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Abstract 
 
   In this paper a less studied nonlinear partial differential equation of the third-order is under consideration. Important properties 
concerning advanced character such like conservation laws and the equation of continuity are given. Characteristic wave 
properties such like dispersion relations and both the group and phase velocities are derived explicitly. In addition, we discuss 
the non-classical case relating to potential symmetries for the first time. Further, for practical applications in several domains of 
sciences we discuss in detail approximate symmetries. Finally, as a further new contribution we deduce new generalized 
symmetries of lower order. Some important notes relating to future intensions are given. 
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1. Introduction, outline the problem 
 
   Progresses in recent years in the study and analysis of nPDEs have made significant contributions to the understanding of many 
physical systems. Modelling of physical systems often leads to nonlinear evolution equations of the general form [ ]uKut = , 
where [ ]uK  is a locally defined function (or a nonlinear operator in general) of the function u  and its x -derivatives.  
   Well-known evolution equations describing physical phenomena could found in several domains of applied sciences. We restrict 
the pool of equations to ‘classical’ nPDEs, such like the Korteweg de Vries Equation (Drazin and Johnson, 1989; Witham, 1974; 
Eilenberger, 1983) and its varieties, the cylindrical KdV (Drazin and Johnson, 1989) and the generalized KdV (Eilenberger, 1983) 
modeling the propagation of weakly nonlinear waves in dispersive media. Otherwise a well known variety of the KdV is known 
for a long time, the so-called modified KdV equation (Ablowitz and Clakson, 1991; Dodd et al., 1988), describing nonlinear 
acoustic waves in anharmonic lattices (Zabusty, 1967 and Alfvén waves in a collisionless plasma (Kakutani, 1969).  
   Here we concentrate our intensions to a less studied unnamed variety of the mKdV Equation (Fung and Au, 1984; Au and Fung, 
1984), which differs from the mKdV Equation by a first local-derivative term whereby this term changes basically the equation’s 
property: 
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with ),( txuu = , ),(3 ∞−∞∈Cu , { } 0,, ≠tx uuu , Rtx ∈),( , +∈ Rt , 0>t  and λ  is a non-vanishing parameter.  
We assume that the function ),( txu  acts as the amplitude and is suitable therefore to describe wave propagation depending upon 
time t  in the sense of an evolution equation in which the steepening effect of the nonlinear term is counterbalanced by the (linear) 
dispersion term(s).   
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2. Physical properties concerning wave motion 
 
   Up till now no direct physical applications are known and this is the crucial purpose of study in this paper. In the following 
without any loss of generality we can set the parameter 1=λ . 
   Normally, the addition of an odd derivative term leads to the fact that the dispersion relation is real for real k , the wave vector.    
To see this, we assume the linear eq.(1) and introduce the ‘ansatz’ [ ])(exp),( xktiAtxu −ω∝  into eq.(1) to derive the dispersion 

relation )6()( 2kkk −=ω=ω  for 1=A .  

This relation differs from the mKdV that is 3)( kk =ω=ω . We observe that a linear part of the wave vector is overlaid. Further, 
we deduce two characteristic velocities: The phase velocity pc  and the group velocity gc  respectively by: 

                                                           )6(/ 2kkc p −=ω= ,   kkddcg 2/ −=ω= .                                                     (2.1) 

gc  remains negative for all +∈ Rk and takes positive for all −∈ Rk .  

Both velocities tends to ∞→),( gp cc  as ∞→k . That means that all waves of large wave numbers (small wavelengths) 

propagate in the negative x -direction for all +∈ Rk ; if they exist anyway (similar to the KdV equation). Introducing a velocity 
field )(xυ and the amplitude field )(xu  we deduce the equation of continuity  

                                                       )3(2)(,0)( 2 −+=υ=υ+ u
u

u
uuu xx

xt ,                                                              (2.2) 

where )(xu  and )(xυ are sufficiently smooth functions. This equation can be linearized for small perturbations about the 
equilibrium state 0uu =  and 0υ=υ  so that we can introduce ),(~

0 txuuu +=  and ),(~
0 txυ+υ=υ .  

Then the continuity equation (2.2) reduces to a first-order equation 0~~
0 =υ+ xt uu with solutions )(~

0 txfu υ−=  representing 
traveling waves. 
Theorem I: A general equation of the form  
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is called a conservation law where T  and X  are known as the density and the flux.  
If both T  and X  are integrable on ),( ∞−∞  so that X   tends to a constant as ∞→x , then (2.3) can be integrated to 
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where the latter integral is called a constant of motion. This leads to the following 
Theorem II: 
The nPDE (1) admits three constants of motion: (i) the conservation of mass, (ii) the conservation of the horizontal momentum and 
(iii) the conservation of energy so that 
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All conservation laws are proven by a direct calculation ® . 
 
3. Algebraic group properties (the classical case) 
 
   In this section we use the classical Lie group analysis in order to derive new classes of solutions otherwise we are interested in 
the algebraic group behaviour of the nPDE (1).  
Hint: In what follows we suppress the item ‘classes’; so ‘classes of solutions’ are simply solutions. 
We take up now the developments given in (Ibragimov, 1984; Olver, 1986; Bluman and Kumei, 1989; Gaeta, 1994; Huber, 2008; 
Huber, 2009) omitting all technical details. 
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   To use symmetry groups in any application, we first deduce the symmetries of eq.(1). The result is a system of eight linear 
homogeneous PDEs for the infinitesimals ),( uxii ξ=ξ  and ),( uxii φ=φ : 
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The infinitesimals are given by solving the above set of equations (3.1) to (3.5) leading to 
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   The result shows that the symmetry group of eq.(1) constitutes a finite three-dimensional point group containing translations in 
the independent variables and scaling transformations.  
   In (3.6) the group parameters are denoted by ik , 3,2,1=i . Eq.(1) admits the three-dimensional Lie algebra L of its classical 
infinitesimal point symmetries related to the following vector fields 
                                                       uxtxt uxttVVV ∂−∂++∂=∂=∂= )12(3,, 321 .                                         (3.7) 
These vector fields form a Lie algebra L by: 
                                  [ ] 2131 123, VVVV +−=  ,  [ ] 232 , VVV = ,  [ ] 2113 123, VVVV −−= ,  [ ] 223 , VVV −=  .                   (3.8) 
For this three-dimensional Lie algebra the commutator table for iV  is a )33( ⊗  table whose         

thji ),( entry expresses the Lie Bracket [ ]ji VV ,   given in (3.8). The table is skew-symmetric and the diagonal elements all vanish. 

The coefficient kjiC ,,  is the coefficient of iV  of the thji ),( entry of Tab.1 and the related structure constants can be easily 
calculated from Tab.1 to give: 
                                1,12,3,1,13,3 2,2,32,1,31,1,32,3,22,3,11,3,1 ===−=−=−= CCCCCC .                                (3.9) 
 
                                             Tab.1 Commutator table for the Lie algebra V of the nPDE (1). 

 
1V  2V  3V  

1V  0 0 
21 123 VV −−  

2V  0 0 
2V−  

3V  21 123 VV +  2V  0 

                                                        

Theorem III: The Lie algebra of eq.(1) is solvable. 
Proof: A Lie algebra L is called solvable if 0)( =nV  for some 0>n . )1(V  is an ideal containing { }321 ,, VVV , )2(V  is an ideal 

containing },{ 21 VV ;  this can be reduced to 0)3( =V . 
These subgroups are important later to perform a similarity reduction deducing new solutions.  
The metric ( 33⊗ Cartanian tensor) satisfies:  
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Since the condition 0)det( =g  holds the given algebra is degenerate.  
Notes: Other useful algebraic group properties are worth to mention: Eq.(1) has no Casimir operator, the group order is three 
containing seven subgroups.  

Alternatively, one can write eq.(3.10) with eq.(3.9) ∑
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=
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3.1 The derivation of similarity solutions 
Let us now discuss the most important similarity solutions for special subgroups to derive new solutions where we restrict the 
analysis to the most important cases.  
Case A:  If we set the group parameters 11 =k and 03 =k , the similarity variable and the relevant transformation reads as 

0=ζ−x and uS = . The related nODE of the third-order is 
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Case B: (the case of traveling waves):  Here we assume the parameters to be 121 == kk  and 03 =k  respectively. This choice 
means the traveling wave transformation by ζ=− xt  and uS = .  
The nODE of the third-order is calculated to 
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which differs from eq.(3.1.1) by a constant factor only Remark: For the given nODEs we both assume the existence of solutions 
and moreover, functions of the r.h.s. are continuously differentiable following a Lipschitz condition in the considered domain.  
Also note that we enlarge the domain to ensure the possibility of complex-valued solutions. 
 
4. The non-classical case I – Potential symmetries 
 
   For more technical details we refer to Ibragimov (1984), Olver (1986), Bluman and Kumei (1989), Gaeta (1994) and Huber 
(2009). For the nPDE (1) we found the following: The equation admits two possible potential systems 1Ψ  and 2Ψ .  
   Both systems can be formulated for two dependent variables iV , 2,1=i  and both variables are treated in their derivations w.r.t. 
the independent variables and are denoted by subscripts: 
 
                          Potential system 1Ψ                                                           Potential system 2Ψ  
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The given systems are related to new symmetries which differ from the symmetry group (3.6) completely: In opposite to the 
symmetry group (3.6), here, we are confronted with a finite four- dimensional PT; that means that the difference exists in the 
dimension of the group as well as the number of the elements: 
 
                                          Symmetry 1                                                            Symmetry 2 
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   If we examine the infinitesimals upon the dependence of variables starting with capital letter ,V  we realize that these 
infinitesimals are independent of the new potential variables.  
   Comparing this behavior with known results (e.g. the KdV Equation) we see that both systems do not contribute to potential 
symmetries (further examples are also well-known; e.g. the nonlinear Reaction Diffusion Equation, the cylindrical Korteweg de 
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Vries Equation and the Burgers Equation) and tells us that potential symmetries are rare symmetries but can occur in connection 
with some equations. 
 
5. Approximate symmetries 
 
   In this section we follow Huber (2009), Ibragimov (1985) and Ibragimov (1994), respectively and our intension is to deduce new 
results without referring too much theory. Let us introduce ε  as a small parameter 10 <<ε<  determining the strength of the 
nonlinearity of eq.(1) so that we can write without loss of generality 1=λ : 
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to ensure the complete solution-manifold. Then, approximate symmetries follow by 
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representing an eight-dimensional approximate symmetry group in the first-order approximation.  
   The generating vector fields for this model read: 
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   Possible reductions can be calculated by combining several sub-groups of (5.2). For the present calculations we choose three 
cases of interest: 
Case A:  Combining 521 VVV ⊗⊗   the transformation and the defining equation for S are: 
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Case B:  Combining 621 VVV ⊗⊗  one derives at: 

       0)1( =ζ−ε−− xt , Su = , 0'))1(65(''')1( 23 =ε+ε++ε− SSS .                                                                          (5.4) 
Case C:  Combining 651 VVV ⊗⊗  leads to the defining equation for )(ζS : 
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   The result is a similarity representation of the solution(s) linearly depending upon the perturbation parameter ε  and also in 
second and fourth-order dependence. Note that for the given nODEs the same assumptions as in Chapter 3.1 have been made. 
 
6. The non-classical case II: General symmetries (GS) 
 
   We find it advisable mentioning some basic notes. It is obvious from Lie theory that point symmetries are a subset of generalized 
symmetries, Abramowitz and Stegun (1972) as well as Noether (1971) and Klein (1918). The determination of the characteristics 
for the general case follows by a similar algorithm as in the case of point transformations (PT) in the classical case. 
Classical symmetries of a (n)PDE (assumed to be in a general form 0=Δ ) are  PT which guarantee the invariance of the solution 
space and so, PT are created by infinitesimal transformations.  
   The determining equations for the characteristics αGS  are consequences of the relation 
                                                                          00=Δυ =ΔGSpr

r
,                                                                                    (6) 

where GSpr υ
r

 denotes prolongation of the vector field GSυ  and ‘GS’ means generalize symmetry. 
   The main difference however is the fact that in general the characteristics depend upon derivatives of an infinite order. If the 
order is equal to identity we arrive at the so-called contact transformations. By increasing the order of derivatives 1>n  we shall 
find higher order GS.  
   In case of eq.(1) we found GS of the first order depending on the first derivative: 
                                                                      ( ) xtx ukuuutxGS 11 ,,,, = .                                                                        (6.1) 
This symmetry also changes from the symmetries given in (3.6), (4.3) and (5.1). Here we are confronted with a one- 
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dimensional finite group of transformations where the second part xu ∂∂ /  is related to scaling and/or stretching operations (more 
precisely dilatations). For the case 2=n  by assuming second partial derivatives we found 
                                                                   ( ) xxtttxxx ukuuuuutxGS 12 ,,,,,, =                                                               (6.2) 
as a quite similar result. At this stage we remark that higher cases are difficult to deal with. 
 
7. Analysis and results  
 
   Now we use (3.1.1) and (3.1.2) respectively to derive new solutions. An analogues equation can be obtained if we investigate 
solutions for which ),( txFu = , ,)(3 DCF ∈ 3RD∈  is a domain. Introducing the frame of reference 

)(),( ξ=Utxu , tx α−=ξ , ∈ξ ℜ1, R∈α \ }0{ into eq.(1) leads to 0''6'6''' 2 =α−++ UUUUU and the prime means derivation 
w.r.t. ξ .  
   Due to the similar structure of the latter nODE it is sufficient to consider (3.1.1) and it can be shown that the traveling wave 
reduction results into eq.(3.1.2) exactly.  
   We summarize the analytical properties of eq.(3.1.1) resulting in a polynomial of the fourth-order in Tab.2. Thus we have to treat 
four cases depending upon the choice of the integration constants iK  leading to new solutions: 
For the Case A, 121 == KK  appropriate numerical standard procedures are necessary. 
Case B: 11 =K  and 02 =K  leads to a sine amplitude with a pure imaginary modulus: 
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1 −+−=k ; that is numerically ik 4362,0= . The constant factor under the root sign is 
approximately 73,0≈  and the first factor takes 5,2≈ .  
Using a complex modulus transformation Abramowitz and Stegun (1972) we convert the function eq.(7) numerically into a real-
valued function so that we have finally a pure local dependence 
                                            [ ]kxsdxu ,8,03,2)( −=    with the real modulus 9166,0=k .                                       (7.1) 
A graphical plot for different values of the modulus shows Fig.1. In case of 1=k  the function degenerates to the hyperbolic sine 
function as usual. For practical calculations a trigonometric series (Erdelyi, 1981), is sometimes useful so that one can write in a 
more convenient form: 
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valid in every strip of the form τπ<π Im)2/Im( 2
1Kx  and K  is the complete elliptic integral of the first kind. 

 Tab.2   Algebraic properties of the eq.(3.1.1) after converting. All zeros of the polynomial of the fourth-order )(uP . 
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A formal power expansion up to order three yields 
                                    432 ]1[)1(11,0)1(18,0)1(36,128,2)( −+−+−−−+= xOxxxxu .                                            (7.3) 
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Fig.1   Left: Some solution curves of the function (7) for different values of the modulus: 9166,0=k  (solid line), 
           5,0=k (short dotted line), 1=k (dotted line) - this case degenerates to the sinh function. Right: The undisturbed 
            solution eq.(7.1), (solid line) by comparison with the second-order approximation calculated from the power 
            expansion (7.3) respectively, (dotted line). 
 
 
This can be compared with the exact solution in Fig.2 and therefore we conclude that the expansion is valid in the 
domain 23,0 << x . One can also make use of the Weierstrassian expansion [14]. 
Case C: 01 =K  and 12 =K  leads to complex-valued solutions for ∈x ⊆+, 0>x : 
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Note that the modulus is 1>k , that is ( ) 2255,34/175421 2/1 =+=k .  
To proceed further one has to use suitable transformations so that 10 << k  holds. Refering to [19] we calculate 
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where the new modulus 'k  is given by 9954,01' 2 =−= kk . 
We also note that for 1<x , 0≠x  the function (6.6) takes real value. The development of this function in the complex plane shows 
Fig.2 by using different initial values and Fig.3 shows the real-valued function considering the assumption 1<x . 
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Fig.2.  The behavior of the branch lines near a zero of the function (7.5) in the complex plane with 2≈A .  Different 
            values for the complete integral of the first kind are used: Right: The complete integral is assumed to 2=K , 
            middle: 4=K  and left: 6=K .  
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Fig.3  The real-valued tn-function for different values for the modulus and 2≈A ; solid line: 9954,0'=k ,  
          dotted line: 5,0'=k  and short dotted line: 1'=k . Note: The tn-function degenerates to the sinh function. 
 
    
Case D: 021 == KK : 
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where c  means ( ))62(cosh)62(sinh −  and the constant 0x  is assumed to be the identity.  
For this solution we calculate a closed-form analytical expression in terms of infinite series 
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where the convergence ∈∀ x ⊆ can be proven by using the d’Alembertian criterion immediately. For large values of the argument, 
say ∞→x  the following asymptotic formula holds: 
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It is proven that the following limiting behaviour holds: 
0

1)(lim
→

≈
x

xu and 
∞±→
=

x
xu 0)(lim ; the first and the second derivation are finite 

at the point 0=x . 
   It is remarkable that the analysis of eq.(3.1.2) also leads to similar results depending upon the choice of the integration constants. 
Although eq.(3.1.2) admits the case of traveling motion which is concern to the appropriate similarity variable and no classical 
wave propagation is observed. 
   Finally, we discuss the equations relating to approximate symmetries eq.(5.3), (5.4) and (5.5). 
The first and the second equations lead to a linear ODE of the third-order by setting 0=ε , that is 0'5''' =+ SS  and the prime 
means derivation w.r.t. ζ .  
An analytical solution of the first-order approximation is therefore: 

                                                    { } ][5sin5cos
5

1)( 321 ε++ζ+ζ=ζ OcccS ,                                                 (7.9) 

where the ic  are arbitrary constants. This case covers the traveling wave solution for 0)1/( =ζ−ε+− xt  if we set 0=ε . For 
0→ζ  the function(s) takes a finite value but remains indefinite as ±∞→ζ . For solution eq.(6.5) a closed-form analytical 

expression can be obtained: 
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where the convergence is also proven immediately. A graphical overview for the traveling motion represents Fig.4.  
To analyze eq.(5.5) we expand about the fourth-order term by setting 1=ε  and a solution of the fourth-order approximation is 
given: 
                                                 [ ] 43222 )3016()611(21)( ε+εζ++εζ++ε+−=ζ OS ,                                           (7.11) 
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leading to a quadratic dependence. We show some solution curves by using different initial conditions in Fig.4. Here, the traveling 
motion as well as the quadratic dependence is remarkable. 
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Fig.4   Left: Solutions of eq.(7.9) representing traveling waves by using different values of the integration constant 
           ic , especially 121 == cc  and 13 =c  (solid line), 121 == cc , 03 =c  (dotted line); the perturbation parameter 
            is assumed to be 0=ε . Right: The quadratic dependence of eq.(7.11) in fourth-order approximation. 
 
8. Conclusion remarks – main propositions - outlook 
 
   In this paper a less studied nPDE of the third-order is under consideration.  
Let us emphasise in brief the results of the analysis. Usually by introducing special similarity variables, say )(),( ξ=Utxu  
with tx α−=ξ , one would expect traveling motion as a result. For this special nPDE we did not found such solutions in the 
general case.  
   However, by choosing suitable values of the constants involved the traveling behaviour results. In addition the nPDE admits 
conservation laws derived for the first time similar to the KdV and analogues equations. The derived conservation laws are 
connected directly with physical measurable quantities like mass, the horizontal momentum and the energy. The dispersion 
relation, the group and the phase velocity as further physically important quantities are in agreement with many other evolution 
equations. It is important to point out that we apply a classical group analysis to generate new solutions for the first time. The non-
classical case, also performed for the first time leads to the expected traveling wave result. A further important contribution shows 
that the nPDE (1) does not allow potential symmetries (similar to the KdV).  
   It is known that similarity ‘ansätze’ of the form tx α−=ξ  does not guarantee the existence of physically important wave 
propagation; the nPDE (1) is a notable example for this behavior. We also show the existence of approximate and generalized 
symmetries to the first time.Finally, it is seen that the nPDE(1) does not belong to the hierarchy of the KdV Equation. Naturally, 
the next step is to prove the integrability by assuming that the nPDE(1) can be written in form of an equation of motion, the so-
called Lax equation [ ]BLut ,= , where L  means the Schrödinger operator (as a first assumption) which commutate with the 
commutator B . If so, we then can show that the nPDE(1) is integrable completely possessing infinitely many laws of conservation 
and has a related Bäcklund system. 
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