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Abstract 
 
   Cycle multiplicity of a graph G is the maximum number of edge disjoint cycles in G. In this paper, we find the cycle 
multiplicity of total graph of cycles Cn, paths Pn, and star graph K1,n respectively.  
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1. Introduction 
 
   Line partition number (Chatrand et al., 1971) of a graph G is the minimum number of subsets into which the edge-set of G can 
be partitioned so that the subgraph induced by each subset has property P. Dual to this concept of line partition number of graph is 
the maximum number of subsets into which the edge -set of G can be partitioned such that the subgraph induced by each subset 
does not have the property P. Define the property P such that a graph G has the property P if G contains no subgraph which is 
homeomorphic from the complete graph K3. Now the line partition number and dual line partition number corresponding to the 
property P is referred to as arboricity and cycle multiplicity of G respectively. Equivalently the cycle multiplicity is the maximum 
number of line disjoint subgraphs contained in G so that each subgraph is not acyclic. This number is called the cycle multiplicity 
of G denoted by CM(G). The formula for cycle multiplicity of a complete and complete bipartite graph is given in (Chatrand et al., 
1971). In (Simões Pereira, 1972), the author found an upper bound for the line and middle graph of any graph. Also he proved that 
the bound becomes the formula for line and total graph of any forest. 

We consider finite, simple, undirected graph G(V(G), E(G)) where V(G) and E(G) represent vertex set and edge set of G 
respectively. For any real number r, [r] and r⎡ ⎤⎢ ⎥ denote the largest integer not exceeding r and the least integer not less than r, 
respectively. The other notations and terminology used in this paper can be found in (Harary, 1969).   

Let G be a graph with vertex set V(G) and edge set E(G).  The total graph (Michalak, 1981) of G, denoted by T(G) is defined as 
follows.  The vertex set of T(G) is V(G)∪ E(G).  Two vertices x, y in the vertex set of T(G) are adjacent in T(G) in case one of the 
following holds: (i)  x, y are in V(G) and x is adjacent to y in G. (ii)  x, y are in E(G) and x, y are adjacent in G (iii)  x is in V(G), y is 
in E(G), and x, y are incident in G  

 
2.  Cycle multiplicity of total graph of Cn 
 
It is obvious that cycle multiplicity of any cycle is one. We obtain a formula to find the cycle multiplicity of the total graph of a 

cycle. 

 
Theorem 2.1 

Cycle multiplicity of Total Graph of n-Cycle, 1)]([ += nCTCM n  
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Proof 

            
Figure 1. n-cycle and its Total Graph 

 
Let V(Cn) = {v1, v2,…….,vn} and E(Cn) = { e1, e2,……,en, } in which ei = vivi+1.  By the definition of total graph,                 
V[T(Cn)]=     {v1, v2,……,vn}∪ { e1,e2,……,en} and  E[T(Cn)] = { eiei+1 / ( ni ≤≤1 -1) }∪ ene1 ∪ { vivi+1 / ni ≤≤1 -1}∪ vnv1 
∪ { eivi+1 / ni ≤≤1 -1}∪ env1∪ {viei / ni ≤≤1 }. The cycles of T(Cn) are Ci = eivi+1ei+1 ( ni ≤≤1 -1), Cn = ene1v1, 

iiii evvC 1
|

+=  ( ni ≤≤1 -1), nnn evvC 1
| = . Let Cn+1 = v1v2,………,.vnv1, Cn+2 = e1e2……..,ene1,  Cn+3 = v1e1v2e2v3,……..,vnenv1. 

Now we collect set of line disjoint cycles, C1 = {Ci / ( ni ≤≤1 -1)}∪ { Cn}∪ {Cn+1}, C2 = }11/{ | −≤≤ niCi ∪ { |
nC } ∪     

{ Cn+2}, C 3 = {Cn+1, Cn+2, Cn+3 }. Clearly Ci ( )31 ≤≤ i  is a set of line disjoint cycles in T(Cn) and |C1| = |C2| = n+1. Since n ≥  3, 

|C1| or |C2| ≥  |C3| and either C1 or C2 contains maximum number of line disjoint cycles of T(Cn) and hence 1)]([ += nCTCM n . 
 
3. Cycle multiplicity of total graph of Pn 
 
As Pn does not contain any cycle, its cycle multiplicity is zero. In the following theorem we states a formula to find the maximum 

number of line disjoint cycles in the total graph of a path. 

 
Theorem 3.1 

Cycle multiplicity of total graph of path, nPTCM n =)]([  

.Proof 

                                        
Figure 2. Path and its Total Graph 

 
  Let V(Pn) = { v1, v2,……..,vn+1 }and E(Cn) = { e1, e2,……,en, } By the definition of total graph, V[T(Pn)] = V(Pn)∪ E(Pn), 
E[T(Pn)] ={viei / ( ni ≤≤1 ) }∪ {eivi+1 / ni ≤≤1 }∪ { vivi+1 / ni ≤≤1 }∪  { eiei+1 / ni ≤≤1 -1} The cycles of T(Pn) are     
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Ci = vivi+1ei ( ni ≤≤1 ) and |
iC = eiei+1vi+1 ( ni ≤≤1 -1) . Let C1 = {Ci /( ni ≤≤1 )} and C2 = }11/{ | −≤≤ niCi . The cycles 

in the set Ci ( i =1,2) are line disjoint cycles of T(Pn). Also |C 2| < |C 1| = n and hence nPTCM n =)]([  
 
4. Cycle multiplicity of total graph of  K1, n 
 
Since the star graphs are acyclic its cycle multiplicity is zero. We find a formula for the cycle multiplicity of total graph of a star 
graph 
 
Theorem 4.1 

Cycle multiplicity of total graph of Km,n, 
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Proof 

                  
 

 

Figure 3. Star graph and its Total Graph 
 

Let V(K1,n) = {v1, v2,…….,vn} and E(K1,n) = { e1, e2,……,en, } By the definition of total graph, we have                 

V[T(K1,n)] = {v}∪ {ei / ( ni ≤≤1 )}∪ {vi / ( ni ≤≤1 )}, in which the vertices e1, e2,……,en induces a cliques of order n (say 

Kn).  Also the vertex v is adjacent with vi ( ni ≤≤1 ). 

Case (i)  

If n is odd 

We collect the set of line disjoint cycles of T(K1,n)  as below. 

C1 = {veiei+1v / (i = 1, 3,……..,n-2)}, C2 = {veiei+1v / i = 2, 4,……..,n-1}, C3 = {set of line disjoint cycles in the clique Kn }.             

C4  = {veiviv / ( ni ≤≤1 ) },  Clearly |C1| = |C2| = 
2

1−n
.  

To prove |C3| = ⎥
⎦

⎤
⎢
⎣

⎡ −
6

2 nn
, i.e., we have to prove the number of line disjoint cycles in C3 is ⎥

⎦

⎤
⎢
⎣

⎡ −
6

2 nn
 if n is odd. If n =1, the 

number of line disjoint cycles in the clique K1 is zero and ⎥
⎦

⎤
⎢
⎣

⎡ −
6

2 nn
 = 0 for n =1. Similarly if n =3, then the number of line 
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disjoint cycles in the clique K3 is one and ⎥
⎦

⎤
⎢
⎣

⎡ −
6

2 nn
 = 1 for n =2. Therefore  |C3 | = ⎥

⎦

⎤
⎢
⎣

⎡ −
6

2 nn
 if n = 1, 3. Assume that the result 

is true for m = 2k-1 for some k. i.e., |C3| = ⎥
⎦

⎤
⎢
⎣

⎡ +−
3

132 2 kk
, i.e., Number of line disjoint cycles in Km = |C3| = ⎥

⎦

⎤
⎢
⎣

⎡ +−
3

132 2 kk
. 

Now consider the clique Kn where n = 2k + 1. Consider Kn-2 = Kn – { e2k, e2k+1} = K2k-1 = Km. Number of line disjoint cycles in Kn-2  

is ⎥
⎦

⎤
⎢
⎣

⎡ +−
3

132 2 kk
. Also the number of line disjoint cycles is decreased by ⎥⎦
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. Therefore |C3| in Kn is 
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,                i.e. |C 3| = ⎥
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⎤
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6

2 nn
, where n = 2k+1. Since n is odd there exist 

no edges in the clique which are left out in the extraction of line disjoint cycles. Since 2≥n , ≤
−
2

2n
⎥
⎦

⎤
⎢
⎣

⎡ −
6

2 nn
. Therefore |C1|  

=  |C2| ≤  |C3| .  The cycles in C 3 and C 4 are line disjoint. Therefore maximum number of line disjoint cycles in T(K1, n), 

CM[T(K1,n)] = |C3| + |C4| = ⎥
⎦

⎤
⎢
⎣

⎡ −
6

2 nn
+ n = ⎥

⎦

⎤
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  if n is odd. 

Case (ii)  

If n is even 

 In this case we collect the set of line disjoint cycles as below. 

C1 = {veiei+1v / i = 1, 3,……..,n-1)}, C2 = {veiei+1v / i= 2, 4,……..,n-2},  clearly |C1| = 
2
n

 and |C2| = 
2

2−n
  C3 = {set of line disjoint 

cycles in Kn }. C4  = {veiviv / ( ni ≤≤1 ) },  We prove |C 3 | = 
6

)2( −nn
. Maximum number of line disjoint cycles are extracted 

from Kn using the following steps. 

 

Step 1:  

Extract the line disjoint cycles ci = eiei+1ei+2ei ( i = 1, 3, 5,…….n-1). Clearly c1, c2,…………,cn-1 are line disjoint cycles. 

Thus we got 
2
n

 line disjoint cycles. 

Step 2: 

 Delete the edges ei
⎟
⎠
⎞

⎜
⎝
⎛ +ine

2

(i = 1, 2,………,
2
n

) from Kn. 

Step 3: 

 Extract ⎥
⎦

⎤
⎢
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⎡ −
6

52 nn
line disjoint 3–cycles from Kn – { ei

⎟
⎠
⎞

⎜
⎝
⎛ +ine

2

(i= 1, 2,………, 
2
n

) }.   
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Therefore 
2
n
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= {v ei
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v / (i = 1, 2,……… ,
2
n

)}. The cycles in C 5   are line disjoint. The cycles in C 3 and C 5  are line disjoint and also the 

cycles in C 3 and C 4  are line disjoint . Since |C 5 | ≤  |C 4 |. Therefore maximum number of line disjoint cycles in T(K1, n) , 

CM[T(K1,n)] = |C 3 | +  |C 4 |  = ⎥⎦
⎤

⎢⎣
⎡ −

6
)2(nn

 + n = ⎥⎦
⎤

⎢⎣
⎡ +

6
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