

MultiCraft

International Journal of Engineering, Science and Technology

Vol. 1, No. 1, 2009, pp. 283-290

INTERNATIONAL
JOURNAL OF

ENGINEERING,
SCIENCE AND
TECHNOLOGY

 www.ijest-ng.com
© 2009 MultiCraft Limited. All rights reserved

Technical note

New table look-up lossless compression method based on binary

index archiving

R. Rădescu

Polytechnic University of Bucharest, 1-3, Iuliu Maniu Blvd, Sector 6, Bucharest, Romania.
E-mail: rradescu@atm.neuro.pub.ro, phone: +40-21-402-48-73; fax: +40-21-402-48-21

Abstract

 This paper intends to present a common use archiver, made up following the dictionary technique and using the index
archiving method as a simple and original procedure. The original contribution of the paper consists in the structure of the
archived file and in the transformation of the dictionary codes into archived characters. This archiver is useful in order to
accomplish the lossless compression for any file types. The application can offer important conclusions regarding the
compression performances and the influence of the chosen dictionary over the parameters.

Keywords: Archive, data compression, dictionary codes, lossless algorithms

1. Introduction

 The archivers, using dictionary techniques (Murgan, 1998; Rădescu, 2003a,b), can be very efficient, especially when using some
files that have different words which are very often repeated. This happens because of the fact that the archivers generate their
dictionaries during the archiving process, this way the program “learns” new words. Almost all the archiving programs, such as
Zip, PKZip, LHArc, ARJ, GZIP, RAR etc., make use of the LZ77 and LZSS algorithms or their variants (Cover, 1991; Storer,
1998; Rao and Yip, 2001; Salomon, 2007, 2008; van Lint, 1992; Sayood, 2005; Pu, 2006; Hankerson et al., 2003; Wayner, 1999,
Nelson, 1991) after the files are merged together in a reversible fashion. Because the application can make an archive that contains
more files, the archive has to be very well configured, so that during the unpacking of the files it can be separated with lossless
information.

2. Structure of the archived file

 The archived file is composed from header, followed by archived data. The header is formed from general header, followed by n
archived file headers, where n is the number of files in the archive. For the beginning, the structure of the general header is
presented (an example could be given bit by bit):

• 3 bytes to store 3 letters (CBA). These letters are used as the identification of the archive. It is very important to
verify these characters in order not to let the archiver to try unpacking a file that is not a CBA archive.

• 2 bytes to store the maximum length of the dictionary.
• 2 bytes to store the minimum length of the dictionary.
• 1 byte to store the settings. This byte is used to store 3 binary validation variables:

o 1 bit – if file has path;
o 1 bit – if we keep the unpacked size of the file;
o 1 bit – if file has password.

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

284

• 1 byte to store the length of the password (optional).
• n bytes to store the password, where n is the length of the password (optional).
• 2 bytes to store the number of files.

 After describing the general header, the archiver repeats the following sequence for every new added archive file (archived file
header):

• 2 bytes to store the length of the string that contains the path of the file (optional).
• s bytes for the s characters of the string that contains the path of the file (optional).
• 1 byte for the length of the file name.
• f bytes for the f characters of the file name.
• 4 bytes to store the unpacked size of the file (optional).
• 1 byte for the archiver type. Some files can only be copied in the archive, because their archiving would cause the

increasing of the file size.
• 4 bytes for the size of the packed file.
• nr bytes for the nr characters of the packed file.

3. Packing and unpacking of the files

The process of packing and unpacking of files has 2 stages:
• the transformation of the initial characters into dictionary codes;
• the transformation of the dictionary codes into archive characters.

Transformation of the initial characters into dictionary codes

This stage is accomplished using the Lempel-Ziv-Welch (LZW) dictionary compression (Murgan, 1998; Rădescu, 2003a,b,c;
Rădescu and Olteanu, 2005; Rădescu and Ene, 2005). Initially, it begins with a 257-word dictionary, i.e., the 256 ASCII characters
and a special word that indicates the end of the file. The application allows a dictionary limitation. Therefore, all the values that
exceed the minimum size of the dictionary will be deleted every time the maximum size of the dictionary is obtained.

The user can set both the maximum and minimum values. According to the chosen values, the number of the packed files and
the compression time change. The choice of a too large maximum value of the dictionary results in a very long waiting time,
getting a too small dimension improvement. The optimal values for the two limitation dictionary variables are different from one
file to another.

Transformation of the dictionary codes into archive characters

This method relies on tackling from two different perspectives of two strings of numbers, having the same basic table.
Dictionary codes greater than 256 elements cannot be written in the archive using only one byte. Therefore, it is necessary to have
a 2 bytes space. This space is too large comparing it to the necessary one, especially in the initial phases, where the dictionary has
not a large size.

From the first steps, the dictionary has a maximum of 512 elements, and the dictionary code can be written on 9 bits from the 16
available bits. Hence, 7 out of the 16 available bits remain unused, meaning almost half of the overall space. Grouping 8
codewords, 8 × 9 bits = 72 bits are needed. It can be written on 72 bits / 8 bits = 9 bytes, comparing to the 8 codewords × 2 bytes
(9 bits) = 16 bytes usually needed. Even for dictionary larger than 512 elements, this method will reduce the necessary code to
store dictionary codes. Table 1 refers to the transformation of codewords (the dictionary indexes) into archive characters.

Initially, it works with a 257-word dictionary (256 characters + 1 end of file control character). Table 1 is, in fact, an example in
which the dictionary has a number of words ≤ 512. On the first column (423, 137, 481, 45, …) there are the codewords (dictionary
indexes), which have values up to 512 that can be written on 9 bits. In order to have the certainty to obtain archive characters (8
bits), 8 codewords are used each time.

The codewords (423, 137, 481, 45, …) are binary written on the rows. This means that it will be 1byte (8bits) on each column of
the table (the archive characters):

 (8 codewords) × (9 bits) = (9 archive characters) × (8 bits) (1)

The first row (161, 231, 44, 182, …) contains the character words obtained by transforming every column from binary to the
10th base. For example,

161 = 1×27+0×26+1×25+0×24+0×23+0×22+0×21+1×20 (2)

It works similarly for the other values: 231, 44, 182, …

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

285

If the dictionary has between 512 and 1024 words, the procedure is similar, Table I having 8 rows, but one extra column,
because every dictionary word needs 10 bits (10 columns):

(8 codewords) × (10 bits) = (10 archive characters) × (8 bits) (3)

Table 1. Transformation of dictionary codes into archive characters

ARCHIVE CHARACTERS→

CODEWORDS↓
161 231 44 182 14 93 152 137 241

423 1 1 0 1 0 0 1 1 1

137 0 1 0 0 0 1 0 0 1

481 1 1 1 1 0 0 0 0 1

45 0 0 0 1 0 1 1 0 1

94 0 0 1 0 1 1 1 1 0

248 0 1 1 1 1 1 0 0 0

176 0 1 0 1 1 0 0 0 0

395 1 1 0 0 0 1 0 1 1

4. Experimental results

In order to test the application, different file types are used, so that one can remark the behavior of the archive (Rădescu and
Balasan, 2004; Rădescu and Popa, 2004; Rădescu and Harbatovschi, 2006; Rădescu and Balanescu, 2006; Rădescu and Bontas,
2008; Rădescu, 2009). The characteristics of the test files are presented in Table 2.

Table 2 Experimental files

File type File no. Min. size
[KB]

Max. size
[KB]

Total size
[B]

Average size
[B]

XLS 6 1.08 84.5 224420 37403

DOC 3 44 77.5 199680 66560

PPS 2 111 179 296960 148480

PAS 6 0.53 1.81 6247 1041

EXE 6 11.4 83.8 195050 32508

RAR 3 16.7 100 163185 54395

BMP 5 1.24 47.5 120148 24030

WAV 4 1.16 78.9 97286 24322

DLL 6 7 69 147968 24661

MID 3 21.5 39.1 86425 28808

Next, the results of the compression are shown according to the maximum size of the dictionary. For the maximum size of 512

words and the minimum size of 256 words, the compression ratio and the packing time are shown in Table 3.

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

286

Table 3 Compression ratio and compression time for the parameters (256, 512)

File type Size
[B]

Compression
ratio [%]

Compression
time [s]

Compression
speed [KB/s]

XLS 111924 49.87 42 5.22

DOC 82044 41.09 33 5.91

PPS 257445 86.69 70 4.14

PAS 3717 59.50 2 3.05

EXE 153063 78.47 45 4.23

RAR 163185 100.00 44 3.62

BMP 70209 58.44 24 4.89

WAV 96723 99.42 26 3.65

DLL 108927 73.62 33 4.38

MID 70956 82.10 20 4.22

For the maximum size of 640 words and the minimum size of 256 words, the compression ratio and time are shown in Table 4.

Table 4 Compression ratio and compression time for the parameters (256, 640)

File type Size
[B]

Compression
ratio [%]

Compression
time [s]

Compression
speed [KB/s]

XLS 103614 46.17 42 5.22

DOC 79726 39.93 35 5.57

PPS 264199 88.97 73 3.97

PAS 3458 55.35 2 3.05

EXE 152520 78.20 45 4.23

RAR 163185 100.00 45 3.54

BMP 68126 56.70 24 4.89

WAV 96506 99.20 27 3.52

DLL 107743 72.82 34 4.25

MID 69431 80.34 20 4.22

 For the maximum size of 768 words and the minimum size of 256 words, the compression ratio and compression time are

shown in Table 6.

Table 5 Compression ratio and compression time for the parameters (256, 768)

File type Size
[B]

Compression
ratio [%]

Compression
time [s]

Compression
speed [KB/s]

XLS 97888 43.62 42 5.22

DOC 77860 38.99 36 5.42

PPS 266541 89.76 78 3.72

PAS 3414 54.65 1 6.10

EXE 151155 77.50 46 4.14

RAR 163185 100.00 48 3.32

BMP 66000 54.93 25 4.69

WAV 96292 98.98 28 3.39

DLL 106453 71.94 36 4.01

MID 67374 77.96 22 3.84

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

287

For the maximum size of 1024 words and the minimum size of 256 words, the compression ratio and compression time are shown
in Table 6.

Table 6 Compression ratio and compression time for the parameters (256, 1024)

File type Size
[B]

Compression
ratio [%]

Compression
time [s]

Compression
speed [KB/s]

XLS 90852 40.48 45 4.87

DOC 76123 38.12 39 5.00

PPS 268006 90.25 87 3.33

PAS 3396 54.36 3 2.03

EXE 150764 77.30 48 3.97

RAR 163185 100.00 53 3.01

BMP 64273 53.49 27 4.35

WAV 96056 98.74 30 3.17

DLL 15846 10.71 39 3.71

MID 66594 77.05 23 3.67

The diagrams shown in Figures 1÷4 are obtained from Tables 2÷6.

Figure 1. Compression speed [KB/s] for different file types [extensions].

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

288

Figure 2. Compression ratio [%] for different file types [extensions].

Figure 3. Compression time [s] according to the maximum size of the dictionary [KB].

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

289

Figure 4. Compression ratio [%] according to the maximum size of the dictionary [KB].

5. Conclusion

 The application described in this paper represents a good example of the way the archive performance and the waiting time are
determined in the case of the alternation of the dictionary, making thus easier to understand the dictionary-based lossless
compression. At the same time, the indexes archiving method can be very efficiently used not only by specialized archivers (Grupo
RAR, 2009), but also in programs that manage information. This method is also recommended for storing the information for long
time, where it is necessary only to check periodically the information, because of the good archiving speed.

References

Cover T.M., Thomas J.A., 1991. Elements of information theory, Wiley, New York.
Hankerson D., Harris G.A., Johnson P.D., Jr., 2003. Introduction to information theory and data compression, 2nd Ed.,

Chapman&Hall/CRC.
Nelson M., 1991. The Data compression book, IDG Books Worldwide, Inc. Foster City, CA, USA.
Murgan A.T., 1998. Principles of information theory in information engineering and communication engineering, Romanian

Academy Press, Bucharest, (in Romanian).
Pu I. M., 2006. Fundamental data compression, Elsevier.
Rădescu R., 2003. Digital information transmission – practical works, Polytechnic Press, Bucharest, (in Romanian).
Rădescu R., 2003. Lossless compression – methods and applications, Matrix Rom Press, Bucharest, (in Romanian).
Rădescu R., 2003. Integrated study system of lossless data compression, Symposium of Educational Technologies on Electronic

Platforms in Engineering Higher Education, Technical University of Civil Engineering of Bucharest, 9-10 May 2003, pp. 415-
422, Conspress Bucharest, (in Romanian).

Rădescu R., Bălăşan I., 2004. “Recent results in lossless text compression using the burrows-wheeler transform (BWT),
Proceedings of IEEE International Conference on Communications 2004 (COMM04), pp. 105-110, Bucharest, Romania, 3-5
June.

 Rădescu / International Journal of Engineering, Science and Technology, Vol. 1, No. 1, 2009, pp. 283-290

290

Rădescu R., Popa R., 2004. On the performances of symbol ranking text compression method, Scientific Bulletin of the
“Politehnica” University of Timişoara, Romania, Transactions on Electronics and Communications, special issue dedicated to
the Electronics and Telecommunications Symposium ETC 2004, 22-23 October 2004, Vol. 49 (63), No. 2, pp. 25-27.

Rădescu R., Şt. Olteanu, 2005. “Text and image compression using derived LZW algorithms, EEA Revue of Electro-technique,
Electronics and Automatics, Vol. 53, No. 4, pp. 7-10, October-December (in Romanian).

Rădescu R., Ene Al., 2005. Interactive learning of lossless compression methods, Proceedings of the Symposium “Educational
Technologies on Electronic Platforms in Engineering Higher Education” (TEPE 2005), Technical University of Civil
Engineering of Bucharest, 27-28 May, pp. 211-218, CONSPRESS Publishing House.

Rădescu R., Harbatovschi C., 2006. Compression methods using prediction by partial matching, Proceedings of the 6th
International Conference Communications 2006 (COMM2006), pp. 65-68, Bucharest, Romania, 8-10 June.

Rădescu R., Bălănescu C., 2006. Lossless text compression using the star (*) transform, Proceedings of the 6th International
Conference Communications 2006 (COMM2006), pp. 69-71, Bucharest, Romania, 8-10 June.

Rădescu R., C. Bontaş, 2008. Design and implementation of a dictionary-based archiver, Scientific Bulletin, Electrical Engineering
Series C, University Politehnica of Bucharest, Vol. 70, Nr. 3, pp. 21-28.

Rădescu R., 2009. Transform methods used in lossless compression of text files, Romanian Journal of Information Science and
Technology (ROMJIST), Publishing House of the Romanian Academy, Bucharest, Vol. 12, Nr. 1, pp. 101-115.

Rao K.R., P.C. Yip (editors), 2001. The transform and data compression handbook, Boca Raton, CRC Press LLC.
Salomon D., 2007. Data Compression: The complete reference, 3rd Ed., Springer, Berlin-New York.
Salomon D., 2008. Concise Introduction to data compression, Springer.
Sayood K. (editor), 2005. Introduction to data compression. 3rd Edition, Morgan Kaufmann Series in Multimedia Information and

Systems.
Storer J.A., 1998. Data compression: Methods and theory, Computer Science Press.
van Lint J.H., 1992. Introduction to coding theory, Springer, Berlin-New York.
Wayner P., 1999. Data compression for real programmers, Elsevier.
www.rar.com, Grupo RAR (accessed December 2009)

Biographical notes

Radu Rădescu is an Associate Professor at the Faculty of Electronics, Telecommunications and Information Technology from the Polytechnic
University of Bucharest, Romania. In 1992, he registered as a member of the IEEE Information Theory Society. He became PhD in Electronics in
1998. He made traineeships at technical universities in Darmstadt, Germany (1997) and Lyon, France (1999-2000 and 2001-2002, specializing in
e-learning). He prepared 15 books and manuals, 14 guides for practical works, 7 new disciplines of study, and over 110 scientific papers. He
worked on 24 national and international research projects. He participated in cooperation programs with the Federal Polytechnic School in
Lausanne, Switzerland, Södertörns University of Stockholm, Sweden, and Politecnico di Torino, Italy. In 2006, he was awarded the Creativity
Prize at the National Conference on Virtual Learning in Bucharest. His major scientific contributions are in the fields of information theory,
signal processing, e-learning systems, computer architecture, peripherals, and multimedia.

Received September 2009
Accepted October 2009
Final acceptance in revised form December 2009

