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Abstract 
 
Squeeze-film characteristics of electrostatically actuated microcantilevers observed under large DC load coupled with small AC 
component are presented for the first three flexural modes of vibration of the resonator operating in different ambient pressure 
conditions. A semi-analytical model of an electrostatically actuated microcantilever beam is developed taking into account the 
dependency of the effective viscosity on variable gap spacing through the variable Knudsen number. The quality factors of the 
system are also obtained numerically using the coupled field FE analysis software ANSYS. A comparison of the results up to the 
pull-in instability shows excellent agreement for damping characteristics obtained by both the semi-analytical and FE methods. 
The effects of large DC bias voltages on quality factor and resonance frequency are found to differ considerably for the different 
flexural modes of vibration of the resonator. Under rarefied flow conditions, variations in ambient pressure significantly 
influence the squeeze film damping characteristics for the entire range of DC polarization. A comparison between compressible 
and incompressible flow models predicts notable difference in the squeeze-film characteristics. 
 
Keywords: MEMS, Electrostatic actuation, Squeeze-film damping, Rarefied flow, Resonant sensor. 

 
1. Introduction 
 
   Resonantly actuated microstructures, referred to as micro-resonators, are an integral part of many MEMS devices such as RF 
filters [Nguyen 2004], chemical and mass sensors [Thundat et al. 1995], physical sensors [Oden et al. 1996], and atomic force 
microscopes [Maali et al. 2005]. In case of an electrically actuated resonant sensor, electric load composed of a DC bias voltage 
and an AC component excites the structure. In case of small DC bias voltage the static bias deflection may be neglected but should 
be accounted for voltage large enough to cause non-uniform gap spacing between the cantilever electrode and the ground plane 
[Batra et al. 2008]. Moreover, large DC voltages cause softening of the system [Nathanson et al. 1967]. In practice, the electro-
mechanical system is complicated by the effects influenced by the gas surrounding the system. The gas damping may be of the 
same order of magnitude as the electric and mechanical forces, and thus it needs to be accounted for in the design of the devices. 
Viscosity, non-uniform gap spacing, and, the operating frequency influence the pressure distribution in the air-gap thus affecting 
the squeeze-film damping/stiffening effects. It is, therefore, essential to effectively model the electro-mechanical coupling of the 
system and the damping effects to correctly predict the most important design characteristics of the resonator, namely, the resonant 
frequency and the quality factor. 
   The damping of electrically actuated microstructures vibrating in presence of gas trapped in the narrow gap is dominated by 
squeeze-film damping [Hamrock 1994]. The gas in the gaps affects the system in two different ways. The gas may be compressed 
due to movement of the mechanical parts of the system and, thus, cause a spring force opposing the movement. The gas also flows 
sideways in the gap which in turn dissipates the movement. Further, the gas flow is rarefied for MEMS devices operating at low 
pressure with a narrow gap between the movable electrode and the ground plane. Modeling of such a system is quite involved 
since the dynamic problem is coupled in the electrostatic, structural, and fluid domains. Several approaches [Langlois 1962; Blech 
1983; Darling et al. 1998; Veijola et al. 1995] assumed the microstructure to be rigid and analyzed only the structural and fluid 
domains. When the microstructure is assumed to be rigid, the Reynolds equation is decoupled and, on linearization, simpler 
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expressions for the damping coefficient can be obtained. Newell [1968] used cantilever resonators to study the effect of damping 
in different pressure regimes. In the regime of high pressure, viscous damping was found to be dominant. Dynamics of damped 
flexible structures actuated by transient electric loads have been reported in open literature [McCarthy et al. 2002; Krylov and 
Maimon 2004]. For flexible structures vibrating even in the first mode of vibration, the gap is non-uniform and the elasticity 
equation that gives the dynamic displacement under electrostatic load is coupled to the Reynolds equation. McCarthy et al. [2002] 
modeled a cantilever switch and assumed the pressure distribution in the gap to be separable being the product of a parabolic 
function along the beam width and an unknown function along the beam length which is determined during solution. Krylov and 
Maimon [2004] assumed the flow in the gap to be incompressible and studied the damped transient characteristics of a cantilever 
coupled to a plate at the free end. Pandey and Pratap [2007] obtained the damping characteristics for the first three flexural modes 
of vibration of the resonator. The linearized compressible Reynolds equation coupled with the elastic beam equation was solved, 
using Green’s function approach. However, they neglected the static deflection due to the DC load. Subsequently, they solved the 
coupled structural-fluid problem using the modal projection technique available in ANSYS. Zhang et al. [2004] neglected the 
static bias deflection and modeled the resonator as a flexible double-clamped microbeam vibrating in the first mode of vibration. 
The pressure distribution in the gap was expressed in the form of a trigonometric series. Damping of electrically actuated 
microbeam under static bias deflection was analyzed by Li et al. [2007] but the model does not consider the dependency of the 
effective viscosity on the gap height which is no longer uniform for a statically deflected beam. Paci et al. [2006] experimentally 
investigated the damped characteristics of free-free beam resonators resonating on the first and third modes. High quality factor 
was obtained for the free-free third-mode resonator. The problem of large DC bias voltage actuation of microplates under different 
gas pressures was studied by Younis and Nayfeh [2007]. The static bias deflection for the microplate was obtained using the beam 
model and a perturbation method was used to obtain the pressure distribution in terms of the structural mode shapes. However, the 
perturbation approach does not apply to cantilever plates because of relatively small fundamental natural frequencies.  
   In this paper, the microresonator modeled as a cantilever beam actuated by large DC load and small AC component is analyzed 
using a semi-analytical method. The dynamic problem coupled in the electrostatic, structural, and fluid domains is formulated by 
coupling the Euler-beam equation, incorporating the electrostatic force terms and the squeeze-film damping terms, with the 
linearized compressible Reynolds equation. The static deflection under DC bias voltage is obtained using a reduced order model 
(ROM) based on the method of Galerkin discretization. The present model takes into account the dependency of the effective 
viscosity on variable gap spacing through the variable Knudsen number. The quality factors of the system are also obtained 
numerically using the coupled field FE analysis software ANSYS. A comparison of the results up to the pull-in instability shows 
excellent agreement for damping characteristics obtained by both the semi-analytical and FE methods. Design characteristics of 
the resonator operating under rarefied and inertia-less flow conditions are found to be significantly influenced by DC bias voltage 
for the analyzed modes of vibration.  
 
2.  Governing Equations 
 
 

 
Figure 1. A schematic diagram of an electrostatically actuated microcantilever beam model. 

 
The model (Fig. 1) of a MEMS resonant sensor shows a damped cantilever beam of length l , width b , thickness h  separated 
from the ground plane by a small initial air-gap of 0d . When subjected to a driving voltage )(tV comprising of a DC bias voltage 

DCV and a small AC component )(tv  with )(tvVDC >> , the beam undergoes small amplitude motions around the static deflected 
position. Let ),( txw denote the transverse displacement of the beam being dependent on the position x  along the beam length and 
time t . Following the elastic beam theory, and, adding terms representing electrostatic excitation and squeeze-film effect, the 
governing equation of the one- dimensional Euler-beam for small air-gap to length ratio is given by 
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with the boundary conditions as ( ) , 0),0( 0 =∂∂= =xxwtw  and, ( ) ( ) 03322 =∂∂=∂∂ == lxlx xwxw                                               (1b) 

where ρ  is the density of the beam material; permittivity constant for free space 112
0 ,10854.8 −−×= Fmε ; plate modulus for 

wide beams )1( 2υ−′= EE , E ′  is the Young’s modulus, υ  is the Poisson’s ratio. For slender beams, EE ′= . The first term on 
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the right hand side of Eq. (1a) represents the excitation force per unit length while the second term represents the force acting on 
the beam owing to the pressure of the squeezed gas film between the beam and the ground plane. The one-dimensional force due 
to squeeze-film damping is obtained by integrating the two-dimensional pressure distribution along the width of the beam, and, is 
given by 

[ ]∫ −=
b

ad dyptyxptxf
0

),,(),(                                                                                  (2) 

where ),,( tyxp  is the absolute pressure in the gap and ap  is the ambient pressure. 
 
2.1 Compressible flow model 
   For inertia-less (Reynolds number less than unity) viscous motion within small gaps and the motion of the beam being restricted 
to normal approach, the pressure ),,( tyxp  under isothermal conditions is governed by the nonlinear compressible Reynolds 
equation [Hamrock 1994]  
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with trivial boundary conditions as aptylptbxptxp === ),,(),,(),0,( , 0),,0( =∂∂ xtyp                                               (3b)  

where the non-uniform gap spacing ),(),( 0 txwdtxg −= ; variable effective viscosity )638.91( 159.1Kneff += μμ  is considered 

to account for the rarefied gas effects [Veijola et al. 1995]; the variable Knudsen number gKn aλ= ; aa pp00λλ =  is the mean 

free path at ambient pressure ap ; the mean free path 0λ  at standard temperature and pressure Pap 5
0 10013.1 ×=  conditions is 

about m91065 −× ; μ  is the dynamic viscosity of air under standard temperature and pressure.  
   Using Eq. (2) and the nondimensional variables lxx = , byy = , 0dww = , 0dgg = , appp = , stt = , 

EIAls ρ2= , Eq. (1) can be expressed as 
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and, Eq. (3) can be expressed as 
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1),,1(),1,(),0,( === typtxptxp , 0),,0( =∂∂ xtyp                                                   (5b) 

where .,,ˆ 3
0

4
00

4 EIdblblEIdbplP a εαβ === The response of the microcantilever ),( txw  under an excitation voltage 
comprising of a large DC voltage and a small AC component can be expressed as 

),()(),( 0 txwxwtxw d+=                                                        (6) 
where )(0 xw  represents the static deflection under the DC bias voltage DCV , and, ),( txwd  represents the small amplitude 
vibration around the deflected position.  
 
2.2 Static deflection 
    Substituting Eq. (6) in Eq. (4) and dropping the dynamic terms, the equation for static response can be obtained as 
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Using Galerkin discretization, )(0 xw can be approximated as 
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where N  represents the number of modes retained in the solution; ia are the unknown coefficients to be determined. )(xiφ is the 
i th linear undamped mode shape of the undeflected microcantilever obtained from the following linear undamped eigenvalue 
problem of a straight beam  
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It is worth mentioning that )(xiφ is normalized such that 1
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2 =∫ xdiφ . Multiplying Eq. (7a) by 2
0 )1( w− ,  substituting Eqs. (8) and 

(9) into the resulting equation, multiplying by )(xnφ , and integrating the outcome from 0=x  to 1 , the set of coupled nonlinear 
algebraic equations can be derived as 

 NnxdVxdsaaaxdsaasa n
DC

N

i

N

j

N

k
kjinikji

N

i

N

j
jinijinn .....,,2,1,0

2
)()(2)(

1

0

2

1 1 1

1

0

2

1 1

1

0

22 ==−+− ∫∑∑∑ ∫∑∑ ∫
= = == =

φ
α

φφφφωφφφωω                   (10)                  

   Prediction of the static deflected shape for different bias voltages is very crucial to estimate the characteristics of the resonator in 
the entire working range of voltage polarization. Reduced order models (ROM) derived in recent works [Chaterjee and Pohit 2009] 
have shown that at least five modes ( 5N = ) are required in Eqs. (8) and (10) to get the correct deflected shape close to pull-in for 
beam based MEMS devices even for small air-gap to length ratios. Li et al [2007] used only the first model function ( 1N = ) and 
hence the model may be more appropriate for small electrostatic loads. 
 
2.3 Small amplitude motion 
   For small amplitude motion, 0wwd << , the pressure variation in the squeeze-film is also small and the absolute pressure 
underneath the vibrating plate can be written as 

),,(1),,( * tyxPtyxp +=                                                      (11)  

where 1),,(* <<tyxP . Substituting Eq. (6) and Eq. (11) in Eq. (4a), expanding the excitation term in a Taylor series around 

)(0 xw  up to first order, and using the static equilibrium Eq. (7a), the equation for dynamic deflection can be expressed as  
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Using Eq. (11), Eq. (5) can be linearized as  
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where A  represents the complex amplitude of small vibration; )(xφ  represent the exact mode shapes of the undeflected cantilever 
beam in flexural modes of vibration. Li et al [2007] represented the spatial pressure distribution ),( yxψ  as a product of an 
assumed parabolic function along beam width and a cosine series along beam length. Pandey and Pratap [2007] expanded it using 
Green’s function approach of assumed double cosine series. In the present paper, following Li et al [2007], the spatial distribution 
of pressure ),( yxψ  satisfying the boundary conditions (Eq. 13b) is given as 
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where mz  represent the unknown complex coefficient to be determined, and M  represents the number of terms retained in the 
expansion of the pressure function. Substituting Eqs. (14), (15), and (16) into Eq. (13a) and integrating across the width of the 
beam leads to 
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where R
mz  and I

mz  are the real and imaginary parts, respectively. Using Eqs. (15) and (16), the  distributed force acting on the 
beam owing to the time varying pressure distribution underneath it can be rewritten as 
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The spring effect of the trapped air is represented by )(xFs  while )(xFd  stands for the damping effect. The relative dominance of 
the elastic force and the viscous damping force due to the squeeze-film can be obtained by calculating the ratio Γ  (hereafter called 
the compressibility ratio) given by 
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For compressibility ratio 1<<Γ , the elastic forces are negligible and the flow can be assumed to be incompressible whereas for 
finite values of Γ  compressibility effects cannot be ignored. For 1>Γ , spring effects dominate over the damping effects of the 
squeeze-film. 
   Substituting Eqs. (14), (15), and (25) into Eq. (12a), multiplying throughout by )(xφ , and integrating from 0=x  to 1  while 
using the normalization condition, complex amplitude A  can be obtained as 
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represents the spring softening effect due to electrostatic coupling. The squeeze-film stiffness ak  and the damping coefficient c  
are given by 
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The overall stiffness of the system is governed by the relative magnitudes of ek  and ak . Using Eq. (29), the quality factor Q  and 
the resonance frequency resω  of the microcantilever resonator under squeeze-film damping can be expressed as 
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where ξ  is the damping ratio. 
  
2.4 Incompressible flow model 
   The present section assumes an incompressible and non-inertial flow in the air-gap. As the flow is incompressible, the squeeze-
film spring forces will be absent and there will be only dissipation of the movement. Proceeding as in section 2.1, the nonlinear 
incompressible Reynolds equation can be expressed in the nondimensional form as 
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As explained in section 2.3, Eq. (35a) can be linearized and expressed as Eq. (13a) with the exclusion of the term ( )
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described in section 2.3, the quality factor Q  and the resonance frequency resω  can be expressed by Eqs. (33) and (34) 
respectively. 
 
3.  Finite Element Model 
 
   The squeeze-film damping has been evaluated using the modal projection technique available in the FEA software package 
ANSYS. Three coupled-field domain solvers: electrostatic, structural, and fluid have been utilized. The structural domain has been 
modeled with SOLID 45 elements used for 3-D modeling of solid structures, and, capable of modeling stress stiffening associated 
with static deflection due to large DC bias voltages. Direct coupling of electrostatic and structural domain has been achieved using 
TRANS 126 elements. TRANS 126 elements are lumped electromechanical transducers preferable for highly non-linear coupled-
field interaction. The model uses FLUID 136 elements to account for the squeeze-film damping effect which is based on linearized 
compressible Reynolds equation modified for the rarefied gas effect and is thus applicable for small pressure changes in the air-
gap. At first, a pre-stress static analysis with an applied DC voltage is carried out to obtain the static bias deflection. The local gap 
separation treated as a real constant for each fluid element is updated to reflect the resultant non-uniform gap spacing. An effective 
viscosity effμ  being dependent on the variable Knudsen number Kn  is assigned to each fluid element with the updated local gap 
separation. A modal analysis is therefore performed to compute the natural frequencies and the mode shapes (eigenvectors) of the 
flexural modes of vibration. A squeeze-film analysis can be performed on structures with known velocities or unknown velocities. 
For a beam undergoing flexible body dynamics, the displacement and velocity vary along the structure. Thus, the fluid film 
underneath the beam is subjected to varying velocity profile. In case of modal projection method, the harmonic analysis on the 
thin-film fluid elements is performed with the nodal velocities equal to the eigenvector of the appropriate mode. The resulting 
pressure distribution and hence the modal forces are computed to obtain the modal squeeze stiffness and damping parameters. 
Subsequently, the modal damping ratio is obtained corresponding to the flexural modes.  
 
4.  Results and Discussion 
 
   The entire analysis is carried out following the two procedures outlined in the previous sections, namely, semi-analytical method 
and finite element method. The semi-analytical method uses the compressible flow model to generate the results presented in this 
section. A comparison of the squeeze-film characteristics obtained with the incompressible and compressible flow models has also 
been presented in section 4.3. In this paper, M  is taken as 25  which exhibit good convergence even at large DC voltages. First, 
the converged results are validated with the analytical, numerical and experimental results available in open literature. The design 
properties used in the present analysis are ml μ350= , mb μ22= , mh μ4= , md μ4.10 = , 3/2330 mkg=ρ , PaeE 9160= , 

Paepa 5013.1= , 2/58.1 mNse −=μ  as used for the experimental study by Pandey and Pratap [2007]. The effects of large DC bias 
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voltages on resonance frequency and quality factor are studied next for the first three flexural modes of vibration of the resonator. 
Variations of ambient pressure in presence of DC bias voltages are shown to affect the resonance frequency and the quality factor 
of the microresonator. 
   The unknown coefficients ia  present in Eq. (8) are evaluated by numerically solving the set of nonlinear algebraic equations 
obtained retaining five ( 5N = ) modes in Eq. (10). The static deflection for a DC bias voltage is then expressed as a function of 
position x  using Eq. (8). The spring softening effect ek , squeeze-film stiffness ak , and the damping coefficient c  are obtained 
using Eqs. (21)-(23) and (30)-(32) where the integrations are numerically obtained. Thereafter, using Eqs. (33) and (34), the 
quality factor Q , the damping ratio ξ , and the resonance frequency resω  are calculated for the flexural modes of vibration. The 
undamped natural frequency is calculated from Eq. (34) replacing terms ak  and c  by zero. 
   To validate the present approaches, the damping ratio ξ  results obtained with the present methods for zero ( 0=DCV ) DC 
voltage are compared with the results obtained by Pandey and Pratap [2007]. As shown in Table 1, the results for the cantilever 
microresonator are in excellent agreement for all the three modes of vibration.  
 

Table 1. Comparison of the damping ratio ξ  results for zero ( 0=DCV ) DC bias voltage. 
Length 

l  
( mμ ) 

Flexural 
mode 

Experimental 
 [Pandey and 
Pratap 2007] 

FE model 
[Pandey and 
Pratap 2007] 

FE model  
[Present 
Work] 

Analytical 
[Pandey and 
Pratap 2007] 

Present 
model 

1st 0.415 ± 0.002 0.45 0.4475 0.422 0.4484 

2nd 0.066 ± 0.002 0.072 0.0710 0.067 0.0713 350 

3rd 0.027 ± 0.002 0.025 0.0244 0.024 0.0247 
 
4.1 Small amplitude motion under DC bias voltage 
   Next, the effect of finite DC bias voltages is studied using both the semi-analytical model and the FE model, and, the results are 
compared.  
 

 
Figure 2. Variations of quality factor Q  with DC voltage DCV  for the first three flexural modes. 

 
   At a certain DC bias voltage, the quality factor Q  is higher for higher mode of vibration (Fig. 2). Even at large DC voltages 
(except at pull-in) results obtained with the semi-analytical model compares very well with the ANSYS results. As shown in Fig. 
2, for a certain mode of vibration, the quality factor decreases monotonically with DC voltages. However, the percentage decrease 
in quality factor QΔ  ( ( ) refref QQQ /100×− ) for a certain increase in DC voltage VΔ  ( refDC VV − ) is observed (Fig. 3) to be 

higher for the first mode of vibration in comparison to the higher modes. As shown in Fig. 3, the quality factor decreases sharply 
( %75≈ ) for the first mode as pull-in is approached. 
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Figure 3. Effect of variations in DC bias voltage VΔ  on percentage decrease in quality factor QΔ  for the first three flexural 

modes. The reference ( ref ) values correspond to DCV  equal to zero. 
 

 
Figure 4. Variations of resonance frequency with DC voltage DCV  for the first three flexural modes. 

 
   Figure 4 shows the variations of the resonance frequency for the first three flexural modes of vibration of the resonator. For the 
first mode of vibration of the resonator operating under the present ambient ( Paepa 5013.1= ) conditions, the resonant peak 
disappears at bias voltages ( 6≈DCV volts) much lower than the static pull-in ( 704.7=DCV volts) voltage due to increase in 
damping thus limiting the working range of voltage polarizations for the resonator. Though the resonance frequency for the first 
mode decreases monotonically with DC bias, the resonance frequency for the higher modes is more or less uniform for the entire 
range of DC polarization. With increase in static bias voltage the gap separation decreases resulting in an increase in the damping 
effect c  as well as stiffening effects ak  of the squeeze-film. Further, the electrostatic softening effects ek  are pronounced at large 
DC voltages. However, the magnitude of these variations with DC bias voltage differs considerably for different modes of 
vibration which ultimately shows up in the computed quality factors and the resonance frequencies of the resonator. For the beam 
properties considered, the variations in ek , ak  and c  with DC voltage are such that the resonance frequency for the analyzed 
higher modes is nearly unaffected in the entire range of DC polarization. Further, as shown in Fig. 5, the DC bias voltage in 
conjunction with the mode shape has a profound effect on the pressure distribution in the fluid film underneath the beam. Figure 5 
obtained with ANSYS clearly show the difference in the dynamic pressure (relative) variation in the first three flexural modes of 
vibration for two different bias voltages 0=DCV volts and 5.7=DCV volts. For each mode, the peak back pressure on the bottom 
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surface of the moving structure is higher at larger bias voltage, and, the high pressure zone is more localized near the tip of the 
cantilever beam. This difference in pressure distribution affects the squeeze-film characteristics of the flexible beam.  
 

 
                                   (I) First mode                                                                               (II) Second mode 

 
(III) Third mode 

Figure 5. Pressure distribution (in Pa) on the bottom surface of the resonator actuated by (a) 0=DCV volts and (b) 5.7=DCV volts. 
 
4.2 Effects of variations in ambient pressure  
   The effects of DC voltage with varying gap pressure on quality factor and resonance frequency are investigated next. Pressure 
dependency of the damping has been analyzed with the model by considering the pressure dependency of the mean free path aλ .  
 

 
          (I) First mode                                                                               (II) Second mode 
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(III) Third mode 

Figure 6. Variations of quality factor Q  with DC voltage DCV for various ambient air pressures. 
 
Three ambient pressure conditions Paepa 5013.1= , Paepa 41= , and, Paepa 31=  have been considered in this section. As 
shown in Fig. 6, quality factor for all the three modes increases with decrease in gap pressure as the effect of squeeze-film 
damping decreases. It is also observed that at a certain DC voltage DCV , the increase in quality factor with decrease in pressure is 
more or less uniform for the entire range of DC polarization. 
 

 
Figure 7. Variations of resonance frequency with DC voltage DCV for the first mode for various ambient air pressures. 

 
Figure 7 shows variation of the resonance frequency with DC voltage DCV  for the first mode of vibration of the resonator for 
various values of ambient pressure ap . As shown in Fig. 7, at a certain DC voltage the undamped and damped frequencies have 
no appreciable difference at low pressures. Thus, it can be concluded that the squeeze-film damping at low pressures has negligible 
effect on first mode resonance frequency for the entire range of DC polarization. For the higher modes of vibration, resonance 
frequency is observed (not shown here) to be nearly invariant with pressure variations for the entire range of DC polarization.  
 
4.3 Comparison between incompressible and compressible flow models 
   To illustrate the effect of compressibility, a comparison of the quality factors computed using the present semi-analytical method 
based on compressible and incompressible flow has been presented in this section.  



Chaterjee and Pohit / International Journal of Engineering, Science and Technology, Vol. 2, No. 4, 2010, pp. 187-199 

 

197

 

 
 

                                          (a) Paepa 5013.1=                                                                            (b) Paepa 31=  
Figure 8. Variations of quality factor Q  with DC voltage DCV for the different flow models for different ambient pressures. 

 
As shown in Fig. 8(a), no appreciable difference exists in the quality factor values obtained with the compressible and 
incompressible flow models. The compressibility ratio Γ  values ( 009.0≈  for the first mode and, 02.0≈  for the third mode) 
computed for case (a) explains the negligible compressible effects. However, Fig. 8(b) shows appreciable difference in the quality 
factor values obtained with the two flow models for the third mode ( 34.0≈Γ ) of vibration. Thus, it can be concluded that the 
difference between the incompressible and compressible flow models used in predicting the squeeze-film characteristics becomes 
more pronounced as the compressibility ratio Γ  increases. Moreover, as shown in Fig. 8(b), quality factors obtained with the 
incompressible flow model is comparatively lower for the entire range of DC polarization as squeeze-film stiffening effects are 
absent for incompressible flow and the damping is overestimated. For brevity, only the first and third mode results have been 
presented in this section. 
 
5. Conclusions 
 
   A semi-analytical model taking into account the static deflection due to large DC bias voltages has been used to study the 
squeeze film damping characteristics of cantilever microresonator for the first three flexural modes of vibration in the rarefied and 
non-inertial flow regime. Elastic beam equation for small air-gap coupled with linearized compressible Reynolds equation has 
been used to model the small amplitude motions. The pressure function assumed as a product of a parabolic function along the 
beam width and a cosine series along the beam length gives converged results for computationally reasonable number of pressure 
terms. Dependency of the effective viscosity on the gap height has been considered through the use of a variable Knudsen number. 
The model is validated by comparing the results with the analytical, numerical, and experimental results available in open 
literature as well as through ANSYS simulations. The results show that the quality factor is higher for higher mode of vibration for 
the entire range of DC polarization. With variations in DC bias voltage, quality factor and resonance frequency are most affected 
in the first mode and are found to decrease with an increase in DC voltage. For flexible microbeams, DC bias voltage in 
conjunction with mode shape has a profound effect on the back pressure distribution which ultimately affects the squeeze-film 
characteristics.  
   The present work also focuses on a range of ambient pressures limited to the viscous flow regime considering rarefaction effects. 
Under rarefied flow conditions, the results show that at a certain DC voltage the quality factor increases with decrease in ambient 
pressure and the amount of increase is more or less uniform for the entire range of DC polarization. On the other hand, for low 
ambient pressures, there is no sufficient change in resonance frequency to be useful as a response characteristic of the resonator 
(e.g., pressure sensor) at the first harmonic. For higher modes, the resonance frequency is found to be invariant with pressure as 
well as DC voltage variations. Further, a comparison of quality factor values computed with compressible and incompressible flow 
models shows that the incompressible flow model overestimates the damping and the effect is more pronounced for higher 
compressibility ratio. 
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Nomenclature  
 

l  Length of the beam  
b  Width of the beam  
h  Beam thickness  

0d  Air-gap  
x , y , z  Length, width and thickness co-ordinates 
I  Area moment of inertia 
A  Cross sectional area 
β  Aspect ratio 
w  Beam deflection 

0w  Static deflection  

dw  Small dynamic deflection 
g  Non-uniform gap spacing 
t  Time  

)(tV  Excitation voltage 

DCV  DC voltage 
v  Small AC voltage 

0v  Amplitude of AC voltage 
ω  Excitation frequency 
α  Strength of electric actuation 

0ε  Permittivity constant for free space 
E′  Young’s modulus 
E  Plate modulus 
ρ  Density of beam material 
υ  Poisson’s ratio 

ia  Unknown coefficients in the static 
deflection function 

iφ  Mode shape  
N  Number modes retained in the ROM 

μ  Coefficient of viscosity 
effμ  Effective coefficient of viscosity 

aλ  Mean free path at ambient pressure 
Kn  Knudsen number 
p  Absolute pressure in the air-gap 

ap  Ambient pressure 

P̂  Non-dimensional pressure 
*P  Small pressure variation 

ψ  Pressure function 
mz  Unknown coefficients in the pressure 

function 
R

mz , I
mz  Real and imaginary parts of mz  

df  Damping force 

sF  Spring force due to the squeeze-film 

dF  Damping force due to the squeeze-film 
M  Number of terms retained in ψ  
Γ  Compressibility ratio 
A  Amplitude of small dynamic deflection 

ek  Electrostatic softening effect 

ak  Squeeze-film stiffening effect 
c  Squeeze-film damping effect 
ξ  Damping ratio 
Q  Quality factor 

resω  Resonance frequency 
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