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Abstract 
 
   Buckling strength of thin plate structures under axial compression is more dominantly affected by the initial geometric 
imperfections than the other types of imperfections present in them. Since these initial geometric imperfections are random in 
nature, the collapse strength distribution will also be random. Hence a probabilistic approach is required for reliable design of 
these thin plate structures. In this paper, by keeping the variance of imperfections of  all the models at assumed manufacturing 
tolerance of  1.71 mm and maintaining the maximum amplitude of imperfections within ±8 mm, 1024 random geometrical 
imperfect plate models are generated by the linear combination of first 10 eigen affine mode shapes using 2k factorial design.  
These imperfect models are analysed using ANSYS non-linear FE buckling analysis including both geometrical and material 
non-linearities. From these FE analysis results, the strength distribution of the plate is obtained and reliability analysis is carried 
out using Mean Value First Order Second Moment (MVFOSM) method.  
 
Keywords: Buckling strength, Thin plates, Geometrical imperfections, Random modeling, Reliability based design, MVFOSM. 
 
1. Introduction 
 
   Thin plate structures are widely used in many fields like mechanical, marine, aerospace and in civil engineering structures. The 
manufacturing process involved in making perfect thin plate is difficult, because there will be some geometrical imperfections like 
local indentations, swelling, non-uniform thickness etc., and material imperfections like inhomogeneties, cracks, vacancies, 
impurities etc., and also other imperfections like residual stresses and strains induced during manufacturing. These imperfections 
generally affect the buckling behavior of plates and to study this, complete information about the imperfections are required. Out 
of all these imperfections, geometrical imperfections are more dominant in determining the load carrying capacity of thin shell 
structures.  
   Reliable prediction of buckling strength of these structures are important, because buckling failure is catastrophic in nature and 
also geometrical imperfections present in these structures are highly random in nature which require probabilistic approach to 
determine the safe load for the structure. The structural reliability analysis is classified into 3 groups (Ranganathan, 2000) namely 
level1, level2 and level3 methods. Since the buckling strength of thin plates are widely scattered and has large deviation from the 
theoretical value, it will be appropriate to use level2 method. In this paper the level2 First Order Second Moment (FOSM) method 
is adopted to determine the safe critical load of the structure. 
 
2.  Literature Review 
 
   The modeling of imperfections can be classified into deterministic and random geometrical imperfection modeling. In case of the 
deterministic approach, imperfections are either obtained from actual measurement (for example Arbocz and Hol, 1991; 
Scheneider, 1996;  Singer, 1999;  Athiannan   and    Palaninathan, 2004  and  Sadovsky et al, 2005 & 2006)    or    from    assumed   
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imperfection pattern. The assumed imperfection pattern may be sinusoidal pattern (Pircher et al, 2001 & Khamlichi et al, 2004;  
Ikeda et al, 2007) or first eigen mode shape pattern (Teng and Song, 2001; Kim and Kim, 2002; Khelil, 2002; Featherston, 2003; 
and Visweswaran et al, 2006). There are two ways by which random modeling of imperfections can be achieved. The first method 
is by varying the nodal locations of the structural model randomly and the second method is the stochastic FE approach.  
   Each manufacturing process has its own characteristic imperfection shapes that can be represented by double Fourier series. In 
the earlier studies, these Fourier coefficients were made as random variables to get different random geometrical imperfection 
models (for example Athiannan and Palaninathan, 2004; Chrysanthopoulos, 1998). Elishakoff (1979) gave a reliability method 
based on Monte Carlo simulation technique and applied to the problem of buckling of finite column with initial geometrical 
imperfections, which is assumed as Gaussian random fields. Elishaoff et al (1987) explained about the MVFOSM to predict the 
reliability of cylindrical shell possessing axisymmetric and asymmetric random geometrical imperfections using the second order 
statistical properties obtained from measured initial geometric imperfections. Results of reliability calculations were verified with 
results from Monte Carlo simulation. Chryssanthopoulos et al (1991) presented Response Surface Methodology (RSM) to 
determine the reliability of stiffened cylindrical and plate shells subjected to axial compression, considering the manufacturing 
variabilities such as initial geometrical imperfections and welding residual stresses. The paper by Guedes Soares and Kmiecik  
(1993) addresses the collapse strength of rectangular steel plates under uniaxial compressive stress. A set of typical patterns of 
initial distortions were simulated so as to represent a random sample of typical distortions in ship plating. The strength of the set of 
initially distorted plates was calculated using a non-linear finite element code. The variability of the resulting ultimate plate 
strength was observed to depend on plate slenderness and simulation results obtained were compared with previous results. 

 Náprstek (1991) explained about stochastic finite element methodology taking large displacement as source of nonlinearities and 
studied about the response of the structures with random imperfection of Gaussian type. Sadovsky and Bulaz (1996) discussed 
about FORM – based inverse reliability method. One of the conclusions was that realistic treatment of effects of imperfections on 
strength of the structure will lead to marginally conservative design which in turn relaxes the fabrication tolerances when adopting 
such a probabilistic approach. This idea was adopted to determine the reliability for unstiffened thin plates and girders of double 
symmetric I- cross section in compression and bending. Warren (1997) generated random geometrical imperfections by linear 
combinations of eigen buckling affine mode shapes using 2k factorial design of Design of Experiments (DoE) and the variance of 
the models were maintained within the tolerance of manufacturing and adopted RSM to determine reliability of framed structures.  
Featherston (2001) discussed about the imperfection sensitivity of flat plates under combined compression and shear loading. It 
was concluded that an increase in the amplitude of imperfections reduce both the pre buckling stiffness and the collapse load of the 
plate. Further, it was stated that modification of shape of imperfections also changes the pre buckling stiffness and the collapse 
load.  
   Bielewicz and Gorski (2002) developed a simulation method to generate random geometrical imperfections using non-
homogeneous two dimensional random fields on regular nets. Schenk and Schueller (2003) in their work, using imperfection 
databank at Delft University of Technology, generated geometrical imperfection models utilizing Karhunen-Loéve expansion 
method. From the deterministic analysis of random models, buckling strength distribution was obtained and from which the 
reliability of the structure was determined using Monte Carlo Technique. Papadopoulos and Papadrakakis (2004) developed a 
nonlinear triangular composites element to carry out structural stability analysis of thin shell structures with random geometrical 
initial imperfections, which can be described as a two-dimensional uni-variate (2D-1V) homogeneous stochastic field. In the work 
of Sadovsky et al (2005 & 2006), the strength of rectangular/square  simply supported plates of different aspect ratios and  
slenderness ratios subjected to longitudinal in-plane compression was obtained by finite element code assuming elasto-plastic 
material properties and large deflection capabilities. Initial deflections were taken from the database given in the reference 
Kmiecik et al (1995). Also effect of the shapes of buckling modes, compound and localized modes, on collapse load was studied. 
One of the important conclusions was that single buckling mode shape does not yield the lowest capacity on the studied interval of 
imperfections. Visweswaran et al (2006) studied about the effect of imperfection sensitivity on the collapse load of thin plates 
under axial compression taking eigen mode shapes as imperfection pattern. One of the major conclusions was that the collapse 
load of the imperfect plate is more than two times the buckling load of the perfect plate. Ikeda et al (2007) studied about the 
imperfection sensitivity of the ultimate buckling strength of elastic-plastic square plates under compression. Finite displacement 
elastic-plastic analysis was conducted on the simply supported square plates under compression by varying the plate thickness and 
initial deflection as sinusoidal form. From the numerical results, extended power law was proposed to describe the ultimate 
buckling strength of the elasic-plastic square plates. 
  Craig and Roux (2007) also used the Karhunen–Lo`eve expansion as a method to incorporate random geometrical imperfections 
into the FE buckling analysis and verified the numerical results with other numerical results and experimental results. In the work 
of Sadovsky et al (2007), reliability calculations were calculated based on the lower strength and strength values calculated for 
measured initial imperfections.  The resistance to failure was identified as a function of two random variables, one is integral 
energy measure and the other one is shape factor that describes the effects of uncertainty of imperfection shapes on the plate 
surface. This approach was explained on a rectangular plate under longitudinal compression considering the influence of random 
field of imperfections on plate strength, and this approach may lead to significantly less conservative design. In the work of 
Papadopoulos et al (2009), the effect of material and thickness spatial variation on the buckling load of isotropic shells with 
random initial geometric imperfections was investigated.  The main novelty of this work is that a non-Gaussian assumption is 
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made for the distribution of the modulus of elasticity and the shell thickness which were described by 2D-1V homogeneous non-
Gaussian stochastic fields. The initial geometric imperfections were described as a 2D-1V Gaussian non-homogeneous stochastic 
field with properties derived from corresponding experimental measurements. From this study, it was shown that the choice of the 
probability distribution for the description of the material and thickness variability is crucial since it affects significantly the 
buckling load of imperfection sensitive shell-type structures. 
   In the present work, random geometrical imperfections are generated using first 10 eigen affine mode shapes of perfect plate 
taken for study as suggested by Arbocz and Hol (1991), Chryssanthopoulos and Poggi (1995) and combine linearly according to 
linear multimode combinations following 2k factorial design of Design of Experiments (DoE) and the variance of the models were 
maintained within the tolerance of manufacturing as suggested by Warren (1997). From the deterministic FE analysis, strength 
distribution is obtained and using which the reliability of structure is determined using MVFOSM method 
 
 

3. FE Modeling  
 
  An eight noded quadrilateral shell element, SHELL93 of ANSYS is used for modeling the thin plates. This element can handle 
membrane, bending and transverse shear effect besides forming curvilinear surface satisfactorily. This element also has plasticity, 
stress stiffening, large deflection and large strain capabilities. 
 
3.1. Thin Plate Shell Model 
  Harada and Fujikubo (2002) considered rectangular plates with cutout having the shorter side length b of 800 mm and aspect ratio 
a/b of 1, 2, 3 and 4 for elastic buckling eigen value analysis. For elastoplastic large deflection analysis, they considered rectangular 
plates with circular cutout with a = 2000 mm,   b = 1000 mm and thickness ranging from 8 to 30 mm. But in the present work, a 
square plate (without any cutout) is taken for the study, the dimension and material properties of the plate are as given below.  
 
   Length (L)               = 1m   Young’s modulus (E)   = 205.8 GPa 
 Width (W)              = 1m   Yield stress (σy)         = 313.6 Mpa 
 Thickness (t)            = 8 mm   Mass density (ρ)                = 7800  kg/m3 
 Poisson’s ratio (γ)    = 0.3   Zero strain hardening effect is assumed. 
 
3.2 Boundary Conditions  
   Simply supported boundary conditions as shown in Figure 1, are applied on all the edges of the thin plate and uniform 
displacement loading is applied on one side of the plate model and corresponding opposite side is restrained from moving along 
load direction (Harada and Fujikubo  2002).  
 

 

 
Figure 1. Geometry, boundary conditions, and loading conditions used in buckling analysis of a thin plate (not to scale) 

 
3.3 Model  validation  and   determination  of eigen affine mode shapes 
   The mesh convergence study is done to choose the optimum number of elements for the analysis and it is found that 40 elements 
along both directions gives accurate solution and hence same number of elements are used for all analysis. The analytical solution 
(Timoshenko and Gere, 1965) of the perfect thin plates is compared with the FE eigen buckling analysis result at different modes 
as shown in Table 1 and thus FE model validation is ensured. 
 
 

3.4 Modeling of imperfect plates 
To achieve the aim of randomness, i.e., amplitude of imperfections at any nodal point of FE model (except the nodes at boundary 
edges of thin plate model should be random) and the first ten eigen affine mode shapes of linear buckling mode shapes of thin 
plate should be combined linearly using 2k factorial design of Design of Experiments (DoE). 
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Table 1. Comparison of analytical solution with FE eigen buckling analysis result. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
    
   The modeling of the initial random geometrical imperfections is accomplished using the following assumptions/conditions. 
 

 Δ -  imperfection amplitudes at all nodes except the nodes at the boundary edges should follow independent normal 
distribution 

 Mean value of imperfection amplitude of a node from all random models should be made equal to zero. 
 Equal importance should be given for the all eigen affine mode shapes considered for random modeling. 
 The random imperfection shapes generated should be linear combinations of the eigen affine mode shapes considered. 

 

   Based on the above assumptions, the nodal amplitude of imperfection vector for the entire structure (except the edge nodes, 
where the displacements are constrained) is given by 
 

Δix1 = Φixj x Mjx1                                       (1)                                                                   
 

  where, ∆ -  Nodal imperfection  amplitude vector                                         
  Φ -  The matrix of eigen vectors containing the modal imperfection amplitudes at all nodal points of selected  eigen affine 
                      mode shapes with equal maximum amplitude of imperfections 
              M -  Modal imperfection  magnitude vector 
  i   -  number of nodes 
  j   -  number of eigen affine  mode shapes 
 
    If the nodal amplitudes of imperfections are known, the modal imperfection magnitudes can be obtained using the relation 
 

Mjx1 = Φ*
jxix Δix1                                                (2) 

 

   where, the matrix Φ* is the pseudo-inverse of the matrix Φ. The pseudo-inverse is calculated using the following equation based 
on method of least squares  
 

Φ* = (ΦTΦ)-1 x ΦT                                               (3) 
 

  If the nodal imperfections Δi are independent normally distributed random variables then the mean value and variance of each 
modal magnitude is given by                       

                         j  
    μM j = ΣΦ*jiμΔi                               (4)                                                                                                            
                        1 
 

                           j                                   
    σ2

m j =  Σ(Φ*ji)2  σ2 Δi                                         (5)                                                    
                          1 
where,  μΔi and σ2

∆   -  mean and variance of the nodal imperfection amplitude respectively 
             μM and σ2

M  -  mean and variance of the modal imperfection magnitude respectively. 
  
  Similarly, mean and variance of each nodal amplitude is given by 
         

Buckling Strength (N) Mode 
No 

Number of transverse 
half lobes  (m) 

Number of 
longitudinal half 

lobes (n) Analytical 
Solution  FE Solution  

% Error 

1 1 1 380936 378115.3 0.7404 
2 2 1 595213 591989.6 0.5415 
3 3 1 1058160 1053573.8 0.4334 
4 2 2 1523750 1510774.2 0.8515 
5 4 1 1720170 1712254.2 0.4601 
6 3 2 1788280 1773286.6 0.8384 
7 4 2 2385590 2361591.1 1.0059 
8 1 2 2385590 2367998.9 0.7373 
9 5 1 2580260 2560567.4 0.7632 

10 5 2 3210060 3176441.5 1.0472 
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                         j  
   μΔi = ΣΦji μM j                                 (6)         
                        1                   
 

                         j                                   
  σ2

Δi = Σ(Φji)2  σ2
m j                                              (7)                               

                        1  
    Since it is required to have nodal amplitude ∆i of any node i of the structure to follow normal distribution with μΔ = 0 and as per 
Eqn. 4, μM also becomes zero. Hence, to get amplitude of imperfections of all nodes for each model, the modal magnitude of each 
model has to be obtained by using   Eqn. 5. Using the modal magnitudes obtained from previous step the nodal amplitudes of 
imperfections can be obtained by using the Eqn. 1. Thus by varying the modal magnitudes of imperfections randomly using 2k 
factorial design matrix of Design of Experiments, random geometrical imperfection models can be generated. 
 
3.5 Steps Followed in Random Geometrical Imperfections Modeling  
Step –I : Initially, substitute variance of modal imperfection magnitude vector as 
 

⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎣

⎡

=σ

1
1
1
1
1
1

M

2
                                                        (8) 

 

Step-II : Using Eqn.(7) the  variance of nodal imperfection amplitude vector σ2
Δ  is determined. 

 

Step –III : Each element of the resulting σ2
Δ vector from Step-I is normalized with the maximum value of element in that vector 

and multiplied σ2
tol with value so as to limit the maximum amplitude of imperfections. 

 

Step –IV : Using the σ2
Δ  vector obtained from the Step-III, new  σ2

M  vector is found using Eqn.5. 
 

Step –V : Since, μΔ = 0, μM = 0, using σ2
M new  vector determine the modal imperfection magnitude vector M such that  M= ±σM.  

 

Step –VI : Using 2k factorial design, design matrix is generated and each column of design matrix is selected and is multiplied 
with corresponding element in the M vector obtained from previous step. This new design matrix is used to generate 2k (for k=10, 
210 = 1024) random geometrical imperfection models.  
 

i.e., Δ = Φ x new design matrix                      (9)  
    

   With the value of modal imperfection magnitude vector M, ∆ nodal imperfection vector is determined using the Eqn.1. But the ± 
value of the modal imperfection magnitude is decided by +1 or -1of design matrix obtained from DoE. The Δ matrix, thus formed 
has 1024 rows, and each row corresponds to nodal displacements of all nodes of one random imperfect plate model. By adopting 
the procedure explained above, 512 pairs of mirror image random imperfect plate models can be generated. 
   Here, in the present work, 1024 random geometrical imperfect plate models are generated keeping RMS value of imperfections = 
1.711 mm and the maximum amplitude of imperfection is maintained within ±8mm (Featherston, 2003).  The maximum amplitude 
of imperfections in all 1024 models are shown in Figure.2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Scatter of maximum amplitude of imperfections from 1024 models 
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   From the Figure 2, it can be noted that maximum amplitude of imperfections from model number 1 to 512 are exactly mirrored 
between model numbers 1024 to 513. A sample of a pair of thin plate models with mirror image random imperfections are shown 
in Figure 3. 
 
 

 
(a)  Model No.1      

 

 
 

(b)Model No.1024 

Figure 3. A pair of mirror image random imperfections plate models (amplitude enlarged by 50 times) 
                                          
  To verify the assumptions made that imperfection amplitude of a node except boundary nodes are randomly distributed, the 
distribution of out of plane displacements of a particular node from all 1024 random plate models is plotted as shown in 
Figure.4(a) & (b).  

 
 

(a)Node No.1000 

 
 

(b)Node No. 3000 
 

Figure 4. Normal distribution of out of plane displacements of a particular node from all 1024 random plate models 
 
   From the Figure.4, it can be seen that the out of plane displacement of nodal point distribution follows normal distribution with 
mean (μΔ) = 0. 
 
4. Reliability Analysis 
 
   For any structure, the strength and load are highly probabilistic and their distribution are non-Gaussian in nature (Papadopoulos 
et al 2009) and the normal distribution is a good approximation. Hence, assuming that the strength (S) and load (L) are normally 
distributed as shown in Figure 5, the failure function is defined as, 
             

G = S – L                             (10) 
 

Then, the distribution of failure function fG (g) is shown in Figure 6. 
 

The probability of failure of the structure is, 
 

Pf = P(G<0)                                             (11) 
 

The reliability of the structure is given as,              
R = 1 - Pf                                                              (12) 



 
Figure 5. Load and Strength distribution 

 

 
Figure 6. Normal distribution of failure function 

   In the First Order Second Moment (FOSM) method of determining the reliability of the structure, the mean and variance of the 
random variables (in this case, the strength and load) are considered. The first order approximation of failure function fG (g) is used 
for finding the mean and variance of the failure function. Thus, the mean and variance of the strength and load variables are 
required in order to carry out the reliability analysis. 
 
 
5.  Results and Discussion 
 
   Using non-linear FE analysis, buckling strength of first 512 models is determined including both material and geometrical non-
linearities. Determining the buckling strength of the next 512 models is nothing but inverting the first 512 models and obtaining 
the buckling strength. For reliability calculation buckling strength of 1024 models or first 512 models can be considered because it 
will not affect the reliability calculations.  
   By considering 1024 models, only the frequency of buckling strength values occurrence will be doubled. But here for reliability 
calculation, buckling strength ratio (BSR) of first 512 models is considered. For calculation purpose, first eigen mode buckling 
strength of perfect plate (to be called as eigen strength of the perfect plate here onwards) is taken as reference. Buckling strength 
ratio (BSR) can be defined as ratio between ultimate collapse strength of imperfect plate to the eigen strength of perfect plate. 
Since thin plates are having positive post buckling behavior, its BSR values are greater than 1(Featherston, 2003).     
   Figure 7 shows the stiffness curve obtained for model No.1. From this figure it can be seen that at limit load condition at which 
the plate structure fails, as the slope of the stiffness curve becomes zero. Figure 8 shows the von Mises stress contour obtained for 
model No.1 at limit load condition.           

 
 
Figure 7.   Stiffness curves of pair of mirror image random 

imperfection of model No. 1 

 
 

Figure 8. The von Mises stress contour of random 
imperfection of model No.1 at its limit load condition 

 
   Table 2 shows the BSR values obtained for few of the first 512 models and is shown as frequency graph in Figure 9.  Usually the 
ultimate collapse strength of the imperfect plate will be more than 2 times the buckling strength of perfect plates as mentioned by 
Featherston (2001, 2003) and Visweswaran et al (2006). From the BSR values given in Table 2, here also it can be noted that the 
ultimate collapse strength of the imperfect plate is more than 2 times the eigen strength of the perfect plate. From the Figure 9, it 
can be seen that the distribution does not follow normal distribution exactly, but it is a skewed distribution.  
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Table 2. BSR values obtained from select few of the first 512 FE thin plate models with random geometrical imperfections 
 

Model 
No. BSR Model 

No. BSR Model 
No. BSR Model 

No. BSR Model 
No. BSR Model 

No. BSR 

1 2.2988 86 2.2792 171 2.4609 256 2.4421 341 2.3857 493 2.4782 
2 2.3786 87 2.4527 172 2.5912 257 2.301 342 2.2807 494 2.4836 
3 2.334 88 2.324 173 2.5613 258 2.3759 343 2.4619 495 2.4902 
4 2.4262 89 2.3621 174 2.6014 259 2.3438 344 2.3279 496 2.5234 
5 2.3581 90 2.358 175 2.5372 260 2.4356 345 2.374 497 2.5666 
6 2.3621 91 2.4039 176 2.5982 261 2.3593 346 2.359 498 2.5045 
7 2.3895 92 2.3896 177 2.4951 262 2.3741 347 2.4311 499 2.5774 
8 2.4038 93 2.3786 178 2.4787 263 2.3935 348 2.3935 500 2.5104 
9 2.2793 94 2.2987 179 2.5495 264 2.4311 349 2.3758 501 2.4992 

10 2.3822 95 2.4262 180 2.4935 265 2.2808 350 2.301 502 2.4073 
11 2.3241 96 2.334 181 2.4919 266 2.386 351 2.4356 503 2.5657 
12 2.4525 97 2.2808 182 2.4193 267 2.3281 352 2.3437 504 2.433 
13 2.346 98 2.386 183 2.5435 268 2.462 353 2.2793 505 2.4825 
14 2.4305 99 2.3281 184 2.4436 269 2.349 354 2.3822 506 2.4527 
15 2.3858 100 2.462 185 2.5683 270 2.443 355 2.3241 507 2.5442 
16 2.4481 101 2.349 186 2.4848 271 2.3892 356 2.4525 508 2.4723 
17 2.3689 102 2.4439 187 2.6058 272 2.4767 357 2.346 509 2.4629 
18 2.3291 103 2.3892 188 2.5027 273 2.3876 358 2.432 510 2.3898 
19 2.4352 104 2.4748 189 2.5099 274 2.3493 359 2.3858 511 2.5125 
20 2.367 105 2.301 190 2.4012 275 2.4401 360 2.4429 512 2.4264 

 
 

Table 3. Mean BSR values obtained for 100 samples with sample size of 200 each 
 

Sample 
No. 

Mean 
BSR 

Sample 
No. 

Mean 
BSR 

Sample 
No. 

Mean 
BSR 

Sample 
No. 

Mean 
BSR 

Sample 
No. 

Mean 
BSR 

Sample 
No. 

Mean 
BSR 

1 2.5594 18 2.4825 35 2.4617 52 2.4289 69 2.4992 86 2.5126 
2 2.4848 19 2.4359 36 2.4356 53 2.3848 70 2.4724 87 2.5442 
3 2.4356 20 2.3692 37 2.4742 54 2.5073 71 2.4084 88 2.4932 
4 2.4522 21 2.4117 38 2.3888 55 2.5983 72 2.4357 89 2.5234 
5 2.3787 22 2.373 39 2.4084 56 2.4749 73 2.4357 90 2.2887 
6 2.2988 23 2.5049 40 2.5737 57 2.4908 74 2.4311 91 2.3671 
7 2.4056 24 2.3821 41 2.4995 58 2.4522 75 2.2887 92 2.444 
8 2.5392 25 2.3473 42 2.347 59 2.4507 76 2.3281 93 2.5373 
9 2.3935 26 2.5442 43 2.4752 60 2.2987 77 2.4763 94 2.4908 

10 2.4788 27 2.4357 44 2.3265 61 2.3264 78 2.463 95 2.5683 
11 2.349 28 2.4522 45 2.5373 62 2.3264 79 2.4303 96 2.4522 
12 2.3698 29 2.3594 46 2.2887 63 2.349 80 2.4193 97 2.5373 
13 2.2792 30 2.5104 47 2.3692 64 2.4191 81 2.373 98 2.3622 
14 2.4012 31 2.4357 48 2.4919 65 2.3341 82 2.4992 99 2.5844 
15 2.4943 32 2.3936 49 2.5373 66 2.4359 83 2.514 100 2.4359 
16 2.4823 33 2.4056 50 2.4352 67 2.3877 84 2.5594   
17 2.5772 34 2.3499 51 2.3291 68 2.5073 85 2.3858   

 
 
  Since the normal distribution shape is the simplest, best developed, most known and expedient (Verderaime, 1994), the skewed 
strength distribution is converted into an equivalent normal distribution using the method suggested by Verderaime (1994). 
According to this method, the mode of the strength distribution is taken as the mean of the equivalent normal distribution. The left 
side of the skewed distribution is alone considered for the equivalent normal distribution. To obtain the right side of the 
distribution, the left side distribution is mirrored about the mode. Thus, the equivalent normal distribution of strength is obtained 
and it is shown in Figure 10.   



 
Mean of distribution = 2.4393 
Mode of distribution = 2.4285 
S.D. of distribution    = 0.0808 

 

Figure 9. Actual Strength distribution obtained using BSR 
values 

 

 
 

                 Mean of distribution = 2.4285 
                 Mode of distribution = 2.4285 
                 S.D. of distribution    = 0.0769 
 
Figure 10. Equivalent normal strength distribution required 

for reliability calculations.
 
    Another method adopted is based on Central Limit Theorem. According to Central limit theorem, if a random sample of n 
observations is selected from any population and when the sample size is sufficiently large (n>=30), the sampling distribution of 
the mean tends to approximate to the normal distribution. The larger the sample size, the better will be the approximation to 
normal distribution.  
   Hence, 100 samples were taken with each set containing 200 observations (Smith and Wells, 2006) drawn randomly from BSR 
of 512 models. The mean of 200 observations taken randomly in each sample was calculated and the means of all 100 samples are 
shown in Table 3 and also plotted in Figure 11. Figure 12 shows the equivalent normal strength distribution obtained from means 
of 100 samples (shown in Figure 11) and it was found that it deviates slightly from the normal distribution at 5% level of 
significance.   The mean of the distribution obtained using Central Limit Theorem differs from the mean of the actual distribution 
by only -0.098%. Moreover, the skewness of the distribution is approximately = 0 (i.e., -0.05), which also confirms that the 
distribution is Gaussian. 

 
 

Figure 11. Sample set number and their corresponding mean 

 
 

Mean of distribution = 2.4369 
Mode of distribution = 2.5373 
Standard deviation    = 0.0775 

 

Figure 12. Equivalent strength distribution obtained by 
Central Limit Theorem for reliability calculations 

 
 

  According to the Mean Value First Order Second Moment (MVFOSM) method, the reliability index is defined as  
 

   LS

LS

22 σσ

μμ
β

+

−
=

                            (13) 
where  μS = Mean of strength distribution   σS  = S.D. of strength distribution 
            μL = Mean of load distribution  σL = S.D. of load distribution 
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   The probability of failure is given by, 
           

         Pf = ϕ (-β)                              (14) 
 

where, ϕ = cumulative normal distribution function. 
 

   Then, reliability of the structure is given as,   
 

         R= 1 - Pf                                                           (15) 
 

   In this case, the load applied is assumed as a deterministic single value. Hence, σL = 0 and now β is defined as, 
 

       β = (μS – Load applied in terms of BSR) / σS      (16) 
 

   By varying the load applied, the reliability of the structure at each load is obtained. The failure probabilities at different loads are 
shown in Figure 13.    
 
 
 

 

 
 

(a) Load applied is 2.592 times the eigen strength of 
the perfect plate  

 
 

(b) Load applied is 2.532 times the eigen strength of 
the perfect plate 

 

 
 

(c) Load applied is 2.412 times the eigen strength of 
the perfect plate 

 
 

(d) Load applied is 2.25 times the eigen strength of    
the perfect plate 

 
Figure 13. Failure probability at different loads   

 
    
   The variation of reliability found using MVFOSM method with respect to the applied load (BSR) is shown in Figure 14 & 15.    
From the reliability curves, it can be noted that for the plate taken for study, upto 2.1 times of eigen strength of the perfect plate, 
the reliability is 100%, when the load applied is more than 2.65 times the eigen strength of the perfect plate, the reliability is zero.  
 
 



 
 

Figure 14. Reliability Vs BSR (Verederaime, 1994) 

 
 

Figure 15. Reliability Vs BSR (Smith and Wells, 2006) 
 
  Table 4 shows the comparison of the reliability values obtained from the method adopted by Verderaime (method-I) and 
Smith and Wells (method-II). From the table, it was found that both the methods gave approximately same values. 
 

Table 4. Comparison of reliability obtained using two methods 
 

 
 
5.  Conclusions 
 
  The following conclusions are derived from the analysis carried out for the thin plate structure taken for study. 
 

1. The slope of stiffness curve decreases gradually as the load applied increases and becomes zero at limit load 
condition and thereby imperfect thin plate shell structures collapse. 

2. To increase reliable prediction of safe load of the structure further, more number of eigen affine mode shapes can be 
considered.  

3. Ultimate crushing strength of the imperfect thin plate is more than two times the eigen strength of the perfect plate. 
4. Using the adopted MVFOSM method of reliability, it is found that the reliability of thin plate taken for study under 

axial compression is 100% upto 2.1 times the eigen strength of the perfect plate and the reliability becomes zero 
when the load applied is more than 2.65 times the eigen strength of the perfect plate. 

5. The methods adopted by Verderaime and Smith and Wells for relaibilty calculations are in good agreement with 
each other and hence recommended for determining reliability of imperfect plate structures.   

 
 
Nomenclature  
 
E Young’s modulus  
fG(g) Distribution of failure function 
G Failure function 
i Number of nodes 
j Number of eigen affine mode shapes 
l   Length of the plate  
L Load distribution 
m Number of transverse half lobes 
M Modal imperfection magnitude vector 
n Number of longitudinal half lobes 

Pf    Probability of failure 
R Reliability of structure 
ROTZ   Rotation about z-direction 
S Strength distribution 
t Thickness of the plate  
Ux Displacement along x-direction 
Uy Displacement along y-direction 
Uz Displacement along z-direction 
w Width of the plate  

 

BSR Reliability by Method-I  
(Verderaime, 1994) 

Reliability by Method-II  
(Smith and Wells, 2006) Difference 

2 1 1 0 
2.1 0.999993 0.999990 0.000003 
2.2 0.998880 0.998511 0.000369 
2.3 0.961303 0.952611 0.008692 
2.4 0.682826 0.644836 0.037990 
2.5 0.207600 0.176733 0.030867 
2.6 0.017638 0.012967 0.004671 
2.7 0.000342 0.000211 0.000131 
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Greek Letters 
 
γ Poisson’s ratio 
σy   Yield strength  
ρ Mass density  
Δ Nodal imperfection amplitude vectors  
σ2

Δ Variance of Nodal imperfection amplitude vector 
σ2

M Variance of Modal imperfection amplitude vector 
σ2

tol Variance of tolerance 
μΔ Mean of Nodal imperfection amplitude vector 
μM Mean of Modal imperfection amplitude vector 

 

Φ Eigen vector matrix 
Φ*        Pseudo inverse of Φ matrix 
ΦT Transpose of Φ matrix 
μS Mean of strength distribution 
μL Mean of load distribution 
σS Standard deviation of strength distribution 
σL Standard deviation of load distribution 
� Cumulative normal distribution function 
β  Safety index 

 
Abbreviations 
 
2D-1V 
BSR 

Two-dimensional Uni-variate 
Buckling Strength Ratio 

MVFOSM Mean Value First Order Second Moment  
RSM Response Surface Methodology 
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