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Abstract 
 
   An analytical solution to the problem of the MHD free and forced convection three dimensional flow of an incompressible 
viscous electrically conducting fluid with mass transfer along a vertical porous plate with transverse sinusoidal suction velocity 
is presented. A uniform magnetic field is assumed to be applied transversely to the direction of the free stream. The expressions 
for skin friction at the plate in the direction of the main flow and the rate of heat transfer and mass transfer from the plate to the 
fluid are obtained in non-dimensional form. The amplitudes of the perturbed parts of these fields and the skin friction at the plate 
are presented in graphs and the effects of different physical parameters like Hartmann number M, Reynolds number R and the 
Schmidt number S on these fields are discussed and  the results obtained are physically interpreted.  
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1. Introduction        
 
   Many natural phenomena and technological problems are susceptible to MHD analysis. Geophysics encounters MHD 
characteristics in the interactions of conducting fluids and magnetic fields. Engineers employ MHD principle, in the design of heat 
exchangers pumps and flow meters, in space vehicle propulsion, thermal protection, braking, control and re-entry, in creating 
novel power generating systems etc. From technological point of view, MHD convection flow problems are also very significant in 
the fields of stellar and planetary magnetospheres, aeronautics, chemical engineering and electronics. Model studies of the above 
phenomena of MHD convection have been made by many. Some of them are Sanyal and Bhattacharya (1992), Ferraro and 
Plumpton (1966), Cramer and Pai (1973) and Nikodijevic et al. (2009). On the other hand, along with free convection currents, 
caused by the temperature difference, the flow is also affected by the difference in concentrations on material constitutions. Many 
investigators have studied the phenomena of MHD free convection and mass transfer flow of whom the names of Acharya et al. 
(2000), Bejan and Khair (1985), Babu and Prasad Rao (2006), Raptis and Kafousias (1982), Singh and Singh (2000) as well as 
Singh et al. (2007), etc. are worth mentioning. 
   Investigations of the problems of laminar flow control are being done by many researchers due to its importance in the field of 
aeronautical engineering in view of its application to reduce drag and hence the vehicle power requirement by a substantial 
amount. The development of this subject has been compiled by (Lachman 1961). Theoretical and experimental investigations 
indicate that the transition from laminar to turbulent flow which causes the drag co-efficient to increase may be prevented by 
suction of the fluid, by the application of transverse magnetic field and by heat and mass transfer from the boundary layer to the 
wall. To obtain any desired reduction in the drag by increasing suction alone is uneconomical as the energy consumptions of the 
suction pumps will be more. Therefore the method of “cooling of the wall” in controlling the laminar flow together with the 
application of suction has become more useful and hence received the attention of many workers. 
   The effect of the flow caused by the periodic suction velocity perpendicular to the main flow when the difference between the 
wall temperature and free stream temperature gives rise to buoyancy force in the direction of the free stream on heat transfer 
characteristics has been investigated by Singh et al. (1978). Ahmed and Sarma (1997) have extended the work of Singh et al. 
(1978) to the case when the medium is porous. Gupta and Johari (2001) have analyzed the effects of magnetic field on the three-
dimensional forced flow of an incompressible viscous fluid past a porous plate. Singh and Sharma (2001) have studied the effect 
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of the porosity of the porous medium on the three-dimensional Couette flow and heat transfer. The same authors (Singh and 
Sharma, 2002) have also studied the effect of the periodic permeability on the free convective flow of a viscous incompressible 
fluid through a highly porous medium. The effect of transverse sinusoidal injection velocity distribution on the three dimensional 
free convective Couette flow of a viscous incompressible fluid in slip flow regime under the influence of heat source has been 
studied by Jain and Gupta (2006). Ahmed et al. (2006) have obtained an analytical solution to the problem of the three-
dimensional free convective flow of an incompressible viscous fluid past a porous vertical plate with the transverse sinusoidal 
suction velocity taking into account the presence of species concentration. Singh (1991) has studied the effect of a uniform 
transverse magnetic field on the free convection flow of an electrically conducting viscous incompressible fluid past an infinite 
vertical porous plate with sinusoidal suction velocity and uniform free stream. As the present author is aware till now no attempt 
has been made to study the effect of a transverse magnetic field on a mixed convective flow of an incompressible viscous 
electrically conducting fluid with mass transfer along a vertical porous plate with transverse sinusoidal suction velocity taking into 
account the effect of Ohmic and viscous dissipations together. Such an attempt has been made in the present work. Though the 
flow geometry of the present work and that of the work of Singh (1991) are common, yet this paper is not a routine extension of 
the paper (Singh, 1991). Both papers differ in several aspects such as the forms of suction velocities and the combinations of 
dimensionless substitutions.  

 
2. Basic equations 
  
   The equations governing the steady motion of an incompressible viscous electrically conducting fluid in presence of a magnetic 
field are – 
   the equation of continuity (law of conservation of mass) : 

  div q =0                                                                                                                                                      (1) 
   the Gauss’s law of magnetism (law of conservation of magnetic flux) : 

  div 0=B                                                                                    (2) 
   the momentum equation  (law of conservation of momentum) : 

( ) gqBJpqq +∇+
×

+∇−=∇ 21. υ
ρρ

                                                                                                          (3)

                                                                             
    the energy equation (law of conservation of energy) :  

  ( )[ ]
σ

φρ
2

2. JTkTqCp ++∇=∇                                                                                 (4) 

   the species continuity equation (law of conservation of species) : 
( ) CDCq 2. ∇=∇                                                                                   (5) 
   the Ohm’s law ( Current density and electric field relation) : 

[ ]BqEJ ×+= 0σ                                                                                   (6) 
All physical quantities are defined in the Nomenclature. 
   We now consider the steady free and forced convection flow of an incompressible viscous electrically conducting fluid taking 
into account the species concentration past a vertical porous plate with transverse sinusoidal suction velocity as mentioned earlier 
by making the following assumptions. 

(i) All the fluid properties except the density in the buoyancy force term are constants. 
(ii) A magnetic field of uniform strength B0 is applied transversely to the direction of the free stream. 
(iii) The magnetic Reynolds number Rm  is small so that the induced magnetic field can be neglected. 
(iv) The level of species concentration in the fluid is very low so that the Soret and Dufour effects can be neglected. 
(v) wT T ∞>  and wC C∞>  

 

   We introduce a coordinate system ( )zyx ,,  with X-axis vertically upwards along the plate, Y-axis perpendicular to it and 
directed into the fluid region and Z-axis along the width of the plate. 

   Let wkvjuiq ˆˆˆ ++=  be the fluid velocity at the point ( )zyx ,,  and jBB ˆ
0=  be the applied magnetic field. 

The transverse sinusoidal suction velocity is taken as follows: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−=

L
zCosVzvw

πε10                                                     (7) 
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which consists of basic steady distribution 
0

V  with superimposed weak distribution 0
zV Cos

L
πε  confined in the boundary layer 

only. Here negative sign indicates that the direction of the suction velocity is towards the plate. . This suction velocity ( )wv z  is 

applied transversely to the plate and weak distribution 0
zV Cos

L
πε  will have no role in the outer edge of the boundary layer. Due 

to application of suction at the surface, the fluid particles at the edge of the boundary layer will have a tendency to get displaced 
towards the plate surface. Therefore 0v V→ −   at y →∞ . This phenomenon is clearly supported by the equation of continuity.  

   The velocity ,temperature and concentration fields are independent of x , because an asymptotic flow has been considered but 
the flow itself is three dimensional due to cross flow. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1 The flow configuration 
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   With the foregoing assumptions and under the usual boundary layer and Boussinesq approximations, the equations (1), (3), (4) 
and (5) reduce to: 

 Equation of continuity 0=
∂
∂

+
∂
∂

z
w

y
v

                                                   (8) 

x-component of momentum equation 
2 2

2
02 2

u u p u uv w g B u
y z y zx

ρ ρ μ σ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − − + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠
         (9) 

 
At the outer edge of the boundary layer the parallel component u U= , the free stream velocity. Since there is no large velocity 
gradient here, the viscous term in the equation (9) vanishes for small μ  and hence for the outer flow, we have 

2
00

p
g B U

x
ρ σ∞
∞

∂
= − − −

∂
                                                                                                                              (10)

  
It is emphasized by (Schlichting 1950) that in case of hot vertical plate, the pressure in each horizontal plane is equal to the 
gravitational pressure. That is p p∞= . Hence (10) reduces to 

2
00 p g B U

x
ρ σ∞

∂
= − − −

∂
                                                                                                                               (11) 

By eliminating the pressure term from the equations (9) and (11), we obtain 

 ( ) ( )
2 2

2
02 2

u u u uv w g B U u
y z y z

ρ ρ ρ μ σ∞

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ = − + + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                                                     (12) 

The Boussinesq approximation gives 

( ) ( )T T C Cρ ρ ρ β ρ β∞ ∞∞ ∞ ∞− = − + −                                                                                                    (13)  

On using (13) in the equation (12) and noting that ρ∞ is approximately equal to ρ , we obtain the momentum equations as follows: 

x -component: ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+−+−=
∂
∂

+
∂
∂

∞∞ 2

2

2

2

)(
z
u

y
uCCgTTg

z
uw

y
uv υββ ( )uUB

−+
ρ

σ 2
0        (14) 

y -component: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
z
v

y
v

y
p

z
vw

y
vv υ

ρ
                                                (15) 

z -component:
z
ww

y
wv

∂
∂

+
∂
∂

ρ
σ

υ
ρ

wB
z
w

y
w

z
p 2

0
2

2

2

21
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=                                                (16) 

Energy equation:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

z
T

y
T

z
Tw

y
Tv α

 

                            

222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
y
w

z
v

z
u

y
u

Cp

υ
⎥
⎥
⎦

⎤

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
22

2
z
w

y
v

 

                             ( )
2

2 20

p

B U u w
C

σ
ρ

⎡ ⎤+ − +⎢ ⎥⎣ ⎦
                    (17) 

Species continuity equation: 

  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

z
C

y
CD

z
Cw

y
Cv

                                                 (18) 
The symbols involved have been defined in the Nomenclature. 
  
The relevant boundary conditions are: 
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  :0=y  ,0=u ,wvv =  0=w , ,wTT =  wCC = ,                                              (19) 

                :y →∞  ,Uu =  ,0Vv −=  ,0=w ,∞= TT  ∞= CC , p p∞=                                 (20) 
We introduce the following non-dimensional quantities: 

 ,
L
yy =  ,

L
zz =  

0V
uu = , ,

0V
vv =  

0

,UU
V

=  
0V

ww =  

 ,
∞

∞

−
−

=
TT
TT

w

θ  
w

C C
C C

φ ∞

∞

−
=

−
, Pr υ

α
=  , Sc

D
υ

= , 
( )

2
0

wLg T T
Gr

V

β ∞−
=  , 2

⎟
⎠
⎞

⎜
⎝
⎛

=

L

pp
υρ

 
( )

2
0

wLg C C
Gm

V

β ∞−
= , ( )∞−

=
TTC

VE
wp

2
0   , 2

0

2
0

V
BM
ρ

υσ
= , 0Re V L

υ
=  , 2

⎟
⎠
⎞

⎜
⎝
⎛

= ∞
∞

L

pp
υρ

 

 The non-dimensional forms of (8), (14), (15), (16), (17) and (18) are: 

  0∂ ∂
+ =

∂ ∂
v w
y z

                                      (21) 

  ( )
2 2

2 2

1u u u uv w Gr Gm MR e U u
y z R e y z

θ φ
⎡ ⎤∂ ∂ ∂ ∂

+ = + + + + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
                  (22) 

  
2 2

2 2 2

1 1 ⎡ ⎤∂ ∂ ∂ ∂ ∂
+ = − + +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

v v p v vv w
y z Re y Re y z

                                  (23) 

  
2 2

2 2 2

1 1 ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

w w p w wv w MRe w
y z Re z Re y z

                   (24) 

 
2 22 22 2

2 2

1 2θ θ θ θ ⎡ ⎤ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞+ = − + + + + +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎪ ⎪⎣ ⎦ ⎩ ⎭

E u u E v wv w
y z PrRe y z Re y z Re y z

 

          ( ){ }
2

2 2⎛ ⎞∂ ∂
+ + + − +⎜ ⎟∂ ∂⎝ ⎠

E v w MERe U u w
Re z y

                  (25) 

  
2 2

2 2

1
e

φ φ φ φ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

v w
y z ScR y y

                                   (26) 

 With relevant boundary conditions: 
  :0=y  ,0=u  ( ),1 zCosv πε+−=  0=w ,1=θ 1=φ ,                                             (27) 

  :∞→y  ,Uu =  ,1−=v  ,0=w  ,0=θ  0=φ , p p∞=                                 (28) 
 

3. Method of solution 
  
We assume the solutions of the equations (21) to (26) to be of the form: 
 ( ) ( ) ( )2

10 0, εε ++= zyuyuu                                      (29) 

 ( ) ( ) ( )2
10 0, εε ++= zyvyvv                                      (30) 

 ( ) ( ) ( )2
10 0, εε ++= zywyww                                      (31) 

 ( ) ( ) ( )2
10 0, εε ++= zypypp                                      (32) 

 ( ) ( ) ( )2
10 0, εεθθθ ++= zyy                                      (33) 

 ( ) ( ) ( )2
10 0, εεφφφ ++= zyy                                      (34) 
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 with ,0 ∞= pp  00 =w  

   Substituting these in the equations (21) to (26) and equating the co-efficient of same degree terms and neglecting ,2ε  we get the 
following sets of the differential equations. 
 Zeroth-order equations: 

00 =
dy
dv

                                                                   (35) 

( )
2

0 0
0 0 0 02

1du d uv Gr Gm MRe U u
dy Re dy

θ φ= + + + −                                                  (36) 

( )
2

22 20 0
0 0 0 02

1 2d d E Ev v u MERe U u
dy PrRe dy Re Re
θ θ ′ ′= + + + −                                                                     (37) 

2
0 0

0 2
1d dv

dy Sc Re dy
φ φ

=                                                                                                                                            (38) 

First order equations: 

011 =
∂
∂

+
∂
∂

z
w

y
v

                                                                                                                                                    (39) 
2 2

01 1 1
1 1 1 12 2

1uu u uv Gr Gm MReu
y y Re y z

θ φ
⎛ ⎞∂∂ ∂ ∂

− + = + + + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
                                                                (40) 

2 2
1 1 1 1

2 2 2

1 1v p v v
y Re y Re y z

⎛ ⎞∂ ∂ ∂ ∂
− = − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                                                   (41) 

2 2
0 01 1 1 1

1 2 2

1 2d du duEv
y dy PrRe y z Re dy dy

θθ θ θ⎡ ⎤∂ ∂ ∂
− + = + +⎢ ⎥∂ ∂ ∂⎣ ⎦

( )0 1
0 1

4 2dv vE MERe U u u
Re dy y

∂
+ + −

∂
 (42) 

2 2
1 1 1 1

12 2 2

1 1w p w w MRew
y Re z Re y z

⎡ ⎤∂ ∂ ∂ ∂
− = − + + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

                                                              (43) 

2 2
1 1 10

1 2 2

1dv
y dy ScRe y z
φ φ φφ ⎛ ⎞∂ ∂ ∂

− + = +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                               (44) 

With conditions: 
:0=y  ,00 =u  ,10 −=v  ,10 =θ  10 =φ , ,01 =u  ,1 zCosv π−=  

        ,01 =w ,01 =θ  01 =φ                                                                             (45) 

:∞→y ,0 Uu =  ,10 −=v  
,00 =θ
 01 =φ , ,01 =u   

        ,01 =v   ,01 =w  01 =p ,01 =θ 01 =φ                                                             (46) 
 The solutions of the equations (35) and (38) subject to boundary conditions (45) and (46) are respectively 

   10 −=v                                     (47) 
   Re

0
Sc yeφ −=                                     (48) 

 In order to solve the coupled equations (36) and (37) under the above boundary conditions, we note that E<1 for all the 
incompressible fluids and it is assumed that the solutions of these equations to be of the form: 

  ( ) =yu0 ( ) ( ) ( )2
0100 0 EyEuyu ++                                                (49) 

  ( ) =y0θ ( ) ( ) ( )2
0100 0 EyEy ++ θθ                                                (50) 

 Substituting from (49) and (50) in the equations (36) and (37) and equating the co-efficients of the same degree terms and 
neglecting the term of 0(E2), the following differential equations with corresponding boundary conditions are derived. 
  2 2

00 00 00 00
ScReyu Reu MRe u MRe U Gr Re GmReeθ −′′ ′+ − = − − −                              (51) 
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  2
01 01 01 01u Reu MRe u Grθ′′ ′+ − = −                                  (52) 

  00 00 0PrReθ θ′′ ′+ =                                   (53) 

  ( )22 2
01 01 00 00PrRe Pru MPrRe U uθ θ′′ ′ ′+ = − − −                   (54) 

 Subject to the boundary conditions: 

  :0=y  ,000 =u  ,001 =u  ,100 =θ  001 =θ                                (55) 

  :∞→y  ,00 Uu =  ,001 =u  ,000 =θ  001 =θ                                (56) 
 The solutions of these equations under the boundary conditions (55) and (56) are as follows: 

  00
PrReyeθ −=                                    (57) 

  00 1 2 3
Pr Re y ScRe y Re yu U A e A e A e λ− − −= + + +                                (58) 

  2 2 2
01 0 1 2 3

Pr Rey Pr Rey ScRey ReyE e E e E e E e λθ − − − −= + + +  

              ( ) ( ) ( )
4 5 6

Re Pr Sc y Re Sc y Re Pr yE e E e E eλ λ− + − + − ++ + +                               (59) 

  2 2
01 0 1 2 3

Re y Pr Re y Pr Re y ScRe yu Gr F e F e F e F eλ− − − −⎡= − − −⎣  

   
( )

( ) ( )

2
4 5

6 7

Re Pr Sc yRey

Re Sc y Pr Re y

F e F e

F e F e

λ

λ λ

− +−

− + − +

⎤− −
⎥

− − ⎥⎦
                               (60) 

where 

2
411 M++

=λ ,
( )1 2

GrA
Re Pr Pr M

=
− −

,
( )2 2

GmA
Re Sc Sc M

=
− −

, UAAA −−−= 213 ,
2

2
1

1
AB = ,

2
2

2 4 2
A ScB

Sc Pr
=

−
,

2
3

3 4 2
AB

Pr
λ

λ
=

−
, 6B

( )
1 32A A Pr

Prλ λ
=

+
, 4B

( )
1 22A A PrSc

Sc Pr Sc
=

+
, 5B

( )( )
2 32A A Sc

Sc Sc Pr
λ

λ λ
=

+ + −
2

1
1 2 2,

2
AD

Re Pr
= ,

( )
2
2

2 22 2
AD

ScRe Sc Pr
=

−
,

( )
2
3

3 22 2
AD

Re Prλ λ
=

−
, 4D

( )
1 2

2
2A A

ReSc Pr Sc
=

+
, 5D

( )( )
2 3

2
2A A

Re Sc Sc Prλ λ
=

+ + −
, 6D

( )
1 3

2
2A A

Re Prλ λ
=

+
, 2

1 1 1,E MPr Re D PrB= − − 2
2 2 2E PrB MPr Re D= − −

2
3 3 3E PrB MPr Re D= − − , 2

4 4 4E PrB MPrRe D= − − , 2
5 5 5E PrB MPrRe D= − − , 2

6 6 6E PrB MPr Re D= − − ,

( )6543210 EEEEEEE +++++−= , 1F
( )

0
2 2

E
Re Pr Pr M

=
− −

, 2F
( )

1
2 24 2Pr

E
Pr M Re

=
− −

, 4F

( )
3

2 24 2
E

M Reλ λ
=

− −
, 5F

( ) ( ){ }
4

22

E
Re Pr Sc Pr Sc M

=
+ − + −

, 3F
{ }

2
2 24 2

E
Re Sc Sc M

=
− −

 

 6F
( ) ( ){ }

5
2 2

E
Sc Sc M Reλ λ

=
+ − + −

,
( ) ( ){ }

6
7 2 2

EF
Pr Pr M Reλ λ

=
+ − + −

, ∑
=

=
7

1
0

k

FkF  

 
4. Cross flow solution 
  
   We shall first consider the equations (39), (41) and (42) for ( )zyv ,1 , ( )zyw ,1  and ( )1 ,p y z  which are independent of main 

flow component 1u , temperature field 1θ  and concentration field 1φ .The suction velocity. 
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   ( )zCosvw πε+−= 1  consists of a basic uniform distribution –1 with superimposed weak sinusoidal distribution zCosπε . 

Hence the velocity components pandwv,  are also separated into mean and small sinusoidal components 111, pandwv . We 

assume 111, pandwv to be of the following form: 

  ( ) zCosyvv ππ 111 −=                                                    (61) 

  ( ) zSinyvw π111 ′=                                                     (62) 
  ( )2

1 11p Re p y Cos zπ=                                                    (63) 
 On substitution of (61), (62) and (63), the equation (39) is satisfied and the equations (41) and (42) reduce to the 
following differential equations: 

   2 11
11 11 11

Re p
v Rev vπ

π
′

′′ ′+ − = −                                                   (64) 

   ( )2 2
11 11 11 11v Rev MRe v Re pπ π′′′ ′′ ′+ − + = −                                                 (65) 

  The relevant boundary conditions for these equations are: 

   :0=y  ,1
11 π
=v  011 =′v                                                   (66) 

   :∞→y  ,011 =v  011 =′v                                                   (67) 
  The solution of the equations (64) and (65) subject to the boundary conditions (66) and (67) is 

   ( )[ ]yy eev ξξ ξξ
ξξπ

−− −
−

=
1

11
                                                  (68) 

  Where 
2 2 24

2
Re Reλ λ πξ + +

= ,
2 2 24

2
Re Reλ λ πξ + +

=
1 1 4 ,

2
Mλ − +

=  
1 1 4

2
Mλ + +

=  

  Hence the solutions for the velocity components 1v , 1w  and pressure 1p  are as follows: 

  1v ( )[ ] zCosee yy πξξ
ξξ

ξξ −− −
−

=
1

                                                               (69) 

  1w ( )[ ] zSinee yy π
ξξπ

ξξ ξξ −− −
−

=                                                                (70)

   

  ( )1 1 12
y yReP e eξ ξξξ ξ ξ

π ξ ξ
− −⎡ ⎤= −⎣ ⎦−

                                                               (71) 

 Where, 
22 2

1 MRe Reξ π ξ ξ= + + − , 2 2 2
1 MRe Reξ π ξ ξ= + + −  

 
5. Solutions for flow, concentration, and temperature field 
 
   We shall now consider the equations (40), (43) and (44). The solutions for the velocity component u, concentration field φ  and 

temperature field θ  are also separated into mean and sinusoidal components 111 ,, φθu . To reduce the partial differential equations 

(40), (43) and  (44) into ordinary differential equations, we consider for the following forms for 111 ,, φθu . 

  ( ) zCosyuu π111 =                                       (72) 

  ( ) zCosy πθθ 111 =                                       (73) 

  
( ) zCosy πφφ 111 =                                      (74) 

 Using the expressions for 1111 ,,, φθuv  in (40), (43), (44), we get the following ordinary differential equations  

( )2 2
11 11 11u Reu MRe uπ′′ ′+ − + 11 0 11 11Rev u Gr Re Gm Reπ θ φ′= − − −                     (75) 
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2
11 11 11PrReθ θ π θ′′ ′+ − ( )2

11 0 0 11 0 112 2PrRev EPr u u EMRe Pr U u uπ θ ′ ′ ′= − − + −                                   (76) 
2

11 11 11ScReφ φ π φ′′ ′+ − 11 0ScRe vπ φ′= −                                      (77) 
with the boundary conditions  

  :0=y  0,0,0 111111 === φθu                                                   (78) 

  0,0,0: 111111 ===∞→ φθuy                                                   (79) 
   The solution of the equation (77) subject to the boundary conditions (78) and (79) is 

  ( ) ( )
11 0 1 2

ScRe yScRe yayH e H e H e ξξφ − +− +−= + +                                   (80) 
Where 

2 2 24
2

ScRe Sc Re
a

π+ +
=  ,

( )( )
2 2

1 2 2

Sc ReH
Sc Re
ξ

ξ ξ ξ ξ π
=

− + −
 

( )( )
2 2

2 2 2

Sc ReH
ScRe

ξ
ξ ξ ξ ξ π

−
=

− + −
, ( )210 HHH +−=  

 Now in order to solve the coupled equations (75) and (76), the solutions of these two equations are assumed to be of the 
form: 

  ( ) ( ) ( ) ( )2
1011 0 EyEfyfyu ++=                                                 (81) 

  ( ) ( ) ( ) ( )2
1011 0 EyEyy ++= ψψθ                                     (82) 

 Substituting these in the equations (75) and (76) and equating the coefficients of similar terms and neglects E2, we get the 
following differential equations: 
  ( )2 2

0 0 0f Ref MRe fπ′′ ′+ − + 11 00 0 11Rev u GrRe GmReπ ψ φ′= − − −                                    (83) 

  ( )2 2
1 1 1f Ref MRe fπ′′ ′+ − + 1 11 01GrRe Rev uψ π ′= − −                     (84) 

  2
0 0 0PrReψ ψ π ψ′′ ′+ − 11 00PrRevπ θ ′= −                       (85) 

  2
1 1 1PrReψ ψ π ψ′′ ′+ − ( )2

00 0 00 02 2Pru f MRe Pr U u f′ ′= − + − 11 01PrRevπ θ ′−                   (86) 
with boundary conditions: 

  :0=y ,00 =f  ,01 =f  ,00 =ψ  01 =ψ                                   (87) 

  :∞→y ,00 =f  ,01 =f  ,00 =ψ  01 =ψ                                   (88) 
The equations (83) to (86) are solved subject to the boundary conditions (87) and (88), but not presented here for the 

sake of brevity. 
 

6.  Skin friction and heat and mass flux. 
 

   The non-dimensional skin-friction in the direction of the free stream at the wall  y = 0 is given by  

Uv
y
u

y

0

0

ρ

μ
τ =

⎥
⎦

⎤
∂
∂

−

=  
0

1

y

u
Re y =

⎤∂
= − ⎥∂ ⎦

= ( ) ( )0 11
1 0 0u u Cos z
Re

ε π′ ′⎡ ⎤− +⎣ ⎦  

    ( )0 1 , , , , , ,Q Pr Sc Re Gr Gm E M Cos zτ ε π= +                      (89) 

Where  
( )11

1

0u
Q

Re
′

= − , 
( )0

0

0u
Re

τ
′

= −  

The heat flux from the plate to the fluid in terms of Nusselt number is given by  

( )0 0 0

1

p w y y

k TNu
y Pr Re yv C T T

θ
ρ ∞ = =

⎛ ⎞ ⎤∂ ∂
= − = −⎜ ⎟ ⎥∂ ∂− ⎝ ⎠ ⎦

   

       ( )0 2 , , , , , ,Nu Q Pr Re M E Gr Gm Sc Cos zε π= +                                   (90) 



             Ahmed / International Journal of Engineering, Science and Technology, Vol. 2, No. 2, 2010, pp. 117-135 126

where ( ) ( )11
0 0 2

01 0 ,Nu Q
PrRe Pr Re

θ
θ

′
′= − = −  

The mass flux at the wall y = 0 in terms of Sherwood number Sh is given by  

( )0 0w y

D CSh
yV C C∞ =

⎛ ⎞∂
= − ⎜ ⎟∂− ⎝ ⎠ 0

1

yScRe y
φ

=

⎛ ⎞− ∂
= ⎜ ⎟∂⎝ ⎠

   ( ) ( )0 11
1 0 0 Cos z

ScRe
φ εφ π− ′ ′⎡ ⎤= +⎣ ⎦  

        
       ( )31 , ,Q Sc Re M Cos zε π= +                                                                                                (91) 

where  
( )11

3

0
Q

ScRe
φ′

= −     

 
7. Discussion of results 
 
   In order to get the physical insight into the problem, the numerical values for 21,, QQτ  and 3Q  which are respectively the skin 
friction and the amplitudes of the first order skin friction, first order Nusselt number and first order Sherwood number at the plate 
are obtained for different values of the physical parameters involved in the problem and these are demonstrated in graphs. The 
investigation is restricted to Prandtl number Pr  equal to 0.7 which corresponds to air . The value of each of G and Gm has been 
chosen as 10. The Schmidt number S are chosen in such a way that they represent the diffusing chemical species of common 
interest in air and water (for example S = 0.24 for H2, S = .60 for H2O, S = 0.78 for NH3 and S = 1 for CO2). That is in the present 
investigation the air is considered as the diffusing medium (solvent) and H2, H2O, NH3 and CO2 as diffusing species (solutes). The 
free stream velocity U is taken to be equal to 1 and E is selected to be 0.05. The values of the other physical parameters namely M 
and Re are chosen arbitrarily.  
   Figures 2 and 3 depict the variation of the skin friction τ  at the plate under the influences Re, M, and Sc. It is observed from 
Figure 2 that an increase in M leads to a decrease in the magnitude τ   of the skin friction. That is there is a reduction in the 
viscous drag (shearing stress) on the plate due to the application of the transverse magnetic field. This result has a good agreement 
with the physical realities. Because the application of a transverse magnetic field to a flow of an electrically conducting fluid has a 
retarding effect to the fluid motion and hence the increase of the velocity gradient in the direction normal to the plate is prevented 
due to imposition of  magnetic field for which the sharing stress at the plate is reduced. 
   It is inferred from Figure 3 that an increase in Schmidt number results in a decrease in τ  . That is the mass diffusion causes the 
viscous drag on the plate to increase and it clearly supports the physical situation as the mass diffusion accelerates the fluid motion 
for which the velocity gradient at the plate increases causing growth in drag on the plate. It is also seen from these two figures 
that τ , the magnitude of the skin friction at the plate becomes very large for small Reynolds number whereas there is a fall in τ  

for large R . In other words the frictional force on the plate becomes high for high viscosity. This result is clearly supported by the 
Newton’s law of viscosity. There is a clear indication from the Figures 2 and 3 the magnetic field as well as mass diffusion ceases 
to affect the sharing stress at the plate for low viscosity or large suction. 
   The change of behaviour of 1Q , the amplitude of the first order skin friction at the plate against the Reynolds number R under the 

effects of M and S is presented in Figures 4 and 5. . Figure 4 shows that the magnitude of 1Q  decreases due to application of the 

magnetic field. It is seen that 1Q   is negative for small and moderate values of R and it takes its positive values for large R. That is 
the direction of the first order shearing stress at z=0 for large R is opposite to that of the first order skin friction at z=0 for small 
and moderate R. Fig.5 clearly shows that an increase in the Schmidt number S leads to a decrease in the magnitude of 1Q .  There is 

an indication from figure 5 that the magnitude of 1Q   first decreases as R increases for small R and then it slowly and steadily 
increases as R. 
   The variation of the amplitude Q2 of the first order Nusselt number 1Nu  is demonstrated in Figure 6.  It is observed from Figure 
6 that Q2 decreases under effect of the magnetic field. The same figure also shows that Q2 is diminished by the frictional property 
of the fluid. In other words the rate of first order heat transfer (for z=0) from the plate to the fluid drops due to application of the 
transverse magnetic field or due to small suction.. 
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Fig .2: Skin friction τ  versus Re for Pr = 0.7, Sc = 0.60, Gr=10, G m= 10, U = 1, E = 0.05 
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Fig. 3: Skin frictionτ  versus Re for Pr =0.7, M = 1, Gr=10, Gm = 10,  
U = 1, E = 0.05 
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The effects of the Reynolds number R, the Hartmann number M and the Schmidt number S on Q3, the amplitude of the first order 
Sherwood number are shown in figures 7 and 8. These two figures show that there is a steady fall in

3Q   when M and R are 

increased whereas 
3Q  steadily increases for increasing Schmidt number.  

Fig.4: The amplitude Q1 of the first order skin friction 1τ  versus Re for 
P =0.7, S = 0.60, G=10, Gm = 10, U = 1, E = 0.05 
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Fig.5: The amplitude Q1 of the first order skin friction 1τ  versus Re  for 
 P =0.7,  M = 1, G=10, Gm = 10, U = 1, E = 0.05
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Fig.6: The amplitude Q2 of the first order Nusselt number 1Nu  versus Re  for  P 
=0.7, S = 0.60, G=10, Gm = 10, U = 1, E = 0.05  
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That is to say that low viscosity or magnetic field effect or an increase in mass diffusivity leads to a steady drop in the first order 
mass flux (for z=0) from plate to the fluid. The same figures further indicate that Q3 is not affected by the Prandtl number Pr . 

 
7.1 Comparison of results  
 
   To compare the results of our paper with those cited in the references, we choose the paper by Gupta and Johari (2001) 
 
Table 1: The variation of the numerical values of the first order skin friction F1 at the plate against the Hartmann number M and 
the velocity ratio α  for the paper by Gupta and Johari (2001) for Re=1 
 

α  M =0 M =2 M =4 
0.5 
1.0 
1.5 

1.6999 
3.6796 
5.9675 

1.6967 
3.6655 
5.9341 

1.6939 
3.6524 
5.9032 

   
   From the above table  it is observed that the first skin friction F1 at the plate decreases as the Hartmann number M  increases for 
Re=1.In the present paper also it is seen that for Re=1, the magnitude of the first order skin friction at the plate decreases as M  
increases (fig.4).Thus we see  that the results concerning first order skin friction under effect of the parameter M  are in a good 
agreement for both the papers. It may be mentioned that in the velocity ratio does not appear in the present work. It is adjusted in 
the boundary conditions of the flow problem under consideration. 
 
8. Conclusions 

 
   The results obtained from our investigation lead to the following conclusions: 
 

i) The transverse magnetic field or low viscosity or high Schmidt number causes a reduction to the viscous drag on 
the plate. 

Fig. 8: The amplitude Q3 of the first order Sherwood number versus Re for M =1, G = 10, Gm 
= 10, U = 1, E = 0.05  
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ii) The transition from laminar to turbulent flow may be prevented up to a certain extent due to the application of a 
transverse magnetic field. 

iii) The application of the transverse magnetic field or a reduction in mass diffusivity for small R causes the 
magnitude of amplitude of the perturbed part of the skin friction at the plate to fall. 

iv) The rate of first order heat transfer (for z=0) from the plate to the fluid drops due to application of the transverse 
magnetic field or due to small suction.. 

v) The low viscosity or magnetic field effect or an increase in mass diffusivity leads a steady drop in the first order 
mass flux(for z=0) from plate to the fluid.  

 
Nomenclature 
 

B     [-]                 magnetic induction vector 

0B    [Tesla]          intensity of the applied magnetic field 

pC   [ J
kg K ]   specific heat at constant pressure 

C   [ kmol/m 3 ]     species concentration 

∞C [ kmol/m 3 ]    concentration of the fluid at infinity 

wC [ kmol/m 3 ]    concentration of the fluid at the plate 
D    [ m 2  s-1  ]      coefficient of chemical molecular mass diffusivity 
 E    [ -]                 Eckert number 

0E   [ - ]                electric field  
Gr    [ - ]               Grashof number for heat transfer 
Gm    [ - ]              Grashof number for mass transfer 
g     [m s-2 ]            acceleration due to gravity 

ˆˆ ˆ, ,i j k     [-]            unit vectors along the co-ordinate axes 

J     [-]                   electric current density 

BJ ×   [-]             Lorentz force per unit volume 

σ

2
J

  [W m-3 ]       Ohmic dissipation per unit volume     

k    [ W/mK]         thermal conductivity 
L    [m]                 wave length of the periodic suction velocity 
M  [ -]           Hartmann number 
Pr [ -]          Prandtl number 
p   [ N m-2 ]        pressure 

p∞  [ N m-2 ]       gravitational pressure 

q     [- ]               velocity vector  
Re  [ -]    Reynolds number 
Sc   [- ]   Schmidt number 

T     [K]               temperature 

∞T   [K]     temperature of the fluid at infinity 

wT   [K]     temperature of the fluid at the plate 

U     [m s-1 ]        free stream velocity 

( )wvu ,,   [m s-1 ]  components of q  
u     [-]                   dimensionless velocity in x-direction 
v      [-]     dimensionless velocity in y-direction 

wv    [ m s-1 ]         suction velocity 
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0V     [ m s-1 ]         mean suction velocity 
w     =  dimensionless velocity in z-direction  

( )zyx ,,   [m]      Cartesian coordinates 
zy,     [-]       dimensionless co-ordinates perpendicular to the free stream velocity 

Greek Symbols 
α     [m2 K-1 ]     thermal diffusivity 
β     [ K-1 ]        co-efficient of volume expansion for thermal expansion 

β     [m3 /k mol]  the volumetric co-efficient of expansion with concentration 
ε     [-]                 small reference parameter ( 1<<ε ) 
φ     [-]                 dimensionless concentration  
ϕ    [W m-3 ]        viscous dissipation per unit volume 
θ    [-]                  dimensionless temperature 
ρ   [kg/ m3  ]       density of the fluid 

ρ∞  [kg/ m3  ]      density of the fluid in the free stream 

σ   [Ω -1 m-1 ]     electrical conductivity  

υ    [ m2 s-1 ]        kinematic viscosity  
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