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Abstract 
 
   In this paper we have studied the propagation of shear waves in a non-homogeneous anisotropic incompressible and initially 
stressed medium. Analytical analysis reveals that the velocities of the shear waves depend upon the direction of propagation, the 
anisotropy, the non-homogeneity of the medium and the initial stress. Numerical computation shows that the presence of initial 
compressive stress in the medium reduces the velocity of propagation whereas, the tensile stress increases it.  It is found that the 
variation in parameters associated with anisotropy and non-homogeneity of the medium directly affects the velocity of the wave. 
The velocity of wave also depends on the inclination of the direction of its propagation. An increase in the inclination angle 
decreases the velocity in the beginning and takes a minimum value before increasing. 
 
Keywords: Shear waves; anisotropic; stress; non-homogeneity; half-spaces. 

 
1.  Introduction 
  
   The term “Initial stress” is meant by stresses developed in a medium before it is being used for study. The earth is an initially 
stressed medium, Due to presence of external loading, slow process of creep and gravitational field, considerable amount of 
stresses (called pre-stresses or initial stresses) remain naturally present in the layers. These stresses may have significant influence 
on elastic waves produced by earthquake or explosions and also in the stability of the medium. The propagation of surface waves 
is well documented in the literature (e.g., Achenbach (1973), Bath (1968), Biot (1965), Ewing (1957)).  Biot (1940) formulated the 
dynamical equations for pre-stressed elastic medium and discussed the influence of pre-stresses on the propagation of elastic 
waves in a body.  
   The problem of finite deformations of an elastic body and the effect of high initial stress on wave propagation were discussed in 
a series of investigations by Kappus (1939), Murnaghan (1951) and others. Qian et al. (2004) have investigated the effect of initial 
stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures. Chattopadhyay et al. (2009) 
have studied the propagation of shear waves in an internal magnetoelastic monoclinic stratum sandwiched between two semi-
infinite isotropic elastic media and with a rectangular irregularity in lower interface. Chattopadhyay et al. (2010) have also 
investigated the propagation of shear waves in a monoclinic layer with an irregularity lying between two isotropic semi infinite 
elastic medium. The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structures 
have been studied by  Zhang et al. (2008). Sharma (2005) has demonstrated the effect of initial stress on the propagation of plane 
waves in a general anisotropic poro-elastic medium.  
   The Edge wave propagation in an incompressible anisotropic initially stressed plate of finite thickness has been studied by Dey 
et al. (2009). Addy et al. (2005) have studied Rayleigh waves in a viscoelastic half-space under initial hydrostatic stress in 
presence of the temperature field. Liu et al. (2008) have demonstrated the propagation characteristics of converted refracted wave 
and its application in static correction of converted wave. Moczo et al. (2007) provided mathematical modeling of seismic wave 
propagation using the Finite-Difference time-domain method. Huber (2010) has explained the physical meaning of a nonlinear 
evolution equation of the fourth order relating to locally and non-locally supercritical waves in his work. Duan1 et al. (2006, 2007) 
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have investigated heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults 
and non-uniform pre-stress from prior earthquakes and the effect on dynamics of branched fault systems.  
   Zhou and Chen (2005) have studied the influence of seismic cyclic loading history on small strain shear modulus of saturated 
sands. Sharma et al. (2007) discussed about the wave velocities in a pre-stressed anisotropic elastic medium. Selim et al. (2006) 
have demonstrated the propagation and attenuation of seismic body waves in dissipative medium under initial and couple stresses. 
Seismology is the study of progressive elastic wave. But most of this studies and investigations do not include very important 
factor viz, the influence of initial stress, anisotropy and non-homogeneity present in the body. In this paper, an attempt has been 
made to show the effect of initial stress, the anisotropy and non-homogeneity of the medium on the propagation of shear wave. 
 
2. Solution of the problem 
 
   Most materials behave as incompressible media and their influence on seismic waves are very high. (The velocities of 
longitudinal waves in them are very high) The varieties of hard rocks present in the earth are also, almost incompressible. Due to 
the factors like external pressure, slow process of creep, difference in temperature, manufacturing processes, nitriding, pointing 
etc., the medium stay under high stresses. These stresses are regarded as initial stresses. Owing to the variation of elastic properties 
and the presence of these initial stresses, the medium becomes anisotropic as well. 
   We consider an unbounded incompressible anisotropic medium under initial stresses S11 and S22 along the x-, y- directions 
respectively. When the medium is slightly disturbed, the incremental stresses s11, s12 and s22 are developed and the equations of 
motion given by Biot (1965) are 

 
2

11 12
2 ,s s w uP

x y y t
ρ∂ ∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂

   (1) 

 
2

12 22
2 .s s w vP

x y x t
ρ∂ ∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂

   (2) 

where P = S22 – S11, 
1
2
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠

v uw
x y

, and ρ  represents the density of the medium.  Also  jis , are incremental stresses, (u, v) 

are incremental deformations, w is the rotational component about the z-axis. 
 The incremental stress-strain relations for an incompressible medium may be taken as  

 11 , 22 122 2 and 2 .xx yy xys s N e s s N e s Q e− = − = =    (3) 

where 11 22

2
+

=
S S

s ,   jie  are incremental strain components and N and Q are the rigidities of the medium.  

The incompressibility condition 0,xx yye e+ =  is satisfied by: 

 andu v
y x
ϕ ϕ∂ ∂

= − =
∂ ∂

.   (4) 

Using eqs. (3) and (4) in eqs. (1) and (2), we obtain 

 
2 2 2

2 2 22
2 2

s P P uN Q Q
x y x y t

ϕ ϕ ρ
⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − − + + =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

,   (5) 

 
2 2 2

2 2 22
2 2

s P P vN Q Q
y x y x t

ϕ ϕ ρ
⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

.   (6) 

We assume the non-homogeneity as  

 

( )
( )
( )

0

0

0

1

1

1

Q Q ay

N N by

cyρ ρ

= + ⎫
⎪

= + ⎬
⎪= + ⎭

   (7) 

where N0 and Q0 are rigidities and  0ρ  is the density in homogeneous isotropic medium. Eliminating s from eqs. (5) and (6) we 
get 
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   (8) 

 
3. Solution of the problem 
 
   For propagation of sinusoidal waves in any arbitrary direction we take the solution of eq.(8) as  

 ( ) ( )1 2 1, , ik p x p y c tx y t Aeϕ + −= .   (9) 

where 1p  and 2p  are cosine of the angles made by the direction of propagation with the x- and y- axes, and 1c  and k are the 
velocity of propagation and the wave number respectively. 
Using eq.(9) in eq.(8) and equating real and imaginary parts separately, one gets  

 
( ) ( ) ( )

2
4 2 201
1 1 2

0 0

4
2

0

21 1 2 1 1
1 2

1 ,
2

Nc Pay p by ay p p
cy Q Q

Pay p
Q

β
⎧⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎪= + − + + − +⎨⎜ ⎟ ⎢ ⎥⎜ ⎟ + ⎪⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎩

⎫⎛ ⎞ ⎪+ + + ⎬⎜ ⎟
⎪⎝ ⎠ ⎭

   (10) 

and  

 
2

2 201
1 2

0

22 2Nc b a ap p
Q c c cβ

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

.   (11) 

where 

1
2

0

0

Q
β

ρ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, the velocity of shear wave in homogeneous isotropic medium. Eq. (10) gives the velocity of propagation of 

shear wave and eq. (11) gives the damping. 

Equation (10) shows that the velocity depends on the anisotropy factor 0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

, the initial stress factor 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and also on the 

direction of propagation denoted by ( )1 2,p p .  
 
4.  Particular cases: 
 
Following cases have been discussed to gain more insight information from eq.(10) and eq.(11): 
 
Case I:  When 0a → , i.e., rigidity along vertical direction is constant, eq. (10) reduces to 

 
( ) ( )

2
4 2 2 401
1 1 2 2

0 0 0

21 1 2 1 1 1
1 2 2

Nc P Pp by p p p
cy Q Q Qβ

⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎪ ⎪= − + + − + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ + ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎩ ⎭
.   (12) 

The velocity of wave along x-direction ( )1 2 1 111, 0,p p c c= = = , is obtained as  

 
( )

2 2
11

0

11
2 1
Pc
Q cy

β
⎛ ⎞

= −⎜ ⎟ +⎝ ⎠
.   (13) 

This shows that velocity of wave along x-direction depends on initial stress.   
If the medium is free from initial stress, i.e when 0P →  and 0c → , the velocity of wave is given by 11c β= .  
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Similarly the velocity of propagation along y-direction ( )1 2 1 220, 1,p p c c= = = , is obtained as  

 
( )

2 2
22

0

11
2 1
Pc
Q cy

β
⎛ ⎞

= +⎜ ⎟ +⎝ ⎠
,   (14) 

It is interesting to note that
( )

2 2
22 11

2
0

1
1

c c P
Q cyβ

−
=

+
, a function of initial stress and density. 

It is also observed that if  0P > , the effect of initial stresses on the body is compressive along x-direction and which reduces the 
velocity of shear wave along x-direction while tensile stress increases the velocity of shear wave, where as along y-direction shear 
wave velocity shows the reverse effect.   
Case II:  When 0b → , i.e., rigidity along horizontal direction is constant, eq. (10) reduces to  

 
( ) ( ) ( )

( )

2
4 2 201
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0 0

4
2

0

21 1 2 1
1 2

1 .
2

Nc Pay p ay p p
cy Q Q

Pay p
Q

β
⎧⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎪= + − + − +⎨⎢ ⎥ ⎢ ⎥⎜ ⎟ + ⎪⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎩

⎫⎡ ⎤ ⎪+ + + ⎬⎢ ⎥
⎪⎣ ⎦ ⎭

   (15) 

  The velocity of wave along x- direction ( )1 2 1 111, 0,p p c c= = = , is given by  

 ( ) ( )
2 2
11

0

11
2 1
Pc ay
Q cy

β
⎡ ⎤

= + −⎢ ⎥ +⎣ ⎦
,   (16) 

which depends on the depth y and the wave is dispersive.  
The velocity along y-direction is  

 ( ) ( )
2 2
22

0

11
2 1
Pc ay
Q cy

β
⎡ ⎤

= + +⎢ ⎥ +⎣ ⎦
,   (17) 

In case of 0P > , the velocity along y-direction may increase considerably at a distance y from free surface and the wave is 
dispersive. 
 
Case III: When 0a → , 0b → , i.e., the rigidity along horizontal direction is constant but density is linearly varying with depth, 
eq. (10) transforms to 

 
( )

2
4 2 2 401
1 1 2 2

0 0 0

21 1 2 1 1
1 2 2

Nc P Pp p p p
cy Q Q Qβ

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪ ⎪= − + − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ + ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
.   (18) 

In the absence of initial stress the velocity of wave is  

 
( )

2
2 201
1 2

0

1 1 4 1
1

Nc p p
cy Qβ

⎡ ⎤⎛ ⎞⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎣ ⎦

.   (19) 

This shows that velocity
( )

2
2
1 1

c
cy

β
=

+
, in x-direction ( )1 2 1 111, 0,p p c c= = = , and in  

y -direction ( )1 2 1 220, 1,p p c c= = = it does not depend on anisotropy. However, in other directions the anisotropy affects the 
velocity.  
For  0 0N Q= , i.e., for isotropic medium with variable density the wave velocity is 

 
( )

2 2 2
1 1 2

1
c p p

cyβ
⎛ ⎞

=⎜ ⎟ +⎝ ⎠
,   (20) 

which depends on the direction of propagation. 
 
Case IV : In the absence of initial stress i.e. 0P → , eq. (10) gives the velocity of wave as  
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( ) ( ) ( ) ( ) ( )

2
4 2 2 401
1 1 2 2

0

1 1 2 2 1 1 1
1

Nc ay p by ay p p ay p
cy Qβ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎪ ⎪= + + + − + + +⎨ ⎬⎢ ⎥⎜ ⎟ + ⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
.     (21) 

which for 0 0N Q= , takes the form  

 
( ) ( ) ( ) ( ) ( ){ }

2
4 2 2 41
1 1 2 2

1 1 2 2 1 1 1 .
1

c ay p by ay p p ay p
cyβ

⎛ ⎞
= + + + − + + +⎡ ⎤⎜ ⎟ ⎣ ⎦+⎝ ⎠

   (22) 

Along y-direction ( )1 2 1 220, 1,p p c c= = = ,  

 
2

22 1
1

c ay
cyβ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

.   (23) 

Along x-direction ( )1 2 1 111, 0,p p c c= = = ,  

 
2

11 1
1

c ay
cyβ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

.   (24) 

The wave is dispersive and velocities are same in two direction x and y.  
 
Case V : When 0a → ,  i.e., rigidity along vertical direction is constant, eq. (11) transforms to 

 
2

201
1

0

22 Nc b p
Q cβ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
,   (25) 

this shows that velocity of shear wave is always damped. 
The velocity of wave along x-direction ( )1 2 1 111, 0,p p c c= = = , is obtained as  

 
2

011

0

22 Nc b
Q cβ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
,   (26) 

this shows that actual wave velocity in x-direction is damped by 0

0

2
2

N b
Q c

⎛ ⎞
⎜ ⎟
⎝ ⎠

, whereas, no damping takes place along y-direction 

( )1 2 1 220, 1,p p c c= = =  . 
 
Case VI :  When 0b → , i.e. rigidity along horizontal  direction is constant, eq. (11) reduces to  

 
2

2 21
1 22 2c a ap p

c cβ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
.   (27) 

The velocity of wave along x- direction ( )1 2 1 111, 0,p p c c= = = , is given by  

 
2

11 2c a
cβ

⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.   (28) 

Existence of negative sign shows that damping does not takes place along x-direction for 0b → , whereas damping of magnitude 
2a
c

⎛ ⎞
⎜ ⎟
⎝ ⎠

, takes place along y-direction. 

 
Case VII: When 0a → , 0b → , i.e. rigidity along horizontal direction is constant but density varying linearly with depth, eq. 

(11) gives 
2

1 0
c
β

⎛ ⎞
=⎜ ⎟

⎝ ⎠
, i.e. no damping takes place for 0a → , 0b → . 
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5. Numerical calculation  
 
   To get numerical information on the velocity of shear wave in the non-homogeneous initially stressed medium, the equation (10) 
is non-dimensionalized as 

 

( )
2

4 2 201
1 1 2

0 0

4
2

0

21 1 2 1 1
21

1 .
2

Nc a P aby p by by p p
c b Q Q bby
b

a Pby p
b Q

β
⎧⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎪ ⎛ ⎞= + − + + − +⎨⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎛ ⎞ ⎝ ⎠⎪⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎩+⎜ ⎟

⎝ ⎠
⎫⎛ ⎞ ⎪+ + + ⎬⎜ ⎟
⎪⎝ ⎠ ⎭

   (29) 

The numerical values of  1c
β

 has been calculated for different values of 
a
b

, 0

0

N
Q

, 1p , 2p  and
02

P
Q

, and the  results are 

presented in Figures 1 through 6.  
 
   Figure-1 gives the variation in velocities of shear wave in the direction of  θ = 300  and 600 with  x-axis at different depth and 

different values of density parameter
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.7, 0.8, and 0.9 for  
a
b

= 4.0, 
02

P
Q

= 0.5, and 0

0

N
Q

 = 2.5. The velocity of the wave 

increases as depth increases. 
 

 

Figure 1a (θ = 300):   by vs. 1c
β

 for v1:
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.7, v2: 
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.8, v3: 
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.9. 
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Figure 1b (θ = 600):   by vs.  1c
β

 for v1:
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.7, v2: 
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.8, v3: 
c
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.9. 

 
Figure. 2 gives the variation in velocities of shear wave in the direction of θ = 300  and 600 with x-axis at different depth and 

different values of 
a
b

 when 
c
b

 = 0.8, 
02

P
Q

= 0.5, and 0

0

N
Q

 = 2.5. The velocity of the wave increases as depth increases. 

 

Figure 2a (θ = 300):   by vs.  1c
β

 for  v1: 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 3.0, v2:  
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  3.5, v3: 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 4.0. 
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Figure 2b (θ = 600):   by vs.  1c
β

 for  v1: 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 3.0, v2:  
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  3.5, v3: 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 4.0. 

 
 
 
Figure. 3 gives the variation in velocities of shear wave in the direction of θ = 300  and 600 with x-axis at different depth and 

different values of 0

0

N
Q

 when 
c
b

 = 0.8, 
02

P
Q

= 0.5, and 
a
b

 = 4.0. Figure.3 gives the information of variation of velocity for 

different values of   anisotropic factor and reflects that with the increase in the values of 0

0

N
Q

, the velocity of shear wave 

increases. 

 

Figure 3a (θ = 300):   by vs.  1c
β

 for  v1: 0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 2.0, v2:  0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  2.5, v3: 0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 3.0. 
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Figure 3b (θ = 600):   by vs. 1c
β

 for  v1: 0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 2.0, v2:  0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  2.5, v3: 0

0

N
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 3.0. 

 
Fig.4 gives the variation in velocities of shear wave in the direction of θ = 300  and 600 with x-axis at different depth and different 

values initial stress parameter 
02

P
Q

 when 
c
b

 = 0.8, 0

0

N
Q

= 2.5, and 
a
b

 = 4.0. The velocity of the wave increases as depth 

increases. 

 

Figure 4a (θ = 300): by vs. 1c
β

 for  v1: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = -0.8, v2: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.0, v3: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.8. 
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Figure 4b (θ = 600): by vs. 1c
β

 for v1: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = -0.8, v2: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  0.0, v3: 
02

P
Q

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.8. 

 
 
Figure.5 gives the velocity of shear wave in an anisotropic initially stressed homogeneous medium for different values of initial 

stress parameter 
02

P
Q

 and 0

0

N
Q

 with 
02

P
Q

 = 0.5, 
c
b

 = 0.8, 0

0

N
Q

 = 2.5, and
a
b

 = 4.0. 

 

Figure 5:   by vs.  1c
β

 for  v1: θ = 300, v2:  θ = 600 

 
Figure.6 shows the variation of velocity of shear wave with respect to direction of propagation in non-homogeneous anisotropic 

initially stressed medium with 
02

P
Q

 = 0.5, 
c
b

 = 0.8, 0

0

N
Q

 = 2.5, 
a
b

 = 4.0, and by = 2.0;  
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Figure 6: θ (in degrees) vs.  1c
β

. 

 
6.  Conclusion  
 
From equation (10) it is concluded that: 
1. When rigidity along vertical direction is constant then shear wave velocity is influenced by initial stress. We have derived the 

velocity of wave in both x and y direction and we have seen both depend on initial stress. Compressive initial stress reduces 
the velocity of shear wave along x-direction while tensile stress increases. Shear wave velocity shows the reverse effect along 
y-direction. 

2. If rigidity along horizontal direction is constant then shear wave velocity exists and we have obtained the velocity equation in 
both x and y direction. In case 0P > , the velocity along x-direction may decrease considerably and the velocity along y-
direction may increase considerably. 

3. When the rigidity along horizontal direction is constant but density is linearly varying with depth then also shear wave 
velocity is still influenced by initial stress and in absence of initial stress the velocity also exist. The velocity of wave in x-
direction and y-direction does not depend on anisotropy. However, in other directions the anisotropy affects the velocity. We 
have also observed for isotropic medium with variable density the velocity depends on the direction of propagation. 

4. In the absence of initial stress the shear wave velocity is still available. It also exists in isotropic medium. But in this case 
velocities are same in two direction x and y. 

 
From equation (11) it is concluded that: 
1. If rigidity along vertical direction is constant then the velocity of shear wave is always damped. We have obtained the velocity 

equation of wave along x-direction and it is also damped whereas no damping takes place along y-direction. 
2. When rigidity along horizontal direction is constant then the velocity of shear wave is damped and in this case the damping 

does not take place along x-direction whereas damping takes place along y-direction. 
3. When rigidity along horizontal direction is constant but density varying linearly with depth then no damping takes place. 
 
Thus it seen that the anisotropy, non-homogeneity , the initial stresses , the direction of propagation and the depth (in case of non-
homogeneous medium) have considerable effect in the velocity of propagation of shear wave and attracts the attention of earth 
scientists in their work. 
 
References 
  
Achenbach, J.D. 1973. Wave propagation in elastic solids, North Holland Publishing Comp., New York.  
Addy, S. K. and Chakraborty ,N. R., 2005. Rayleigh waves in a viscoelastic half-space under  initial hydrostatic stress in presence 

of the temperature field. International Journal of Mathematics and Mathematical Sciences, Vol. 24, pp. 3883–3894 
Bath, M. A., 1968. Mathematical Aspects of Seismology, Elsevier Publishing Comp., New York. 



Gupta et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 2, 2010, pp. 31-42 

 

42

 

Biot, M.A., 1940. The influence of initial stress on elastic waves, Journal of App. Phy., Vol.2, p. 522 
Biot, M.A., 1965. Mechanics of incremental deformations, John Wiley and Sons Inc, New York. 
Chattopadhyay, A., Gupta, S., Singh, A.K. and Sahu, S.A., 2009. Propagation of shear waves in an irregular magnetoelastic 

monoclinic layer sandwiched between two isotropic half-spaces, International Journal of Engineering, Science and Technology, 
Vol. 1, No. 1, pp. 228-244.  

Chattopadhyay, A., Gupta, S., Sharma, V.K. and Kumari, P., 2010. Effects of irregularity and anisotropy on the propagation of 
shear waves, International Journal of Engineering, Science and Technology, Vol. 2, No. 1, pp. 116-126. 

Duan1, B.  and Oglesby, D.D., 2006. Heterogeneous fault stresses from  previous earthquakes and the effect on dynamics of 
parallel strike-slip faults. Journal of Geophysical Research, Vol. 111, B05309. 

Duan1, B. and Oglesby, D.D., 2007. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault 
systems, Journal of Geophysical Research, Vol. 112, B05308. 

Dey, S. and De, P. K. 2009. Edge wave propagation in an incompressible anisotropic initially stressed plate of finite thickness, 
International Journal of Computational Cognition, Vol. 7, No. 3, pp. 55-60. 

Ewing, W. M., Jardetzky, W. S. and Press, F. 1957. Elastic waves in layered media, McGraw Hill Book Comp., New York. 
Huber, A., 2010. The physical meaning of a nonlinear evolution equation of the fourth order relating to locally and non-locally 

supercritical waves, International Journal of Engineering, Science and Technology, Vol. 2, No. 1, pp. 70-79. 
Kappus, R. 1939. Zeitschr. A ngew Math.Mech, Vol. 19, No. 5, p. 27.  
Liu, Y.  and Wei , X. C. 2008. Propagation characteristics of converted refracted  wave and its application in static correction of 

converted wave, Science in China Series D: Earth Sciences, Vol. 51, No. 2, pp. 226-232.  
Murnaghan, F. D. 1951. Finite Deformation of an Elastic Solids, John Willey and Sons, New York. 
Moczo, P., Robertsson, J.O.A., and Eisner, L., 2007. The Finite-difference time-domain method for modeling of seismic wave 

propagation, Advances in Geophysics, Vol. 48, pp. 421-516. 
Qian ,Z., Jin, F., Kishimoto. K., and Wang, Z., 2004. Effect of initial stress on the propagation behavior of SH-waves in 

multilayered piezoelectric composite structures, Sensors and Actuators A: Physical, Vol. 112, No. 2-3, pp. 368-375. 
Selim. M.M. and Ahmed. M.K., 2006. Propagation and attenuation of seismic body waves in dissipative medium under initial and 

couple stresses, Applied Mathematics and Computation, Vol. 182, No. 2, pp. 1064-1074. 
Sharma M. D. 2005. Effect of initial stress on the propagation of plane waves in a general anisotropic poroelastic medium, Journal 

of Geophysical Research, Vol. 110, No. B11, pp. B11307.1-B11307.14  
Sharma M. D. and Garg N., 2006. Wave velocities in a pre-stressed anisotropic elastic medium, Journal of Earth System Science, 

Vol. 115, No. 2, pp. 257-265. 
Zhang, J.,  Shen, Y.P. and Du J.K., 2008. The effect of inhomogeneous initial stress on Love wave propagation in layered 

magneto-electro-elastic structures, Smart Mater. Struct. Vol. 17, No. 025026 (9pp) 
Zhou, Y.  and Chen, Y., 2005. Influence of seismic cyclic loading history on small strain shear modulus of saturated sands. Soil 

Dynamics and Earthquake Engineering, Vol. 25, No. 5, pp. 341-353. 
 
 
Biographical notes  
 
Dr. Shishir Gupta is an Associate Professor in the Department of Applied mathematics, Indian School of Mines, Dhanbad. A Gold Medalist from Ranchi 
University, he has had a brilliant career. He has more than 21 years of teaching experience at undergraduate and postgraduate levels in Indian School of Mines, 
Dhanbad. He possesses experience of guiding students of MPhil and PhD. He has published more than 45 papers in International/National journals/Proceedings. He 
has served as reviewer in renowned International/ National books and journals. He has also carried out several sponsored research projects. 
 
Mr. Santimoy Kundu  is a Junior Research Fellow (JRF) in the Department of Applied Mathematics, Indian School of Mines (ISM), Dhanbad, Jharkhand, India. 
He is pursuing his PhD under the supervision Dr. Shishir Gupta of ISM in the field of Theoretical Seismology. He did his B.Sc. from University of Calcutta, 
Kolkata in 2001 and then switched to ISM to earn M.Sc. in Maths & Computing (2004) and MPhil in Applied Mathematics (2006). 
 
A.K. Verma is an Endowed University Professor of Mathematics at Hampton University, Hampton, Virginia, USA. In his teaching caereer of over twenty-five 
years he has authored/co-authored research papers in fluid mechanics, controlled thermo-nuclear fusion and education technology. Dr. Verma had served as 
director and consultant for state and federal projects, and reviewed federal proposals. He has earned several accolades at institution, regional, state and national 
levels for his quality teaching and effective use of technology in instruction. 
 
R. Verma is an Associate Professor in the Department of Mathematics, Norfolk State University, Norfolk, Virginia. She earned her Ph.D. from Indian Institute of 
Technology, Kharagpur. Dr. Verma has taught mathematics in traditional way and online to technical and non-technical students for over twenty-years. Her 
research focuses on the use of integral equations in crack problems of elasticity. She has several publications in this field in international journals. Dr. Verma has 
also been involved in training school teachers to incorporate new teaching methods using technology.  
 
Received  December 2009 
Accepted March 2010 
Final acceptance in revised form April 2010 


