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Abstract 
 
   The propagation of shear waves differs between geo-media due to layer’s structure and irregularity present in different layers. 
This paper studies the propagation of shear waves in a monoclinic layer with irregularity lying between two isotropic semi-
infinite elastic medium. The displacement in the monoclinic layer is obtained by using perturbation technique. Then the 
dispersion relation is found in the assumed medium and is verified with the standard known results. Finally, effects of wave 
number and irregularity are studied numerically and the graphs are plotted for all cases. The dispersion curves for different size 
of irregularity are calculated and compared. 
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1. Introduction 
    
   The study of earthquake is an important branch of seismology. It has revealed a great deal of information about how fracturing 
occurs in the earth and about strains and short-term deformation processes. The study of seismic waves allows us to make 
inferences about certain properties of the parts of the earth through which the waves have travelled as well as the source of waves.  
   Many problems in seismology can be solved by representing the Earth as a layered medium that is, formed by layers of certain 
thickness and mechanical properties. For certain problems we can use a flat approximation of parallel horizontal layers and they 
are reduced to two dimensions. Layer of constant properties may be considered as an approximation for media whose elastic 
coefficients vary in a continuous form with depth. Shear waves (SH waves) are the waves that is polarized so that its particle 
motion and direction of propagation are contained in a horizontal plane. Love waves, named after the British seismologist A. E. H. 
Love, who first predicted their existence in 1911, are characterized by horizontal motion normal to the direction of travel, with no 
vertical motion. In effect a Love wave is a polarized shear waves. Many authors have studied the propagation of Love waves, and 
different authors assumed different forms of irregularities at the interface. Chattopadhyay (1975) studied the effect of irregularities 
and non-homogeneities in the crustal layer on the propagation of Love waves. Bhattacharya (1962) considered the irregularity in 
the thickness of the transversely isotropic crustal layer. Mal (1962) derived the dispersion relation for Love waves due to abrupt 
thickening of the crustal layer. Ghosh (1961) discussed the propagation of Love waves across the oceanbed. Chattopadhyay and 
De (1983) studied the dispersion relation for Love waves in a non-dissipative liquid filled with porous solid underlain by an 
isotropic and homogeneous half-space. They derived the dispersion relation by applying the perturbation method and the phase 
velocity curve has been obtained for different irregularities by using the parameters of the porous medium, which were suggested 
by Biot (1961). Sinha (1967) studied the propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched 
between two semi-infinite isotropic media. Sezawa (1935) discussed the propagation of Love waves generated from a buried 
source. Recently, Chattopadhyay et al. (2008) have studied SH waves propagation in a monoclinic layer over a semi-infinite 
elastic medium with irregularity. They have derived the dispersion relation for SH waves and shown the effect of irregularity in 
monoclinic medium. 
   The extension of earth is made up of solids, liquids and occluded gases. The solids are commonly called rocks and when 
minerals occur with definite geometrical outlines, they are called crystals. Crystals are solids bounded by natural plane surfaces or 
faces. A variety of crystal forms are possible and monoclinic form is one of them. The monoclinic system is the largest symmetry 
system with almost a third of all minerals belonging to one of its three classes. The motivation of the present problem is that the 
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valuable materials, e.g., Lithium tantalate, Lithium niobate etc., which exhibits monoclinic symmetry are buried beneath the earth 
surface. These materials can be modeled as monoclinic materials. Xue (2000) studied the dielectric properties of Lithium tantalate 
and Lithium niobate. It is well known in the literature that the earth medium is not at all isotropic and homogeneous throughout, 
but it is anisotropic and inhomogeneous. Moreover, the discontinuities separating the different layers of the earth are not perfectly 
plane. Keeping these things in mind, we have considered the propagation of SH waves in a layered monoclinic medium lying 
between two elastic half-spaces. The irregularity has been taken in the monoclinic layer in the form of a rectangle. To solve the 
problem we have used the perturbation technique as indicated by Eringen and Samuels (1959). It is shown that the phase velocity 
of Love waves depends not only on the wave number and depth of the irregularity but layer structure also. 

 

 

              Figure 1: Geometry of the problem 

 
2.  Formulation of the problem 
 
We choose the y -axis vertically downwards and z -axis along the interface between the lower semi-infinite medium and the 
monoclinic layer (Figure 1). We assume the irregularity in the form of a rectangle with length s and depth H/. The origin is placed 
at the middle point of the interface irregularity. H is the thickness of the layer. Source of the disturbance is placed on positive y -

axis at a distance ( )/d H>  from the origin. 

The interface between the layer and lower half-space is given by 
( )y h zε=                                                (1) 

   

where  
   0                 for ,

2 2( )
( )               for   

2 2

s sz z
h z

s sf z z

⎧ ≤ − ≥⎪⎪= ⎨
⎪ − ≤ ≤
⎪⎩

 , 

1<<=
S

'Hε . The function ( )f z describes the shape of the irregularity. For present paper we have taken the rectangular 

irregularity with ( )f z s= , but the results obtained can be utilized for other shape of irregularity as well. Let us take ,  ,  r r ruμ ρ  
(r = 1, 2, 3) as the rigidities, densities and displacements components of the upper medium, monoclinic layer and lower media 
respectively. 
   
3.  Equations of motion and boundary conditions 
 
For waves propagating in the z-direction and causing displacement in the x-direction only, we assume that 

( , , ), 0, 0u u y z t v w= = = . 
The equation of motion in the intermediate monoclinic layer is 
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2 2 2 2
56 552 2 2 2

2 2 2 2
66 66 2

12 C Cu u u u
y C y z C z tβ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
.                             (2) 

where 55 56 66, ,C C C are elastic coefficients for monoclinic crystalline medium under the given geometry. 
Similarly the equations of motion for upper and lower semi-infinite mediums are 

2 2 2
1 1 1

2 2 2 2
1

1 ,u u u
y z tβ

∂ ∂ ∂
+ =

∂ ∂ ∂
 

2 2 2
3 3 3

2 2 2 2
3

1u u u
y z tβ

∂ ∂ ∂
+ =

∂ ∂ ∂
                                  (3) 

where  66 31
1 2 3

1 2 3

,  ,  C μμβ β β
ρ ρ ρ

= = = . 

The boundary conditions are as follows: 
i)   1 2u u=  at  y H= − ,                                                                         (4a)  

     2 3u u=  at ( )y h zε=                                               (4b)  

ii) 1 2 2
1 56 66

u u uC C
y z y

μ ∂ ∂ ∂
= +

∂ ∂ ∂
  at y H= − ,                                                                                   (4c)  

    / / /3 32 2
66 56 56 55 3

u uu uC C h C C h h
y z y z

ε ε μ ε
⎡ ⎤∂ ∂∂ ∂⎡ ⎤ ⎡ ⎤− + − = −⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂⎣ ⎦

  at ( )y h zε= ,          

where / ( )dh zh
dz

= .                   (4d) 

 
4.  Solution of the problem 
Let us consider the time-dependent displacements ( , , ) ( , )  (  1,  2,  3;  1)i t

j ju y z t U y z e j iω= = = − , where ω is the angular 
frequency, then the Eqs. (2) and (3) become 

2 2 2
1 1

12 2 2
1

0U U U
y z

ω
β

∂ ∂
+ + =

∂ ∂
                                  (5) 

2 2 2 2
56 552 2 2

22 2 2
66 66 2

2 0C CU U U U
y C y z C z

ω
β

∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                                 (6) 

2 2 2
3 3

32 2 2
3

0U U U
y z

ω
β

∂ ∂
+ + =

∂ ∂
.                                  (7) 

Taking the Fourier transform ( , )rU y η of ( , )rU y z  (vide Appendix-A [Eq. (A1]) of Eqs. (5), (6), and (7), we obtain the reduced 
system of equations as 

2
21
1 12 0d U p U

dy
− = ,                                   (8) 

2
22 2

22 0d U dUa p U
dy dy

+ + = ,                                               (9) 

2
23
3 32 0d U p U

dy
− = ,                                 (10) 

where 1 3, ,p p p , and a are defined in the Appendix-A, [Eq. (A2)]. 
Appropriate solution of Eqs. (8), (9), and (10) are 

1
1( , ) p yU y Deη = ,                y H≤ −                                         (11) 
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2
2 2 2( , ) ( cos sin )

a y
U y e A p y B p yη

−
= + ,                    ( )H y h zε− ≤ ≤                                            (12) 

3
3 ( , ) p yU y Ceη −=                        ( )y h zε≥                                         (13) 

where 2p  is defined in the Appendix-A [Eq. (A3)].  
The displacements in the three media are 

1
1

1( , )
2

p y i zU y z De e dη η
π

∞
−

−∞

= ∫ ,                                (14) 

 
2

2 2 2
1( , ) ( cos sin )

2

a y i zU y z e A p y B p y e dη η
π

∞
− −

−∞

= +∫ ,                                        (15) 

and 3 3 3
3

3

1 2( , ) ( )
2

p y p y p d i zU y z Ce e e e d
p

η η
π

∞
− − −

−∞

= +∫                              (16) 

where the second term in the integrand of 3U  is introduced due to the source in the lower medium (Sezawa, 1935). We use the 
perturbation method given by Eringen and Samuels (1959), to set the following approximations due to small value of ε  

0 1 0 1 0 1 0 1,  ,  C ,  ,   1v hA A A B B B C C D D D e v hεε ε ε ε ε±≅ + ≅ + ≅ + ≅ + ≅ ±                                (17) 

where 2v a= . Since the boundary is not uniform the terms A, B, C, and D in Eq. (17) are also functions of ε . Expanding these 
terms in ascending powers of ε  and keeping in view that ε  is small and so retaining the terms up to the first order of ε , A, B, C, 
and D can be approximated as in Eq. (17). In physical situations, when the depth H/ of the irregular boundary is too small with 
respect to the length of the boundary s, the above assumptions are justified. 
Defining the Fourier transform ( )h λ of  ( )h z  as  

( ) ( ) i zh h z e dzλλ
∞

−∞

= ∫ ,                                                           (18) 

and so, 
1( ) ( )

2
i zh z h e dλλ λ

π

∞
−

−∞

= ∫ . 

Therefore / ( ) ( )
2

i zih z h e dλλ λ λ
π

∞
−

−∞

= − ∫ . 

Using boundary conditions (4a) to (4d) along with Eqs. (14) to (17), we obtain the following eight equations (after equating the 
coefficient of ε  and the absolute term): 

1

1 1
2 2

2 0 2 0 0cos( ) sin( ) 0,
aH aH p He p H A e p H B e D−− + + =                              (19) 

1

1 1
2 2

2 1 2 1 1cos( ) sin( ) 0,
aH aH p He p H A e p H B e D−− + + =                              (20) 

56 2 66 2 2 66 2 0cos cos sin
2
aikC p H C p H p C p H A⎧ ⎫+ − −⎨ ⎬

⎩ ⎭
 

1 2
56 2 66 2 2 2 0 0 1 1sin ( sin cos ) 0,

2

a Hp HaikC p H C p H p p H B D u p e e
−−⎧ ⎫− + + + =⎨ ⎬

⎩ ⎭
                          (21) 

56 2 66 2 2 66 2 1cos cos sin
2
aikC p H C p H p C p H A⎧ ⎫+ − −⎨ ⎬

⎩ ⎭
 

1 2
56 2 66 2 2 2 1 1 1 1sin ( sin cos ) 0,

2

a Hp HaikC p H C p H p p H B D u p e e
−−⎧ ⎫− + + + =⎨ ⎬

⎩ ⎭
                           (22) 

3
0 0

3

2 0p dA C e
p

−− − = ,                                              (23) 
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1 1 1( )A C R k− = ,                                 (24)            

3
66 56 0 2 66 0 3 3 0 3( ) 2

2
p daC ikC A p C B p C eμ μ −+ − − = − ,                              (25) 

66 56 1 2 66 1 3 3 1 2( ) ( )
2
aC ikC A p C B p C R kμ+ − − =                                    (26) 

where 1( )R k  and 2 ( )R k  are given in the Appendix-A [Eqs. (A4) and (A5)].  

Solving the above eight equations, we obtain the values of 0 0 0 0 1 1 1 1, , , , , , ,A B C D A B C D   which are given in the Appendix-A 
[Eq. (A6)]. 
The displacement in the monoclinic layer will be 

3
2 3 3 3 1 2

2

2 2 1 1 2 56 2 2 66 2

2 2 66 2 2 2 1 1 2 56

1 2 [4 ( ) ]
2 ( ) cos( )

           {(2cos( )sin( ) 2 cos( ) sin( ) cos( ) sin( )
              2cos( ) cos( ) 2sin( ) cos( ) 2 sin( )

p dU p R R e
E k p H

p y p H p i p y C k p H p y C a p H
p y p H C p p y p H p i p y C k

μ ε μ
π

μ
μ

∞

−∞

−
= + − ×

× + + +
+ +

∫

2cos( )p H +
   

3
1-(p d+ ay)
2

2 66 2 2 66 2 2sin( ) cos( H)-2sin( ) sin( H)p )e } .ikzp y C a p p y C p e dk−                                 (27) 
Now from Eqs.  (1) and (18), we have 

2( ) sin
2

s sh λλ
λ

= .                                            (28) 

Using Eqs. (A4) and (A5) defined in Appendix-A, we get 

3 3 1 2
1[ ( ) ( )] sin

2
s sp R R k k dλμ ϕ λ ϕ λ λ
π λ

∞

−∞

− = − + +∫                                            (29) 

where ( )kϕ λ−  is given in Appendix-A [Eq. (A7)]. Using asymptotic formula of Willis (1948), Tranter (1966) and neglecting 
the terms containing 2/s and higher powers of 2/s for large s, we have  

1[ ( ) ( )] sin 2 ( ) ( )
2 2
sk k d k kλ πϕ λ ϕ λ λ ϕ πϕ

λ

∞

−∞

− + + = =∫ .                                                                (30) 

 Using Eqs. (29) and (30), we obtain  
/

3 3 1 2 ( ) ( )Hp R R s k kμ ϕ ϕ
ε

− = = . 

Therefore the displacement in the monoclinic layer is 

3

3
2 /

2

2 2 1 1 2 56 2 2 66 2

2 2 66 2 2 2 1 1 2 56

81
2 ( )cos [1 ( ) ]

               {(2cos( )sin( ) 2 cos( ) sin( ) cos( ) sin( )
               2cos( )cos( ) 2sin( )cos( ) 2 sin( ) cos(

p dU
E k p H H k e

p y p H p i p y C k p H p y C a p H
p y p H C p p y p H p i p y C k

μ
π ψ

μ
μ

∞

−∞

= − ×
−

+ + +

+ +

∫

3

2
(2 ) 2

2 66 2 2 66 2 2

)

              sin( ) cos( ) 2sin( ) sin( ) ) } .                    p d ay ikz

p H

p y C a p H p y C p H p e e dk− + −

+

−

       

where 
3

( )( )
4

kk φψ
μ

=                     (31) 

The value of this integral will depend entirely on the contribution of the poles of the integrand. The poles are located at the roots of 
equation 

3/
2( ) cos [1 ( ) ] 0p dE k p H H k eψ− = .                 (32) 

This equation was examined in the study of shear waves (cf. Achenbach, 1976, p - 293). 
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5.  Dispersion relation 
 
If c is the common wave velocity of the wave propagating along the surface, then writing ckω =  and replacing 

1 1 2 2 56 66,   ,   2p kP p kP a ik C C= = = −  and 3 3p kP=  in Eq. (32) 

(where ω  is the angular frequency and 1 2 3, ,P P P  are defined in Appendix-B [Eq. (B1)].), and solving Eq. (32) we get 

( )22
7 8 9 1055 56

2 2
2 66 66 11 12

tan   
2

i iC Cc kH
C C i

ξ ξ ξ ξ
β ξ ξ

⎧ ⎫ + + +⎪ ⎪− + =⎨ ⎬ +⎪ ⎪⎩ ⎭
                      

where symbols on right hand side are defined in Appendix-B [Eq. (B2)]. 
Equating both the real and imaginary part we get 

 ( ) ( )22
7 13 11 8 14 1255 56

2 2 2 2
2 66 66 11 12

tan   
2

C Cc kH
C C

ξ ξ ξ ξ ξ ξ
β ξ ξ

⎧ ⎫ + + +⎪ ⎪− + =⎨ ⎬ +⎪ ⎪⎩ ⎭
              (33) 

and 
( ) ( )8 14 11 7 13 12

2 2
11 12

0
ξ ξ ξ ξ ξ ξ

ξ ξ
+ − +

=
+

 

where 11 12 and ξ ξ are given in Appendix-B [Eq. (B2)]. 
We consider the real part i.e. Eq. (33) which gives the dispersion relation of Love wave in a monoclinic layer with rectangular 
irregularity between two isotropic half spaces 
If we put 55 66 2 56,   0C C Cμ= = = , in Eq. (33) and equating the real part, we have  

/2
1

2 /
2 1

tan 1  
2

Sc kH
Tβ

⎧ ⎫⎪ ⎪− =⎨ ⎬
⎪ ⎪⎩ ⎭

  (cf. Chattopadhyay (1975))                  (34) 

where /
1S  and /

1T  are given in Appendix-B [Eq. (B3)].  
Eq. (34) gives the dispersion relation of Love wave in an isotropic layer with rectangular irregularity between two isotropic half 
spaces 
If we further take /H 0=   (i.e. no irregularity), then Eq. (34) becomes 

2 2 2

2 1 32 2 22
2 1 3

2 2 2 2
2 2

2 1 32 2 2
2 1 3

1 1 1

tan 1  
1 1 1

c c c

c kH
c c c

μ μ μ
β β β

β
μ μ μ

β β β

⎧ ⎫⎪ ⎪− − + −⎨ ⎬⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎩ ⎭− =⎨ ⎬
⎧ ⎫⎪ ⎪⎩ ⎭ − − − −⎨ ⎬
⎩ ⎭

.                            (35) 

Equation (35) is the standard dispersion relation of SH waves in three isotropic media. The roots of this dispersion relation are real 
if either 2 1 3cβ β β< < ≤  or 2 3 1cβ β β< < ≤ , which is also the necessary condition for Love type waves to exist. 
 
6.  Numerical calculations and discussions 
 
From Eq. (31) we find the displacement in the intermediate monoclinic layer. Both the Eqs. (33) and (34) give the resulting 
dispersion relation for three-layer problem under two different conditions. For graphical representation of phase velocity in a 
monoclinic layer between two isotropic media, we take the following data: 
(i)  The density and rigidity for upper isotropic homogeneous medium are (Gubbins, 1990) 
       3 10 2

1 13293 / ,  7.45 10  /Kg m N mρ μ= = ×                 
(ii) The material constants for Lithium tantalate which exhibit monoclinic symmetry are (Tiersten, 1969) 
       11 2 11 2

55 560.94 10  / ,  0.11 10 / ,C N m C N m= × = − ×  11 2 3
66 20.93 10  / ,  7450 / .C N m kg mρ= × =   

(iii) The density and rigidity for lower isotropic homogeneous medium are (Gubbins, 1990) 
        3 10 2

3 33535 / , 7.84 10  / .kg m N mρ μ= = ×   
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We have shown in Figure 2, the variation in dimensionless phase velocity 
2

c
β against dimensionless wave number kH for a 

layered monoclinic medium lying between two isotropic half-space for different values of /H H (i.e. ratio of irregularity depth 
to layer width). 
For graphical representation of phase velocity in a layered isotropic medium lying between two isotropic half-space, we have 
considered the following data: 
(i)   Upper isotropic homogeneous medium (Gubbins, 1990) 
        3

1 3293 / ,kg mρ =    10 2
1 7.45 10  / .N mμ = ×   

(ii)  Intermediate isotropic layer (Gubbins, 1990) 
  3

2 3364 / ,kg mρ =   10 2
2 6.34 10  / .N mμ = ×   

(iii) Lower isotropic homogeneous medium (Gubbins, 1990) 
        3

3 3535 / ,kg mρ =   10 2
3 7.84 10  / .N mμ = ×   

Figure 3 shows the variation in dimensionless phase velocity 
2

c
β against dimensionless wave number kH .  

It is clear from both Figures (2) and (3) that phase velocity decreases with increase in wave number. Also increase in ratio /H H  
results in lower phase velocity corresponding to a fixed value of wave number. It is interesting to note 

that / /
2 20 0H H

H H

c c
β β

= ≠

⎛ ⎞ ⎛ ⎞≥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

in both the cases. It is also found that the impact of /H H  on phase velocity becomes 

negligible for higher values of /H H  in monoclinic layer, but for isotropic layer this impact is more visible with higher value of  
/H H  .  
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Figure 2: Variation of 

2

c
β against kH  in a monoclinic layer lying between two isotropic semi-infinite media for different value 

of ( )/ 0,0.15,0.30H H = .  
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Figure 3: Variation of 

2

c
β against kH  in an isotropic layer lying between two isotropic semi-infinite media for different value 

of ( )/ 0,0.15,0.30H H = .   
 
7.  Conclusions 
 
   Propagation of shear waves in a monoclinic layer with irregular boundary sandwiched between two semi-infinite isotropic half 
spaces has been studied. The Eringen’s perturbation method is applied to find the displacement field in the layer. The result 
obtained is used to get the dispersion relation in an irregular monoclinic layer. The dispersion relation for the isotropic layer with 
and without irregularity, between semi-infinite isotropic half spaces has been derived as a special case of the present problem. The 
effect of dimensionless wave number on dispersion curve is found numerically and shown graphically for both the monoclinic and 
for isotropic layer. Variation of phase velocity for different ratio of irregularity depth to layer width is studied and shown 
graphically. From above discussion we conclude that: 

1. In general the phase velocity of Shear waves in a monoclinic or isotropic layer with irregularity, between semi-infinite 
isotropic half spaces decreases with increase in wave number. 

2. Impact of ratio of irregularity depth to layer width is different for monoclinic and isotropic layer. 
3. Phase velocity is a function of wave number as well as layer width and depth of irregularity. 
4. Increase in depth of the irregularity decrease the magnitude of phase velocity. 

   Thus it can be concluded that the phase velocity in a layer with irregularity between two half spaces is affected by not only the 
shape of irregularity but also by wave number, the ratio of the depth of the irregularity to layer width and layer structure.  
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Appendix A 

The Fourier transform   ( , ) ( , ) i z
r rU y U y z e dzηη

∞

−∞

= ∫ .                         (A1) 
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and so 
1( , ) ( , )

2
i z

r rU y z U y e dηη η
π

∞
−

−∞

= ∫ .       

2 2 2
2 2 2 2 2 256 55
1 32 2 2

1 66 2 66 3

, 2 , ,C Cp a i p p
C C

ω ω ωη η η η
β β β

= − = − = − = − .            (A2) 

1
2 22 2

2 2 255 56
2 2 2

2 66 664
C Cap p
C C

ω η η
β

⎛ ⎞
= − = − +⎜ ⎟

⎝ ⎠
               (A3)

  

3
1 0 0 2 0 3

1( ) [ 2 ] ( )
2 2

p d kaR k A B p C p e h dη λ λ λ
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