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Abstract 
 
   In this paper the physical meaning of a nonlinear partial differential equation (nPDE) of the fourth order relating to wave 
theory is deduced to the first time. The equation under consideration belongs to a class of less studied nPDEs and an explicit 
physical meaning is not known until now. This paper however bridges the gap between some known results and a concrete 
application concerning wave theory. We show how one can derive locally supercritical solitary waves as well as locally and non-
locally forced supercritical waves and analytical solutions are given explicitly. 
 
Keywords: Nonlinear partial differential equations, evolution equations, supercritical solitary waves, locally supercritical waves, 
non-locally supercritical waves. 

 
 
1. Introduction - outline of the problem - some known results 
 
   The scaled nPDE e.g. (Huber, 2008a,b) in (1+1) dimension under consideration is given by: 
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where the function )t,x(u  describes a wave propagation depending on time t. We seek for classes of solutions for 

which )t,x(Fu = , where ⊂∈ Dand)D(CF 4 R2. Hint: In what follows, we suppress the item ‘classes’, so ‘classes of 
solutions’ are simply ‘solutions’.  
   In recent papers (Huber, 2005, 2008a), the tanh-approach was used to calculate soliton-solutions of the nPDE, eq.(1). 
Alternatively, new solutions can also found in (Huber, 2005, 2008a,b) and (Huber, 2007). 
It is known that there exist two different types of single soliton-solutions; regular solutions as well as irregular solutions which 
have singularities where the arguments of the traveling waves vanish.  
   Further, the author has proven the Painlevé-conjecture (Huber, 2008a), so we conclude that the nPDE, eq.(1) possesses the 
Painlevé-property. It was shown that general solutions of eq.(1) are expressed in terms of elliptic functions by use of the 
Weierstrassian expansion method (Huber, 2008a) and moreover, the application of the classical Lie group formalism also leads to 
new types of solutions (Huber, 2008a). 
   Although several solutions of eq.(1) exist no direct connection to a physical problems is known. Now, the purpose is to present a 
concrete application of physical relevance to the first time. 
We start by using a frame of reference introducing )(f)t,x(u ξ=  with tx λξ −= , .const=λ  into eq.(1) to derive the nODE 
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Putting )(fh 2=  as new dependent variable we have the following nODE of the second order: 
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In context to soliton theory λ  means the soliton’s velocity and we point out that there are four types of solutions possible: 
Case A:  Supercritical solitary waves: They occur only for 0>λ  and sufficiently large, 
Case B:  Supercritical stationary cnoidal waves: They occur only for 0<λ  and sufficiently small, 
Case C:  Stationary hydraulic fall: Only if λ  admits a special value, so that 0<Lλ , 

Case D:  Unsteady periodic soliton radiation: This case appears if λ  is small (sometimes known as transcritical solutions). 
 
2. Supercritical solitary waves 
 
   Here we assume eq.(1.2) in the following general form with suitable boundary conditions (BC): 
                                            )(ghh''h ξλαβ =−+ 2 , ∞<ξ<−∞ , 0>λ , 0=∞±==∞±= )(h)('h ξξ ,    (2) 
and the prime means derivation w.r.t the independent variable ξ . 

)(g ξ  is a given function (the forcing) which is differentiable and has a compact support (i.e. it is nonzero only in a closed-

bounded set). Recall that Hg)( λε+1  is the upstream near the critical flow speed and in our case, 13 == βα and  holds. 
Physical intuition tells that for a given βα ,  and  )(g ξ  the shape of the free surface is controlled by the upstream flow velocity, 
e.g.λ , (Benjamin, 1967; Benjamin and Feir, 1967 and (Camassa and Wu, 1991). Therefore, it is of interest to study the solution 
behavior for different values of λ . 
   The forcing function )(g ξ  is due to the bottom topography of a fluid domain or due to an external pressure on the free water 
surface. We shall see that there exist a number 0>Cλ  so that eq.(1) has (i) at least two solutions for Cλλ > , (ii) one solution for 

Cλλ =  and (iii) no solution if Cλλ < , (Craik, 1985) and (Coles, 1965). 
 
2.1 Locally forced supercritical waves 
   In scaling processes, especially those of an ideal flow over a small bump, (Hammack and Segur, 1974; Gurtin, 1975; Grimshaw, 
1987) the height σ  of the bump is divided by H and the length of the bump base B should be divided by the horizontal length 
scale L.   
   If the length is very short then B/L is very small since L is very large for long wave assumption. After scaling we regard the base 
length of the bump as zero.  
   But the area under the bump is not zero. It is known that Dirac’s function possesses such a property. The forcing that has a very 
short base length is called the local forcing. So we consider for the nODE eq.(2): 

                                             )(Phh''h ξδλαβ
2

2 =−+ , 0>λ ,          (2.1) 

looking for solitary wave solutions of eq.(2.1) . Hence h satisfies the BC: 
                                              0=∞±==∞±= )(h)('h ξξ .                                                                                   (2.2) 
By direct integration solution of eq.(2.1) connected by the BC (2.2) are given explicitly in terms of hyperbolic secant functions  
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where C+ and −C  are constants. The continuity condition for the free surface at 0=ξ  gives )(h)(h)(h 000 ≡= −+  implying 

that −+ ±= CC  holds. Recalling the property of )(ξδ , that means that )('h ξ  must have a jump discontinuity at 0=ξ , so that 

                                   
β2

00 P)('h)(h =− −+ , or with 1=β  it follows that 
2

00 P)('h)(h =− −+   holds.        (2.4) 

This condition can be rewritten by considering eq.(2.3) to give the expression 
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Eq.(2.5) holds for a nonzero P only if −+ ≠ CC  and from −+ ±= CC  we have 0CCC =−= −+ . Hence, eq.(2.5) can be written 
as 
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Since we can write )f()f(fff 113 −+=− in polynomial form it follows that we have three possibilities once again: 

(i) when 332 /c < , eq.(2.6) has three distinctive roots, 

(ii) when 332 /c > , eq.(2.6) has only one real root with the absolute value 1> , 

(iii) when 33/2c = , eq.(2.6) has a double root. 
Therefore the constant c becomes 
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and determines the critical value of λ  so that a closed-form expression is obtained: 
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Moreover a concrete expression for the constant 0C  follows immediately by 
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So we have three possibilities once again: (i) 0C  has two values Cλλ > , (ii) only one value for the choice Cλλ =  and  
(iii) there exists no solution in case of Cλλ ≤≤0 .  
For a given 0C  the solutions of eq.(2.3) are determined to give the following hyperbolic functions once again 

                                           

( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥+
−

≥−
−

−=

0
4

0
4

2
3

0
2

0
2

ξξ
β
λ

ξξ
β
λ

α
λ

ξ

for,Chsec

for,Chsec
)(h                                                                  (2.6d) 

If a special choice for the constant 0C  is made, (2.6d) defines cusped solitary waves (Huber, 2008c). The cusp is concave up 
(down) if 00 >C , )C( 00 <  respectively.   
From the equations (2.6), (2.6a) and (2.6c) we can assume the following chain of relations: 
                                           0000 0 >→>→<→< CfcP , that means the cusp is concave up, 
                                           0000 0 <→<→>→> CfcP , that means the cusp is concave down.                     (2.6e) 
Otherwise from (2.6e) one can assume the relation: sign =)P( -sign )C( 0 . 
Further from (2.6d) and (2.6e) which determines the free surface profile, we conclude that if 0<P , )P( 0> , then the cusps of 
the solitary waves are concave up (down).  
That means that a surface suction ( 0<P ) corresponds to a dent of the free surface and a surface pressure ( 0>P ) correlates to a 
crest of the free surface. 
Remark: In the case of 0<P we have )/()()(/hsec)/()(h αλβλαλ 23423 2 −<−−=

∞
, that is the amplitude of the 

free solitary wave. The bifurcations diagram 
∞

h  vers. λ  is given by 
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The curve of ( )λ,h
∞

 has two branches in principal. The upper (lower) branch correlates to 3/4π , )3/2( π , respectively.  

These two branches are joined at Cλ  on which αλ /h C−=
∞1 . As +→ 0P , −→ 010,C and ∞→20 ,C . Hence 

∞
h  

approaches to αλ 23 /−  and zero, respectively.  

For 0<P , the amplitude 
∞

h  is equal to αλ 23 /−  all the time. The cusp solitary waves have two peak in each single 

solution and as −→ 0P  the two peaks disappear gradually. 
 
2.2 Non-locally forced supercritical waves 
The non-local forcings are special classes and cannot be approximated by a delta function. In general, such problems have to be 
solved numerically (especially BVP and IVP). Referring to eq.(2) we solve this equation in the domain ],( −−∞ ξ  analytically.  
An analytic solution of eq.(2), considering the above given domain, is given by 
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where we assume the constant 0C  as a pure phase shift. If we consider the appearance of a bump, say )x(g in general as above, 
the constant 0C  cannot be chosen arbitrarily. It is known that 0C  can only take up some discrete values; the next step naturally is 
to determine these values (Whitham, 1974; Miles, 1986). 
Therefore we introduce a new quantity )C(E 0λ  defined through 
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Assuming a half solitary wave (e.g. 0=∞+> + )(h,ξξ ) the polynomial )(Q ξ , defined by 
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must therefore have a double zero smaller than the third real zero. This happen if 00 =)C(Eλ  and we conclude that the 
following relation holds: 00 0 =⇔=+∞ )C(E)(h λ .  
If )C(E 0λ  is valid, then the function )(h ξ  satisfies )(2/3-  0 αλξ << )(h  for 0>ξ . Hence, 00 =)C(Eλ  is the condition 
to determine 0C . In general 0C  is an implicit function of λ  which may be multiple valued. To derive 0C  we solve the IVP up to 

+ξ  similarly to eq.(2): 

                                           −>=−+ ξξλαβ ,hh''h 02  ,                                                                                    (2.10) 
with 
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   Usually, starting by a trial value of 0C  the above given initial conditions could derived. The given IVP eq.(2.10a) and eq.(2.10b) 
have a unique solution since the nODE, eq.(2.10) satisfies the Lipschitz condition. So we can plot the function λE vs. 0C  for a 
fixed λ .   
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   Finally we give some hints to relevant papers, especially relating to supercritical phenomena. These citations cover several 
applications in civil engineering and related domains:  
   Supercritical flow interaction occurring in the marine boundary layer between closely spaced coastal capes discusses (Haacks 
and Burk, 2001) and surface waves related with roughness is found in Toombes and Chanson (2007). The case of supercritical 
flow at weirs is studied in (Ghodsian, 2003); a simulation of the supercritical flow by using the classical shallow water equations 
gives Krüger and Rütschmann (2006) as well as Tjernström and Grisogno (2000). A general introduction is suggested in 
Subramania (1997). 
 
3. Analysis, results and discussion 
 
Before we discuss the main problem, eq.(2.1) let us start by computing some solutions of eq.(1.2). Introducing a new variable so 
that )('h))(h(p ξξ =  we derive the following nODE of the first order: 

                                           003 2 ≠==−+ p),h(pp,hh'pp λ .                                                (3) 

This equation admits solutions expressed as 1
32 2 chh)h(p −−±= where 1c  is an arbitrary constant of integration (it is 

sufficient to consider only the upper sign of the root).  

Integrating once again we derive at the function )(h ξ by ∫ −= )(
)h(p

hd
0ξξ , where 0ξ  is a further constant of integration. 

Several special cases are considered: 
(i) 01 1 == candλ : this elementary case allows a solution by 
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Typical solitary solutions occur; in Figure 1 we show the waves for different values of the constant 0ξ . 

 
                         Figure 1   Typical pure solitary solutions of the eq.(3) for different values of the phase shift constant 0ξ . 
 
   Acting as a phase shift the constant 0ξ  influences the wave so that the crest twists right or left; on the other hand by vanishing 
constant the peak is symmetrically to the vertical axis. 
   To be a solitary wave the function has to be vanishing for ±∞→ξ  and in fact this condition is fulfilled and for ±→ 0ξ  the 
solution tends to a finite value. (ii) the general case with == 1cλ arbitrary can be handled only by numerical standard methods 
leading to an elliptic integral of the first kind. For the case (iii) 1=λ and 11 −=c , we calculate: 
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0ξ  means an arbitrary integration constant and numerically the complex-valued modulus is i,,m 8268043750 += . 
These solutions can be regarded as a further new contribution to existing solutions. Both the Figure 2 and Figure 3 represent the 
contour graphics as well as mappings onto the complex plane, respectively. Two poles can be explicitly seen together with the 
distribution of the field lines around them (for simplicity we assume the constant 0ξ  to be vanishing and consider the plus sign). 
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Figure 2   Contour charts of the solution (3.2) for different values of the complete elliptic integral K(k) in the complex plane,  
                 we assume the integration constant 0ξ =0. Two poles are shown surrounded by their branch lines. 
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Figure 3 Altitude charts of the solution (3.2) for different values of the domain: from left to right: πξ 20 << , πξ <<0 , 
20 /πξ << and 230 /πξ << . In the first and third domain it seems that the poles move together. 

 
Let us now introduce some special cases for the modulus of the solution (3.2), especially 10 == kandk , respectively to derive 
the sine and their hyperbolic varieties.  
Splitting up these limiting cases into a real and a complex part we calculate for the real parts: 
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The function (3.2a) vanishes in the limit as 0→ξ  and takes infinite as ∞→ξ . The limiting behavior for (3.2b) is similar to 

(3.2a) in case of ∞→ξ  but the function takes a finite value as 0→ξ . 
Both of the real parts can be seen in Figure 4. The first and the second derivatives of the real parts are discontinuously 
differentiable at the point 0=ξ  and have singularities there. 
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Figure 4   Planar plots of the real parts of the functions eq.(3.2a) right and eq.(3.2b) left. A remarkable discontinuity on the vertical 
                 axis is observed, the peaks are symmetrically regarding also to the vertical axis. 
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Asymptotically for example, for large values of the argument, that is ∞→ξ , we have for the function (3.2.a) the series 
representation up to order four (and similar for eq.(3.2.b)): 

                                       [ ]
43

1
11

45
14171

2
7

4
1

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

ξξξ
ξ O)(hRe .                                                         (3.2.c) 

 
Some notes relating to the interpretation in the Poincaré (p,h)-phase plane of eq.(3) may not be omitted. The critical points 

),(P 001  and ),(P 3
1

2 0 , respectively are unstable nodes.  
To see this it is shown that the eigenvalues at 1P  are i±=λ ; so the origin is an unstable node and for 2P we have 1±=λ ; 
therefore an unstable saddle point. Unstable hence the limit for p(h) tends to ∞−i  as ±∞→h  in case of 00 1 >> c,λ  and 

00 1 << c,λ . In Table 1 we summarize the complete limiting behavior and Figure 5 represents characteristic curves in the phase 
plane. 
               

Case Choice of the parameters 
)h(plim

h 0±→
 

)h(plim
h ±∞→

 

1             00 1 >> c,λ  1−  ∞− i  

2             00 1 << c,λ  i−  ∞− i  

3             00 1 <> c,λ  i−  ∞− i  

4             00 1 >< c,λ  1−  ∞− i  

       

  Table 1. Limiting cases of the function p(h), eq.(3) in the Poincaré (p,h)-phase plane, 12 −=i , 1c is a constant, λ the wave 
number. 

                                         
 
Figure 5  Phase plane trajectories p=p(h) for the nODE  eq.(3), left: positive values for c1, right: negative values of the constant 
          c1 are used. Note: The singular points are not considered. 

 
The non-locally supercritical function eq. (2.8) possesses all necessary properties to be a soliton, i.e. the function rapidly vanishes 
as ∞±→ξ  but it is remarkable that the solution becomes unstable. Figure 6 shows the analytical solution eq.(2.8) resulting in 
a typical supercritical solitary motion.  
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Figure 6   Left: Typical supercritical solitary motion generated by the eq.(2.8) with 2−=λ  and 11 =c . Right: the first derivative 
                (full line) and the second derivative (dotted line) with the same parameter choice. 
 
Let us now discuss the locally forced supercritical waves, especially eq.(2.1) with a small change so that we can consider 

)(Phh''h ξδλαβ
2

2 =−+  but 1<λ  and 0=−∞==−∞= )('h)(h ξξ . When 0<ξ  the solution vanishes identically, that 

is in detail 0≡)(h ξ as 0≤ξ . 

Therefore solving this problem given above is equivalent to solve the IVP: 02 =−+ hh''h λαβ , 00 =+ )(h , 

β20 /P)('h =+ .  
So, the relating quantity )C(E 0λ , eq.(2.9a) as a first integral together with the polynomial of the third order in our case admits: 
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So we can plot the polynomial )h(Q  vs. the function h. Moreover the dependence )C(E 0λ  vs. 0C  for a fixed λ  is seen in 
Figure 7. 
We remark that the polynomial (3.3) must have a double root which is, indeed fulfilled (independently of the value of λ , e.g. 

0<λ  and/or 0>λ  we have 021 =,h , 2
1

3 −=h ). 

 

Figure 7 Left: Graphical plot of the polynomial of the third order, eq. (3.3), right: The connection )C(E 0λ  vs. 0C  for a fixed λ . 
 
4. Summary 
 
   The present paper deals with an nPDE of the forth order. The crucial aspect however is the fact that up to now no direct physical 
application is known. We show to the first time the relation to wave propagation concerning supercritical waves by considering a 
special force term, the Dirac’s delta function. By applying the procedure another remarkable result could derive: It is shown how 
that the nPDE under consideration admits new types of solutions in terms of Jacobian functions. The cases of locally and non-
locally forced supercritical waves (including solitary-like) are studied in detail. Some remarks relating the behavior in the phase 
plane are given. So the present paper is suitable to expand the knowledge of the nPDE under consideration. Finally, to clarify the 
analysis, some important graphic simulations are presented. 
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List of common used symbols and notation 
PDE partial differential equation 
nPDE nonlinear partial differential equation 
ODE ordinary differential equation 
nODE nonlinear ordinary differential equation 
ℜ4 set of complex-valued functions, four times differentiable 
∇ a set of real-valued functions 
D  a domain 
λ  generally a wavelenght, in context to solitons: the velocity of solitons 

Lλ  a special velocity for the stationary hydraulic fall 

Cλ  a special (critical) velocity for the supercritical fall 
g acceleration due to gravity 
H the high of a channel (or upstream depth) 
L a horizontal length scale     
σ  the high of a bump 

(.)δ  Dirac’s delta function 
BC boundary condition(s) 
C+, C- arbitrary constants of integration 
P a constant 

∞h  amplitude for the limit case 

ic , 0ξ  further arbitrary constants of integration 
sn                                                      the Jacobian elliptic function sine amplitudinis         
m the modulus of the elliptic function 
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