

kH
C C P C PP

μ μ

β μ μ

+
− + =

−

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
 

which is the dispersion relation for SH waves propagating in a regular monoclinic layer sandwiched between two isotropic half 
spaces. 
 
Case 4: 
When  66 55 2 56, 0, 0HC C C mμ= = = =  and 0H ′ =  the dispersion relation (66) reduces to  
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This is the dispersion relation for SH waves propagating in a regular isotropic layer sandwiched between two isotropic half spaces. 
 
Case 5: 
When 66 55 2 56 1, 0, 0 and 0HC C C mμ μ= = = = =  the dispersion relation (66) reduces to  
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This is the result obtained by Chattopadhyay (1975) for SH waves propagating in an irregular isotropic layer lying over an 
isotropic half space. 
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Case 6: 
When  1 0, 0Hmμ = =  and 0H ′ =  the dispersion relation (66) reduces to  
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which is the result obtained by Chattopadhyay and Pal (1983) for SH waves propagating in a regular monoclinic layer lying over 
an isotropic half space. 
 
 
5. Numerical examples 
 
For the case of an irregular monoclinic magnetoelastic layer between two isotropic half spaces we take the following data 
 
(i) For upper isotropic half space, 1M  (Gubbins, 1990) 

 
10 2

1

3

1

7.10 10 N/m ,

3, 321Kg/m .

μ

ρ

= ×

=
 

(ii) For monoclinic layer, 2M (Tiersten, 1969) 
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66 1
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(iii) For lower isotropic half space, 3M  (Gubbins, 1990) 
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Moreover, the following data are used 
2

0

66

0.0, 0.35, 0.65, 0.4, 0.8; 10 .e
H

H
m

C

μ
φ °= = =  

   The effect of magnetic field and irregular boundary on the propagation of plane SH waves  propagating in perfectly conducting 
monoclinic magnetoelastic layer with rectangular irregularity sandwiched between two isotropic elastic half spaces has been 
depicted by means of graphs. Figure 2 to 6 gives the variation of non-dimensional phase velocity ( )2/c β  with respect to non-

dimensional wave number kH  for different values of monoclinic-magnetoelastic coupling parameters ( )Hm . The small change in 
the non-dimensional wave number produces substantial change in non-dimensional phase velocity. In each of these figures graphs 
are drawn for different sizes of irregularity. It is observed that as the size of irregularity ( )/H H′  increases, the phase velocity 

decreases. Also with the increase of parameter ( )Hm , the phase velocity decreases. 
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Figure 2:  Dimensionless phase velocity against dimensionless wave number for 0.0Hm = . 
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Figure 3: Dimensionless phase velocity against dimensionless wave number for 0.035Hm = . 
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Figure 4: Dimensionless phase velocity against dimensionless wave number for 0.065Hm = . 
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Figure 5: Dimensionless phase velocity against dimensionless wave number for 0.4Hm = . 
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Figure 6: Dimensionless phase velocity against dimensionless wave number for 0.8Hm = . 

 
6. Conclusion 
 
   In this paper the dispersion relation has been obtained in the closed form. The effect of size of irregularity and magnetoelastic 
monoclinic parameter on the phase velocity of SH waves has been depicted and shown by means of graphs.  From the above 
studies it can be concluded that in a monoclinic medium, with the increase in the size of irregularity the phase velocity decreases. 
Also, with the increase in the magnetoelastic monoclinic parameter the phase velocity retains the same nature. In the isotropic 
case, when irregularity and magnetic field are absent, the dispersion equation is matched with the classical SH wave equation. The 
present study has its application specially to the problem of waves and vibrations where the wave signals have to travel through 
different layers of different material properties and containing irregularities due to continental margin, mountain roots etc.   These 
results can also be utilized in the interpretation and analysis of data of geophysical studies. The findings will be useful in 
forecasting formation details at greater depth through signal processing and seismic data analysis. The present study may be 
effectively utilized to generate initial data prior to exploitation of the formation. This study may be useful to geophysicist and 
metallurgist for analysis of rock and material structures through Non-Destructive Testing (NDT).  
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