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Abstract 
 
   Security assessment is an important concern in planning and operation studies of an electric power system. Conventional 
method of security evaluation is performed by simulation consisting of load flow program and transient stability analysis, 
consuming long computer time and generating voluminous results. This paper presents a practical Pattern Recognition (PR) 
approach for security assessment in power systems. The problem of security assessment is focused in two modes, viz., static and 
transient. Static security pertains to the study of violation of system components when subjected to contingencies like 
line/generator outages. Transient Security study deals with system dynamic behavior when subjected to severe perturbations like 
three phase faults. A Supervised Fuzzy C-Means (SFCM) algorithm is proposed in the classification phase of PR system for 
security assessment. The proposed algorithm is tested on 39 Bus New England and IEEE 57 Bus systems. The classification 
results of the proposed SFCM classifier is compared with the Method of Least Squares (MLS) and Multilayer Perceptron (MLP) 
classifiers. The results prove that the former gives high classification accuracy and less misclassification rate compared to the 
latter, enhancing the feasibility and applicability of SFCM algorithm for on-line security evaluation. 
 
Keywords: Security Assessment, Static Security, Transient Security, Pattern Recognition, Fuzzy C-Means. 

 
1. Introduction 
 
   Nowadays, power systems are forced to operate under stressed operating conditions closer to their security limits. Under such 
fragile conditions, any small disturbance could endanger system security and may lead to system collapse (Niazi et al, 2004). Fast 
and accurate security monitoring method, therefore, has become a key issue to ensure secure operation of the system and forewarn 
the system operators to take necessary preventive actions in case need arises. Power system security is defined as the ability of the 
system to withstand unforeseen contingencies without violating normal operating limits. 

Security assessment (SA) refers to the analysis performed to determine whether or not a power system can meet specified 
reliability and security criteria in both steady-state and transient time frames for all credible contingencies. Security analysis may 
be broadly classified as (i) Static Security and (ii) Transient Security (Shahidehpour et al, 2003). Static security evaluation detects 
any potential overload of a system branch or an out-of limit voltage following a given list of contingencies (Matos et al, 2000). 
Transient security evaluation pertains to system dynamic behavior in terms of rotor angle stability, when subjected to 
perturbations. Traditional security assessment involves numerical solution of non-linear load flow equations and transient stability 
analysis for all credible contingencies (Luan et al, 2000). Because of the combinatorial nature of problem, this approach requires a 
huge amount of computation time and hence found infeasible for real time security analysis of practical power system networks. 

Pattern Recognition (PR) techniques have shown great importance as a means of predicting the security of large electric power 
systems, overcoming the drawbacks of traditional approaches (Luan et al, 2000; Pang et al, 1973). The first step in applying PR 
technique to the security assessment problem is the creation of an appropriate data set for training and testing purposes. The 
required data samples called patterns are generated by off-line simulations or obtained from real time occurrences (Pang et al, 
1973). The next important aspect in achieving good performance is the selection of input features, a subset of pattern variables. 
Many feature selection algorithms are reported in the literature such as Principal Component Analysis, Entropy Maximization, and 
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Fisher Discrimination (Jensen et al, 2001). In this paper, a forward sequential method is adopted for feature selection process. 
Using the input features selected, a classification function is designed for accessing system security status. 

The design of a suitable classifier in the pattern recognition system is an important concern for on-line security evaluation. 
Literatures have reported the use of conventional algorithms like linear programming, least squares (Pang et al, 1974) and use of 
expert systems like neural networks, decision trees (Luan et al, 2000) for designing the classifier. These existing algorithms seem 
to work well with linearly separable classes, but not well established on non-linearly separable classes. This led to the idea of 
applying clustering algorithm for power system security evaluation to handle the problem of non-linear separability between 
classes. The fuzzy clustering technique of steady state security evaluation proposed by Matos (Matos et al, 2000) uses an 
unsupervised learning, making it infeasible for on-line implementation. This paper presents the application of an active Supervised 
Fuzzy C-Means (SFCM) clustering algorithm for real time security assessment. A given system operating state is grouped in one 
of two clusters - Secure/Insecure, according to its membership value. The proposed SFCM algorithm is implemented in New 
England 39 bus and IEEE 57 bus standard test systems and its performance is compared with Method of Least Squares (MLS) and 
Multilayer Perceptron (MLP) classifiers. The simulation results prove that the SFCM trained classifier gives high classification 
accuracy and less false dismissals, enhancing its feasibility for on-line implementation of security evaluation. 
 
2.  Security Assessment (SA) 
 

Security Assessment is the process of determining whether and to what extent, a system is ‘reasonably’ safe from serious 
interference to its operation (Luan et al, 2000). It evaluates the robustness of the system (security level) to a set of contingencies in 
its present state or future state. This section describes in brief the process of static security assessment and transient security 
assessment carried out in power system networks. 
 
2.1 Static Security Assessment (SSA):  

Static security of a power system addresses whether, after a disturbance, the system reaches a steady state operating point 
without violating system operating constraints called ‘Security Constraints’ (Shahidehpour et al, 2003; Pang et al, 1973; Pang et 
al, 1974). These constraints ensure the power in the network is properly balanced as given by Eq. (1), magnitude of all bus voltage 
and the MVA flow in the transmission line is within acceptable limits as given by Eq. (2). If any one constraint violates, the system 
may experience disruption that could result in a ‘black-out’. 

1

min max;
N g

i
P P P P P PGi D loss Gi Gi Gi=

= + ≤ ≤∑                             (1) 

m in m a x m a x;V V V S Sk k k k m k m≤ ≤ ≤                                      (2) 

In static security assessment process, the status of the power system is evaluated for various probable contingencies by solving 
non-linear load flow equations. The contingencies may include outage of a transmission line or a transformer or a generating unit. 
The load flow is solved for various disturbances and the results are compared with system constraints. The system operating state 
is labeled as ‘Static Secure’ (SS: Binary 1) if all the constraints (1)-(2) are satisfied for a specified contingency. If any one 
constraint violation is identified, the system state is labeled as ‘Static Insecure’ (SI: Binary 0).   
 
2.2 Transient Security Assessment (TSA):  

Transient security of a power system addresses whether, after a perturbation, the system proceeds to operate consistently within 
the limits imposed by the system stability phenomena (Shahidehpour et al, 2003; Pang et al, 1973; Pang et al, 1974). Transient 
security assessment consists of determining, whether the system oscillations, following the occurrence of a fault or a large 
disturbance, will cause loss of synchronism among system generators (Hakim, 1992). TSA is a subset of transient stability 
analysis. Transient stability pertains to rotor angle stability, wherein the stability phenomena are characterized by rotor dynamics 
under a severe perturbation. The system state is classified as ‘Transient Secure’ (TS: Binary 1) if the rotor angle of any generator 
does not exceed 1800 - δ0, δ0 being the rotor angle of slack (reference) generator, after fault clearing instant, under specified 
transient disturbance. On the contrary, if the rotor angle exceeds 1800 - δ0, the system state is classified as ‘Transient Insecure’ (TI: 
Binary 0). 
 
3. Application of Pattern Recognition Technique to Security Assessment 
 
   Pattern Recognition is an integral part in machine intelligence systems built for decision making. It deals with classification of 
data objects, referred as ‘Patterns’, into a number of categories or classes (Theodoridis et al, 1992). The main objective of 
applying pattern recognition approach to security assessment problem is to reduce on-line computational requirements. This is 
done at the expense of an extensive off-line simulation, generating sufficient data points. If the separating surface between the 
distinguishing classes is evaluated as a security function, the system security can be accessed at any point of time. This is the basic 



Kalyani and Swarup / International Journal of Engineering, Science and Technology, Vol. 2, No. 3, 2010, pp. 175-185 

 

177

 

idea of PR approach. The sequence of steps carried out in off-line in applying PR approach to security assessment is shown in the 
form of a flowchart in Figure 1. 

 
Figure 1. Stages in Design of Pattern Recognition (PR) System for Security Evaluation 

 
As shown in Figure 1, the design of pattern recognition system using the proposed Supervised Fuzzy C-Means (SFCM) 

algorithm undergoes a series of sequential steps. In this section, we briefly outline the main steps and algorithm of the fuzzy 
classification scheme. The main stages are as follows: 

 
Step 1: Data Generation (consists of generating pattern vector) 
Step 2: Feature Selection (selecting a subset of pattern attributes called features)  
Step 3: Classifier Design (devising a decision function called Security Function)  
Step 4: Performance Evaluation (Validating and testing the designed classifier) 

 
This section gives a brief description of each of the above stages involved in the design of pattern recognition system for the 

problem of security assessment. 
 
3.1 Step 1: Pattern (Data) Generation:  

The success of pattern recognition relies on a good training set. This set must adequately represent the entire range of system 
operating states. A large number of characteristic operating points are generated through off-line simulation and the security status 
is evaluated for each contingency under study. Each operating point is termed as a pattern (Se-Young oh, 1986). Each pattern is 
characterized by a number of attributes such as load level, voltages, power generation, etc. These attributes form the components 
of a vector called ‘pattern vector’. Evaluating the security status, each pattern is labeled as belonging to secure/insecure class. The 
data samples generated in this phase are randomly split into train set and test set.  
 



Kalyani and Swarup / International Journal of Engineering, Science and Technology, Vol. 2, No. 3, 2010, pp. 175-185 

 

178

 

3.2 Step 2: Feature Selection: 
Feature selection reduces the dimensionality of data by selecting only a subset of measured features (predictor variables) to 

create a model (Weerasooriya et al, 1986). The selected features must be capable of giving more useful information to build the 
classification function. The features form the components of a vector called feature vector Z. Features may be selected by 
engineering judgment. But such selections will be subjective with the possibility of important variables getting rejected. A 
common method of feature selection is sequential feature selection, consisting of two components - an objective function called 
criterion and a sequential search algorithm. In this paper, we use a ‘Sequential Forward Selection (SFS)’ method (Theodoridis et 
al, 1992). The criterion which this method seeks to minimize is misclassification for classification models. The SFS method starts 
with an empty candidate set and adds feature variables sequentially until addition of further variables does not decrease the 
criterion (minimization of misclassification). 
 
3.3 Step 3: Classifier Design:  

Having selected the desired feature subset, the next step in the PR system is to design an efficient classifier for the security 
assessment problem. There are many training algorithms reported in literature for classifier design. Few of them include least 
squares, linear programming, back propagation, etc. These algorithms, although less time consuming, were found to give poor 
classification accuracy. The main requirements of a good classifier are ‘high accuracy’ and ‘less misclassification’. This led to the 
thought of finding a more efficient learning algorithm for classifier design. In this paper, the Supervised Fuzzy C-Means (SFCM) 
clustering algorithm is identified as a suitable tool for design of classifier in the PR system. This section gives a brief outline of 
fuzzy clustering and algorithm of SFCM for classification task. 
 
3.3.1 Fuzzy Clustering:  

Clustering is a process of partitioning or grouping a set of data objects into a number of clusters such that similar patterns are 
assigned to one cluster. The measure of similarity or distance between respective patterns is fundamental for any clustering 
technique (Ross, 2004). Depending on the data and application, different types of similarity measures like distance, connectivity 
and intensity can be used. These measures control the method of cluster formation. In this paper, Euclidean distance based 
similarity measure is used for class identification. Fuzzy clustering is a class of algorithm in cluster analysis wherein the allocation 
of data points to clusters is not ‘hard’ but ‘fuzzy’ in the same sense as fuzzy logic. Fuzzy logic is a multi-valued logic derived from 
fuzzy set theory, proposed by Lofti Zadeh to deal with reasoning that is approximate rather than precise (Ross, 2004).  

Fuzzy C Means (FCM) is one of the widely used fuzzy partitioning scheme, originally introduced by Bezdec, as an improvement 
on earlier clustering methods (Wei-Che Chen et al, 2009). FCM is an overlapping data clustering technique wherein each data 
point, Xk, belongs to a cluster i to some degree specified by a membership grade, uik. The detailed algorithm of fuzzy c-means 
clustering is available in Ref (Wei-Che Chen et al, 2009). The FCM algorithm outputs a list of cluster centers and membership 
grades for each point. This information can be used to build a fuzzy inference system by creating appropriate membership 
functions to represent the fuzzy qualities of each cluster. FCM is an unsupervised learning algorithm, which performs the 
classification of data samples without utilizing the class label information. A common problem with FCM is that the cluster 
structure does not necessarily correspond to the classes in the dataset, reducing its classification accuracy and efficiency. Hence, 
FCM is preferred only when there is no prior information regarding class labels. 
 
3.3.2 Supervised Fuzzy C-Means (SFCM) Clustering:  

Class labels always provide a useful guidance during training process, as being done in all the learning methods. Hence, it 
becomes necessary to use the labeled samples in training phase and unlabeled samples in testing phase to improve the performance 
of FCM. This idea led to the development of a new algorithm called ‘Supervised Fuzzy C-Means (SFCM)’ algorithm, a slight 
modification of FCM (Hong-Bin et al, 2005). The SFCM clustering technique aims to develop classifiers that can utilize both 
labeled and unlabeled samples. In this method of classification, a known fixed set of categories and category-labeled training data 
are used to induce a classification function (Li et al, 2008). The supervised clustering can group data using the categories in the 
initial labeled data, as well as extend and modify the existing set of categories to reflect other irregularities in the dataset. 

The determination of fuzzy partition matrix U (dividing n data sets into c classes) using Supervised Fuzzy C Means clustering is 
an iterative optimization procedure. The core of SFCM is to use the labeled data samples to guide the iterative optimization 
procedure. The objective function of the SFCM optimization problem is defined as: 

( ) ( )2 2

1 1 1 1

( , )
mc n c n

m
m ik ik ik ik ik

i k i k

J U v u d a u f d
= = = =

= + −∑∑ ∑∑       (3) 

where 
U  Fuzzy Partition Matrix 
v  Cluster Center 

iku   Membership degree of kth data point belonging to the ith cluster (value between 0 and 1) 
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ikd  Distance measure of kth data point from ith cluster center 

ikf  Membership degree of kth labeled sample belonging to the ith cluster (value is either 0 or 1) 
 

The coefficient ‘a’ denotes scaling factor and ‘m’ denotes the fuzzy coefficient. The role of ‘a’ is to maintain a balance between 
supervised and unsupervised component within the optimization mechanism and parameter ‘m’ controls the amount of fuzziness in 
the classification. The typical value of m is 2 and a=L/n, L denoting the size of labeled samples (Li et al, 2008). The function Jm 
can take a large number of values, the smallest one being associated with best clustering. 
 
Algorithm for SFCM 
An effective algorithm for fuzzy classification called iterative optimization procedure is discussed herein. The steps in this 
algorithm are as follows: 

1. Fix the number of clusters c. Initialize membership values of matrix F of size c x n with 0 or 1 in accordance with class 
labels. Initialize fuzzy partition matrix U(0) with random values between 0 and 1, where U ε Mfc. 

[ ]
1 1

0,1 ; 1 ; 0
ik

c n

fc ik iku
i k

M U u u n
= =

⎧ ⎫= ∈ = < <⎨ ⎬
⎩ ⎭

∑ ∑         (4)             

2. Start the iterative procedure and set the iteration count, t = 1. 
3. Calculate the centers (prototypes) of the clusters using the equation (5) given below 

              

( )

( )

( 1) ( )

( ) 1

( 1)

1

; 1, 2.....
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ik kj

t k
ij n mt
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k

U Z
v j m

U

−

=

−

=

= =
∑

∑
                                   (5) 

( )t
iv is the ith cluster center described by m features (m coordinates) and arranged in the vector form represented as 

{ }( ) ( ) ( ) ( )
1 2, , ,t t t t

i i i imv v v v= K . ( )train
kjZ represents the kth data instance corresponding to the mth selected feature variable. 

The data matrix, Z, is the input train feature vector set obtained for SSA / TSA classification process.  
4. Calculate the distance, ( )t

ikd , between the ith cluster center and kth data set (data point in m-space). The distance measure 
used is Euclidean Distance as given by equation (6). 

( )2( ) ( ) ( ) ( )

1

m
t t train t

ik k i kj ij
j

d Z v Z v
=

= − = −∑          (6) 

5. Update the fuzzy partition matrix, ( 1)tU + , for the next iteration as follows: 
12
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( 1)
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 where 

{ } { }
~

( ) ( 1 )
2

; 0 ; 1, 2 , , ; 1
k

t t
k ik k ikc n

i I
I i d c I ukI +

< <
∈

= = = − =∑K       (8) 

6. If ( 1) ( )t tU U ε+ − ≤  (ε being iterative accuracy), stop the iteration and output v (cluster center), U (fuzzy matrix); 
else increment the iteration count, t = t+1 and return to Step 3. 

 
Note: For test set samples, whose class labels are unknown, the fuzzy matrix is updated as follows: 
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where iv  and jv are values obtained from final cluster center v of the SFCM iterative training algorithm described above. 
3.4 Step 4: Performance Evaluation:  

The performance of the classifier designed using SFCM training algorithm is rated by evaluating the following measures for 
train set, test set and combined data set.  

(a) Mean Squared Error (MSE) 

( )2

1

1 ;
n

k k k k
k

M SE E E DO AO
n =

= = −∑      (10) 

where 
kDO  Desired output obtained from off-line simulation (data generation) 

kAO  Actual output obtained from the classifier algorithm designed in PR system 
 

(b) Classification Accuracy (CA) 
.(% ) 100

.
No of samples classified correctlyCA
Total No of samples in data set

= ×    (11) 

(c) Misclassification (MC) Rate 
(i) Secure Misclassification (SMC) or False Dismissal 

. 0 ' 1(% ) 1 0 0
. s e c ( 0 )

N o o f s c la s s i f i e d a sS M C
T o ta l N o o f In u r e S ta te s

= ×     (12) 

(ii) Insecure Misclassification (ISMC) or False Alarm 
. 1 ' 0(% ) 1 0 0

. ec (1)
N o o f s c la ss ified a sIS M C

T o ta l N o o f S u re S ta tes
= ×     (13) 

In power system security evaluation, the false alarms are not much harmful. In case of false dismissals, failure of control actions 
may lead to a severe blackout. It is, therefore, important to ensure that false dismissals are kept at minimal. The classification 
system must be efficiently designed to meet this requirement. 

 
4. Results and Discussion 

 
The proposed SFCM based design of classifier for security assessment is implemented in 39 Bus New England (Pai, 1989) and 

IEEE 57 Bus systems (PSTCA). The bus voltage magnitude is limited to the range of 0.90pu - 1.10pu. The generator data and their 
limits are given in Appendix. The data set required for training and testing are generated by off-line simulation with programs 
developed in Matlab 7.0 package. We have considered different operating scenarios by varying generation and load from 50% to 
200% of their base case value. The variation in generation is limited to their minimum and maximum limits.   

 
4.1. Results of Static Security Assessment: 

In Static Security Assessment, single line outages are simulated for each operating condition. For a given operating condition 
and specified contingency, load flow solution by Fast Decoupled Load Flow method is obtained. The static security status 
(secure/insecure) is determined for feasible solutions by evaluating the security constraints given by equation (1)-(2). The steady 
state variables of the load flow solution are recorded as pattern variables X, which includes bus voltage magnitude, bus voltage 
angle, complex power generation at generator buses, complex power load at load buses and MVA flow in all branches. An optimal 
subset of pattern vector called ‘feature vector (Z)’ is identified by SFS feature selection method. The results of data generation and 
feature selection phases for static security assessment are shown in Table 1. 

The data samples of m features are randomly split into train and test set. The classifier is designed by SFCM algorithm based on 
train set. Using the resultant cluster centers, the fuzzy partition matrix of test set is determined. The class labels of the test samples 
are predicted by the maximal membership function value in the fuzzy matrix, U. The fuzzy coefficient ‘m’ in SFCM algorithm is 
assumed as 2. The performance of SFCM classifier is shown in Table 2. The results of SFCM classifier is compared with the 
Method of Least Squares (MLS) and Multilayer Perceptron (MLP) classifiers. The MLS classifier is designed by Multiple Linear 
Regression technique using the selected input feature set. The MLP classifier, designed using Neural Network toolbox in Matlab 
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7.0, consists of a hidden layer with 30 neurons of ‘tansig’ function. The MLP network is trained with Levenberg Marquardt 
algorithm (Learning rate=0.05, Goal=0.001, Epochs=600). 

Table 1. Data Generation and Features of Static Security Assessment 

Test Case Studied   New England 39 Bus System IEEE 57 Bus System 
Operating Scenarios 531 1378 
Static Secure (SS) Classes 330 719 
Static Insecure (SI) Classes 201 659 
No. of Pattern Variables 153 243 
No. of Features Selected 20 22 
Dimensionality Reduction 13.072 % 9.054 % 

 
The classification results of various classifiers show that the SFCM trained classifier gives a fairly high classification accuracy 

and less secure misclassification rate, compared to MLP or MLS classifiers, as evident from Table 2. The SFCM algorithm is 
capable of classifying unlabeled class samples (test set) with high accuracy and less SMC rate, as shown highlighted (boldface) in 
Table 2. This feature is highly important for power system operation, where it is unrealistic to expect that all possible cases will be 
encountered through off-line simulation. Figure 2 shows the comparison of the performance of classifiers for entire data set, as a 
bar plot for the test cases studied. As seen from Figure 2, the results of SFCM prove to more encouraging than other classifier 
algorithms, making it suitable for on-line implementation. 

Table 2. Comparative Performance of Classifiers for Static Security Assessment 

New England 39 Bus System IEEE 57 Bus System Test Case Studied   

Classifier Type  SFCM MLS MLP SFCM MLS MLP 

No. of Samples 434 434 434 1213 1213 1213 

Classification Accuracy (%) 100.0 70.97 70.27 100.0 63.48 75.43 

Mean Squared Error 0.000 0.291 0.297 0.000 0.365 0.246 

Secure Misclassification (%) 0.000 79.75 81.65 0.000 76.25 51.29 

Insecure Misclassification (%) 0.000 0.000 0.000 0.000 0.000 0.000 TR
A

IN
 S

ET
 

CPU Time (s) 0.340 1.274 3.719 0.420 0.883 17.96 

No. of Samples 97 97 97 165 165 165 

Classification Accuracy (%) 87.63 68.04 83.51 91.52 63.03 67.27 

Mean Squared Error 0.124 0.319 0.165 0.085 0.369 0.327 

Secure Misclassification (%) 20.93 72.09 37.21 15.38 78.21 50.00 

Insecure Misclassification (%) 5.556 0.000 0.000 2.298 0.000 17.24 TE
ST

 S
ET

 

CPU Time (s) 0.042 0.013 0.023 0.124 0.002 0.024 

 

 
Figure 2. Overall Performance of Classifiers for Static Security Assessment 
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4.2. Results of Transient Security Assessment: 
In transient security assessment process, the static security status of all the operating scenarios is first identified by running load 

flow program. The operating scenarios which are static insecure (violating one or more of the constraints (1)-(2)) are ignored. Each 
static secure case is subjected to transient security analysis by simulating transient disturbances (three phase faults) on all lines, 
one at a time, both near sending and ending buses. The faults are applied at 0 sec and cleared at 0.25 sec (freq. being 60Hz) by 
tripping the faulted line. The system dynamic equations are solved by numerical integration technique, viz., fourth-order Runge 
Kutta method and the transient security status is evaluated for each disturbance. If the relative rotor angle of any generator with 
respect to reference generator exceeds 1800 - δ0 after fault clearing instant, the corresponding data pattern is labeled as Transient 
Insecure (0), else classified as Transient Secure (1). A simple classical model with each generator represented by constant voltage 
behind transient reactance is used in the transient stability simulation. 

The steady state variables from static security assessment and the variables pertaining to system dynamic behavior obtained 
from transient security assessment form the components of pattern vector. The pattern variables are bus voltage magnitude and 
angle, power generation and load, mechanical input power, electrical output power and relative rotor angle of generators at fault 
application time and fault clearing time. The size of the pattern vector being large, we identify those variables having higher 
information content by SFS feature selection method. This, in turn, yields the feature vector (Z) for classifier design. The result of 
data generation and feature selection phases for transient security assessment is shown in Table 3. 

Table 3. Data Generation and Features of Transient Security Assessment 
Test Case Studied   New England 39 Bus System IEEE 57 Bus System 

Operating Scenarios 31 25 
Static Secure (SS) Classes 15 14 SS

A
 

Static Insecure (SI) Classes 16 11 
Operating Scenarios 1020 1764 
Transient Secure Classes 614 1072 TS

A
 

Insecure Classes 406 692 
No. of Pattern Variables 153 198 
No. of Features Selected 23 7 
Dimensionality Reduction 15.032 % 3.535 % 

 
Table 4. Comparative Performance of Classifiers for Transient Security Assessment 

New England 39 Bus System IEEE 57 Bus System Test Case Studied   

Classifier Type  SFCM MLS MLP SFCM MLS MLP 

No. of Samples 910 910 910 1589 1589 1589 

Classification Accuracy (%) 100.0 68.24 75.27 100.0 71.55 79.55 

Mean Squared Error 0.000 0.318 0.247 0.000 0.285 0.205 

Secure Misclassification (%) 0.000 78.86 59.84 0.000 69.22 49.77 

Insecure Misclassification (%) 0.000 0.000 0.000 0.000 0.000 0.000 TR
A

IN
 S

ET
 

CPU Time (s) 0.348 0.609 10.93 0.359 0.369 8.992 

No. of Samples 110 110 110 175 175 175 

Classification Accuracy (%) 90.91 85.45 81.82 86.86 77.21 70.28 

Mean Squared Error 0.091 0.146 0.182 0.131 0.223 0.297 

Secure Misclassification (%) 33.33 53.33 66.67 25.64 100.0 58.98 

Insecure Misclassification (%) 0.000 0.000 0.000 9.558 0.000 21.32 

TE
ST

 S
ET

 

CPU Time (s) 0.098 0.002 0.015 0.044 0.002 0.015 
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Figure 3. Overall Performance of Classifiers for Transient Security Assessment 

 
The classification function is designed based on the train set of the feature vector. The results of classifiers obtained during 

training and testing phases for transient security assessment is shown in Table 4. The SFCM results are compared with MLP and 
MLS classifiers. The MLP and MLS classifier are designed and trained as discussed in previous section. Figure 3 shows the 
performance comparison of the classifiers as a bar plot for the test cases studied. It can be seen from Table 4 and Figure 3 that the 
SFCM classifier gives a better result in terms of high classification accuracy and less misclassification rate than the other 
classifiers. Furthermore, the time taken by SFCM classifier is quite acceptable, making it feasible for on-line security monitoring 
system. Data robustness, overload detection, voltage monitoring and contingency analysis are widely studied in security 
assessment. The proposed classifier is useful for all these analysis. 

 
5. On-line Implementation 

 
The security system developed based on PR approach using SFCM algorithm is feasible for on-line implementation. In on-line 

mode, real time system data of the selected feature variables are measured and system static / transient security status is accessed 
as shown in Figure 4. The implementation procedure shown in Figure 4 is a general idea and applicable for both SSA and TSA. 
When applied for SSA, real time power flow data measurements are used as input to SFCM classifier. In case of TSA application, 
real time dynamic variables like machine angle, electrical power are fed as input to classifier algorithm. For any new operating 
point, use of equation (9) gives the degrees of membership to each class. The new point is assigned to the class corresponding to 
maximal membership function value. This process involves very little computation effort, i.e., only manipulation of equation (9) 
and hence suitable for on-line security evaluation process. Moreover, the classification of operating points among all classes with 
degrees of membership helps the operator to take appropriate control decisions, especially in case of critical operating points.  

 

 
Figure 4. On-line Implementation of Security Assessment Process 

 
6. Conclusions  

 
The application of pattern recognition approach for classifying the input feature vector representing the power system states is 

presented. The classifier in the PR system is developed by a fuzzy clustering algorithm called ‘Supervised Fuzzy C-Means 
(SFCM)’. Training set vectors generated from off-line simulations are presented as inputs to SFCM algorithm, which uses active 
supervised learning to adapt its weight vectors (cluster centers). The proposed SFCM-PR model was tested on New England 39 
Bus and IEEE 57 Bus test systems for both static and transient security assessment. Simulation results show that high accuracy 
classifiers with less false dismissal rate are realizable with the SFCM algorithm. Further, the SFCM algorithm involves less 
computation effort, making it suitable for real time security evaluation. Future work will focus on further improving the successful 
classification level by combining SFCM with machine learning algorithms like Support Vector Machines. 
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Appendix  
 
Generator Data: 

New England 39 Bus System IEEE 57 Bus System 
Gen 
No. 

Bus 
No. 

Pmin 
(MW) 

Pmax 
(MW) 

Ra 
(pu) 

Xd’ 
(pu) 

H 
(s) 

Gen 
No. 

Bus 
No. 

Pmin 
(MW) 

Pmax 
(MW) 

Ra 
(pu) 

Xd’  
(pu) 

H 
(s) 

1 30 0 350.00 0.00 0.0310 42.00 1 1 0 575.88 0.00 0.2500 4.000 
2 31 0 1150.00 0.00 0.0697 30.30 2 2 0 100.00 0.00 0.2000 3.000 
3 32 0 750.00 0.00 0.0531 35.80 3 3 0 140.00 0.00 0.2000 3.000 
4 33 0 732.00 0.00 0.0436 28.60 4 6 0 100.00 0.00 0.2500 5.000 
5 34 0 608.00 0.00 0.1320 26.00 5 8 0 550.00 0.00 0.2000 2.500 
6 35 0 750.00 0.00 0.0500 34.80 6 9 0 100.00 0.00 0.2000 3.000 
7 36 0 660.00 0.00 0.0490 26.40 7 12 0 410.00 0.00 0.2500 5.000 
8 37 0 640.00 0.00 0.0570 24.30        
9 38 0 930.00 0.00 0.0570 34.50        

10 39 0 1100.00 0.00 0.0060 500.00        
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