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Abstract 
 
   In this paper we introduce a new algebraic procedure to compute new classes of solutions of (1+1)-nonlinear partial 
differential equations (nPDEs) both of physical and technical relevance. The basic assumption is that the unknown solution(s) of 
the nPDE under consideration satisfy an ordinary differential equation (ODE) of the first order that can be integrated completely. 
This solution manifold of these first-order ODEs play an essential part in solving given nPDEs. A further important aspect 
however is the fact that we have the freedom in choosing some parameters bearing positively on the algorithm and hence, the 
solution-manifold of any nPDEs under consideration are therefore augmented naturally. The present algebraic procedure can 
widely use to study many nPDE and is not only restricted to time-dependent problems. We note that no numerical methods are 
necessary and so analytical closed-form classes of solutions result. The algorithm works accurately, is clear structured and can 
be converted in any computer language. On the contrary it is worth to stress the necessity of such sophisticated methods since a 
general theory of nPDEs does not exist. 
 
Keywords: Nonlinear partial differential equations, evolution equations, special function methods. 
 
PACS-Code: 02.30Jr,  02.20Qs, 02.30Hq. 

 
1. Introduction                                                            
 
   This article introduces an important concept in the study of nPDE especially of higher order. The important outcome is that one 
is able to derive classes of solutions by an algebraic approach. In what follows we suppress the item ‘classes’; so ‘classes of 
solutions’ are simply ‘solutions’. 
   Many models in physics and further technical applications can be described by nPDEs of the general form 

[ ],....,, xxxt uuuKu = , where ][uK  is a nonlinear operator in general (higher order time derivatives are also considered). 
Explicit solutions are of basic interest especially those with physical relevance, e.g. the propagation of traveling waves. It is still of 
interest to evaluate new or improve known methods for finding analytical closed-form solutions since the calculation of the general 
solution-manifold fails. 
   Many powerful methods such as the inverse scattering transform method (Drazin and Johnson, 1989), the Darboux 
transformation (Drazin and Johnson, 1989; Wadati and Konno, 1975), Hirota’s bilinear method (Drazin and Johnson, 1989; 
Wadati and Konno, 1975), the Painlevé expansion (Cariello and Tabor, 1989) and the Homogeneous Balance Method, (HBM), 
(Wang, 1996) are appropriate to handle such problems efficiently. 
   The Jacobian elliptic function method described in (Cao, 2001) and (Chen and Zhang, 2003) is also suitable to calculate 
solutions and a technique using series of sine- and cosine functions is discussed in (Bai, 2001). Derivation and discussions of more 
analytical solutions are listed in (Elwakil and El-labany, 2003; Elwakil and El-labany, 2004a,b). 
   Further applications of algebraic approaches were performed in (Huber, 2005) in which solutions of any nPDEs under 
consideration are assumed in terms of hyperbolic tangent functions. 
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   A generalized approach; the so-called improved projective Riccati Equation method is derived in (Chen, 2003) as well as the 
Weierstrassian elliptic function method (Huang, 2004). In recent papers, (Huber, 2006; Huber, 2008), we applied the method both 
to a combined KdV-mKdV Equation and moreover, an evolution equation of the fourth order was solved for the first time 
successfully; for a new application of this nPDE, see (Huber, 2010). For further reading ‘classical ansatz-methods’ are discussed 
intensively in Darwish (2007), Khuri (2007) and Nickel (2007).  
   Similarity reductions dealing with Lie symmetries and invariant properties are also appropriate to calculate solutions as shown 
by the author’s recent papers, e.g. (Huber, 2008; Huber, 2009). 
 
2. Description of the method 
 
   Consider a given nPDE in its two variables x  and t  which describes the dynamical evolution of a wave form ),( txu , 

Ru →Ω:  in the domain dR⊆Ω , 2≥d  and t , so that the mapping holds for RRu →×Ω +: , { }0, >∈=+ tRtR , dR⊆Ω : 
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Firstly the nPDE is converted into a nonlinear ordinary differential equation (nODE) by )(),( ξ= ftxu , tx λ−=ξ  and λ  is a 
constant to be determined later (in general wave theory or solitary propagation λmeans the velocity).  
Thus, 
                                                                         [ ] 0....,)('',)(',)( =ξξξ fffP ,                                                                              (2.2) 

with the prime denoting differentiation w. r. t. the independent variable ξ . )(ξf  represents a localized wave solution and 

exemplifies a stationary wave with characteristic width 1−λ=L . 
Note: Considering the traveling wave reduction tx λ−=ξ  it sometimes might be useful to introduce a constant α  so that we 
have tx λ−α=ξ ; but here we will not follow this intension. 
   The nODE (2.2) is integrated as long as all terms contain derivatives. Further the associated integration constants can taken to be 
zero in view of the localized solution one is looking for.  
   This is a necessary (but not sufficient) condition that )(ξf  tend to zero for ±∞→ξ .  
   The next step is that the solution can be expressed in terms of the following series representation by using an auxiliary variable 

)(ξω=ω  such that 

                                             { }[ ]∑
=

− ξω+ξωξω+=ξω=ξ
n

i
ii

i baaff
1

1
0 ))((cosh))((sinh)(cosh))(()( .                                (2.3) 

 
   Since the functional dependence of the function ω  should be clear we drop the argument. The balancing parameter n  in the 
series expression (2.3) is found by balancing the highest-order nonlinear term with the highest-order partial derivative term in the 
relevant equation (2.2). In case of fractions one can take transformations as shown in Example 2 later.  
In addition, and this is the new crucial step it is assumed that the function ω satisfies the following classes of first-order ODEs 
(solely the plus sign will be used): 
 

              Case A:     ωβ±α=ω=
ξ
ω

sinh'
d
d

, RRR →×ω :  , 0≠ω , 0'≠ω , R∈ξ , R∈ω  ,                                                     (2.4) 

 

              Case B:      ωβ±α=ω=
ξ
ω

cosh'
d
d

, RRR →×ω :  , 0≠ω , 0'≠ω , R∈ξ , ],1[ ∞+∈ω  ,                                        (2.4.a) 

 

              Case C:     ωωβ±α=ω=
ξ
ω

coshsinh'
d
d

, RRR →×ω :  , 0≠ω , 0'≠ω , R∈ξ , ],1[ ∞+∪∈ω R .                       (2.4.b) 

 
We assume existence and uniqueness at least of the r.h.s. of the given ODEs and α  and β  are some coefficients determined later 
and may not vanish commonly. 
We summarize all solutions which can be verified by direct integration: 
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   Some constants of integration are dropped; they do not influence the result in a great manner (some shifts might be possible). 
Now substitute (2.4), (2.4.a) or (2.4.b) together with (2.3) into the nODE (2.2) and change it into polynomial identities for the 
variable ω  by using the standard relations for the hyperbolic functions. 
   Then all terms with the same power in ωω lk sinhcosh , ,....1,0, =lk  are collected and set to zero their coefficients to arrive a 
nonlinear algebraic system of polynomial equations solving for the unknowns nn bbaa ,.....,,....,,, 10λ   as well as α  and β  in a 
consistent way. At this stage it may happen that the solution is of trivial form only and therefore useless for the solution-manifold 
of eq.(2.1). 
   Let us take a few words discussing some general remarks: Algebraic methods can widely use for solving nPDEs especially of 
higher order. In engineering sciences as well as any technical applications solutions of nPDEs are of fundamental interest. Solution 
techniques should work fast and easy without studying the complicate theory of nonlinear equations.  
Another benefit is the fact that we do not need any numerical methods (in some cases it seems that the relating nODE derived from 
the given nPDE could solved only by numerical methods).  
   In addition we have the possibility to convert the procedure in any computer languages at once and furthermore we point out that 
some packages yet exist (Parkes and Duffy 1997; Parkes and Duffy 1996). 
   The crucial step however covers the following question: Can we us arbitrary ODEs like eq.(2.4), eq.(2.4.a) and eq.(2.4.b) ? 
 
This question has to negate in general since the ODEs have to satisfy some requirements:  
 
(i) They have to be of the first order. (ii) The explicit solution representation has to be known explicitly.  
(iii) In case of implicit solutions we have to ensure that the independent variable is expressible definitely. (iv) In case of equations 
of the form 0)',',,( 2 =ξ fffP  we require that by using algebraic operations no root expressions occur. (v) We both require 
existence (e.g. Peano is sufficient) and uniqueness of the solution(s). (vi) In case of an explicit representation, say, ),(' ωξ=ω f , 
the function ),( ωξf  has special properties which simplify the integration of the equation ),(' ωξ=ω f . This was the reason for 
introducing Riccati Equation(s) in the past where the structure of the function ),( ωξf  was sufficiently simple.  
Summarizing these facts we conclude that the repertoire of ODEs of the first-order is certainly restricted. 
   Another point of interest is the series, eq.(2.3). Several combinations of the functions involved are therefore thinkable.  
On the other hand if the balancing parameter vanishes all algebraic methods fail. We confess this lack but sometimes suitable 
chosen transformations will help. 
In some cases we are interested in complex-valued solutions of eq.(2.1) so we have to extend the domain. For the ODEs eq.(2.4), 
eq.(2.4.a) and eq.(2.4.b) we require:  
Let D  be a complex domain and CCD ×⊆ for all holomorphic functions and further we assume ∞∞∞ →×ξ CCC: so that  we 

have { } 0,....,'',', )( ≠ωωωω n  and the prime means ξdd / . 
In the following we study some selected examples of important equations to clarify the new approach where the first example is 
performed in detail. For the remaining cases we only present the results.  
 



Huber / International Journal of Engineering, Science and Technology, Vol. 2, No. 5, 2010, pp. 1-12 

 

4 

 

3. Examples of various nPDEs 
 
Example 1: The viscous Burgers Equation (BE) 
 
We start by discussing the well-known viscous Burger Equation (Burgers, 1948; Burgers, 1974). A lot of papers and text books 
cover this equation whereby the equation plays an important role in fluid dynamics with 0>μ  as the viscosity parameter 
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,  ),( txuu =  , ),(2 ∞−∞∈ Ru  , 0>t .                                                    (3) 

Eq.(3) is a simplified model for turbulence, boundary layer behaviour, shock wave formation and mass transport. Several new 
solutions by considering new approaches developed by the author are available (Huber, 2009). By using a frame of reference 

)(),( ξ= ftxu , tx λ−=ξ , the balancing parameter n is determined to be 1=n . This leads to the next step that, therefore, the 
polynomial ‘ansatz’ ω+ω+∝ coshsinh 110 baa  is suitable. We derive the following nonlinear algebraic polynomial system for 
the unknowns βα,,,, 110 baa : 
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                                                   (3.1) 

In total we have seven solutions whereby five are of trivial form. Useful solutions for the unknown parameters are given 

                                                                0,0,, 111
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a mm .                                                                (3.2) 

Note: We also found a solution including in the trivial case by 0,, 110 =α−=λ= baa ; this case covers earlier known results.  
Now by using the solution eq.(2.5), Case A, we obtain formally new solutions of the Burgers Equation in the form 
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The function is not defined over the domain where the denominator vanishes. By choosing special values, say, 11 =λ=b  and 
3,2 =β=α  we get a new solution of the form 
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   A graphical overview by using some selected values for the parameters is given in Figure 1. It is worth to stress that by using the 
new approach both the kink- and antikink solutions result 
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Fig.1 Some special solution curves of the eq.(3.4) representing kink and antikink-like behaviour. Solid curve for the kink solution: 
        1−=β=α and 1−=α , 2−=β  for the antikink, dotted curve for the kink: 1=β=α and for the antikink 1=α , 2=β . 
         Note, that like the Sine Gordon Equation, this solution is not of solitary type. For all cases the velocity is assumed to be the 
         unity velocity 1=λ . 
 
   Some important properties of the solution should be mention: On the contrary to the Sine Gordon Equation, e.g. which allows 
traveling kink-solutions, here, we have no traveling solitary motion since the boundary conditions are not fulfilled.  
That means that this traveling solution does not vanish rapidly as ∞→ξ . The limiting behaviour is seen to be finite either for the 

cases ∞→ξ  and 0→ξ .  
In the considered domain the function is stable and has a continuous profile. The given analysis was performed if we assume that 
the viscosity parameter does not influence the system of nonlinear algebraic polynomial equations, eq.(3.1).  
   If we consider, however, the viscosity parameter as a further unknown we also have seven solutions in total with two of trivial 
form. We chose 
                                                                   0,0,/,, 11110 ≠μ≠μ=β−=μα−λ= bbbaa                                                          (3.5) 

to derive solutions of the general form 
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On the contrary to the solution eq.(3.3) the viscosity parameter influences the solution significantly.  
The solution vanishes on the singularities of the denominator, so we have to require that we exclude those values of the domain of 
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In Figure 2 we compare two cases of the solution, eq.(3.6). Firstly by choosing positive values for the constants, say 

11 =λ==α b  we also get kink-like profiles.  
The profile decreases monotonically to a constant value as ∞→ξ . Otherwise, by choosing negative values, that is 

11 −=λ==α b , singular unstable solutions occur.  
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           Fig. 2  Solution curves influenced by the viscosity parameter μ , eq.(3.6). Left: Stable kink-like solutions generated by 
                 50 <μ<  and 11 ==β=α b . Right: Unstable singular solutions by 31 <μ<  and 11 −==β=α b .  
                 

Example 2: A nonlinear reactions-diffusions equation with reaction term: 
 
An example of practical interest is known as the nonlinear reaction-diffusions equation with a reaction term, e.g. (Whilemsson, 
1987). In general one can assume for such classes of equations the form of a conservation equation in three space dimensions so 
that 

                                                                             ),,( utxfF
t
u rr

=∇+
∂
∂ ,                                                                                        (3.7) 

where F
r

is a general flux transport due to diffusion and ),,( utxf
r

 is the source or reaction term. For the case of general diffusion 

problems we can take uF ∇κ−=
r

, so that eq.(3.7) becomes 

                                                                             ),,()( utxfu
t
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+∇κ∇=
∂
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,                                                                                (3.7a) 

and ),( ux
r

κ=κ  is a function of x and u . For the case of several chemicals or interacting species, the vector ),( txui
r

, ni ,.....,1= , 
represents concentrations or densities each diffusing with its own diffusion coefficient iκ  and interacting according to the vector 
source term ),,( utxf

r
. In the one-dimensional case with f as a function of u only, we can write the eq.(3.7a) as  

                                                                           )()( uf
x
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⎢
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⎡
∂
∂

κ
∂
∂

=
∂
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If we assume a general polynomial dependence upon the function )(uf we have )1()( nm uuuf −α= , where m,α  and n are 
some positive constants.  
For a suitable choice of the constants and introducing non-vanishing parameters p  and q  we derive at the following evolution 
equation 

                                                       22 )(
2
1 uqupuu xxt −=− ,  ),( txuu = ,  +∈ Rt .                                              (3.7c) 

Several finite difference methods have been suggested elsewhere even for problems involving complex geometries, anisotropic 
materials and time-dependent boundary conditions.  
Some results can be found on the similarity solution to heat transfer through extended surfaces especially variable thermal 
properties.  
We seek for solutions for which ),( txFu = , )(2 DCF ∈ and 2RD∈  with 0,0 ≠≠ qp . Using a frame of reference by setting 

)(),( ξ= ftxu , tx λ−=ξ  we derive at 
 
                                                                         0'')(' 22 =+−−λ fqfpff  .                                                                                (3.8) 
 
This is an example in which the balancing number is not a positive integer ( 1−=n ) and hence, a transformation is necessary.  
Let 1−= Vf , then eq.(3.8) transforms into 
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                                                              0)'('6''2 223 =λ−+−− VqVVpVVV  ,   )(ξ= VV .                                                     (3.9) 
 
Balancing '2VV  and ''VV  gives 1=n  and the polynomial ‘ansatz’ wbwaa coshsinh 110 ++∝  is suitable for considering e.g. the 
Case B.  
Remark: At this stage let us point out an important fact. By balancing the eq.(3.8), 1−=n  is not the only choice since the 
procedure also allows the condition 2−=n  which is missed in several studies. As a further new result we perform the calculation 
exactly for this case leading to new results. 
For the case 1=n  we deduce: The nonlinear algebraic system consists of eight equations for six unknown, therefore the system is 
over-determined. If we consider the case that the parameters p  and q  do not involve in the nonlinear algebraic system we get 19 
solutions in total with five solutions of trivial character (we also have to exclude the case β=α  which appears naturally).  
For demonstration we choose the combination 
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and new solutions of practical interest are given finally 
 

                                             

⎥⎦
⎤

⎢⎣
⎡ ξ

β
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ξ

β
+−+−

=ξ

4
tanh

4
tanh2)(

)(
2
1

2
0

2
110

2
010

KKba

KKbbaaba
V , 4

1
2
1

2
0

4
0 6 bbaaK ++= .                       (3.10) 

 
Now by using a suitable choice for the parameters, say, 20 =a  and 11 =b , we get special solutions 
 

                                                            [ ]( ) 11
8

1 41tanh41521)(
−−
⎟
⎠
⎞

⎜
⎝
⎛ ξβ++=ξf .                                                               (3.11) 

 

Here we have to exclude values where the function takes singular, that is ⎥
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In Figure 3 we compare the solution considering fixed values either for the parameters β and 1b . The function takes a finite value 
as 0→ξ  and takes infinite as ∞→ξ .  In this case typical irregular solutions without any stability occur. 
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Fig.3 Typical solution curves of the solution eq.(3.11). Left: The parameterβ varies between 51 <β< . Steep rising kink-like 
          behaviour is seen tending to infinity on both sides. Right: The parameter β is assumed to be fix and we chose 
          41 1 << b ; a typical singular unstable behaviour is remarkable. 
 
 
If we use the parameters p  and q  as unknowns in the nonlinear algebraic system the situation changes 
We have 27 solutions apart from 20 trivial cases which are useless for constructing solutions. For building up new solutions we 
take the following choice: 
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The analysis leads to the following new types of solutions for the nPDE, eq.(3.7) 
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Here we have to require that the parameter q takes negative to ensure the positivity of the root. Let us now handle the second case 
with 2−=n .  
Applying the procedure we derive at the nODE 
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which differs from the nODE (3.9).   
Let the new transformation be )()( 2 ξϑ=ξ −V  and by using the hyperbolic ‘ansatz’ of the second order a long-winded calculation 
gives a possible parameter choice 
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where the parameters βα,,1b and λ can be chosen arbitrary. 
Avoiding a duplication of effort in calculating the function )(ξϑ  we restrict the analysis to the following special case by requiring 

11 ====λ=β qpb and 1−=α  so that some roots may not vanish.  
In total a completely new solution function is derived allowing to augment the solution-manifold in the form 
 

                                          
[ ] [ ]

( )( ){ } ( )( ){ } ,3]2/[2227]2/[21243734

sinh22cosh5
sinh22cosh73

ln2sinh
3

2ln2cosh2)(

1−
−ξ+ξ+−+

+
ξ−ξ

ξ+ξ+
+Φ+Φ=ξϑ

tghtgh

                                 (3.16) 

where we used the abbreviation 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

ξ−
=Φ 1

]2/[tanh21
4ln2  together with some basic transformations for the hyperbolic and 

inverse trigonometric functions.  
 
To be a unique solution we have to exclude some values for the argument. The function is defined for all [ ]2/3tanh2 1

1 −≠ξ −  

and [ ]2/1tanh2 1
2 −≠ξ −   and for the inverse trigonometric functions as usual on RD f ∈  \ {-1,1}. 

The function )(ξϑ itself as well as the first and the second derivatives are finite and positive functions at the point 0=ξ .  
The limit calculations show that both for the cases 0→ξ  and ±∞→ξ  the function remains finite.  
A graphical overview is given in Figure 4 whereby a typical peakon solution is remarkable. 
 
Note: It is sufficient to consider only the function )(ξϑ  since squaring and taking the reciprocal does not influence the final result 
significantly. 
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Fig.4  Left: A planar plot of the solution function (3.16) showing a peakon solution. Right: This three-dimensional animation 
          shows the development of the solution by assuming the wave parameter 1=λ  according to the similarity transformation 
         tx −=ξ ; therefore the peakon moves with unit velocity in the left direction. 

 
Example 3: A nonlinear evolution equation of the fourth order 
 
The scaled rare studied equation e.g. (Huber, 2006; Huber, 2008) in (1+1) dimension under consideration is given by: 
 

                                                         03
2

2

2

3

4

2

2
=

∂∂
∂

∂
∂

+
∂∂

∂
+

∂
∂

tx
u

x
u

tx
u

t
u  ,  ),( txuu = ,  ),(4 ∞−∞∈Cu , 0>t ,                           (3.17) 

 
whereby the function ),( txu  describes a wave propagation depending upon time t .  

We seek for solutions for which ),( txFu = , where )(4 DCF ∈ , 2RD∈ .  In recent papers (Huber, 2005), the tanh-approach was 
used to calculate soliton solutions of (3.1). Alternatively, a new physical related application is given in (Huber, 2010b) and now we 
are interested here to derive new solutions. 
Performing the above given steps one ends up by the nODE: 03 )2()2()4( 2

=λ−+ fff , )(ξ= ff . 

Putt )2(fh =  as new dependent variable and balancing the parameter n  leads to 2=n . So the polynomial ‘ansatz’ of second 
order is suitable for our purposes 
 
                                                       ω+ω+ωω+ω+= 2

21210 coshcoshsinhcoshsinh bbaaah .                                            (3.18) 
 
One derives at an under-determined nonlinear algebraic system of equations consisting of seven equations and eight unknown.  
We get six solutions, four are of trivial form. The remaining two possibilities differ by the sign of the wave velocity λ to give 
 

                                        ( ),431
6
1 22

0 λ+β+α=a    
3

10
1

βα
−=a , 01 =b ,  

                                        22 56961 β−αα±=λ ,   
3

2 2

2
β

−=b .                                                                                              (3.19)  

 
We have to require that products may not vanish commonly, e.g. 0≠jiba  and various combinations just as well.  
Sinceα and β are arbitrary constants in eq.(3.16), for simplicity and any loss of generality we can set 1=β=α  to get the 
following expression for the function )(ξ= hh : 
 

                                      [ ][ ] [ ][ ]( ){ }MhMhNh arctan4cosh10arctan4cosh2
6
1)( −−=ξ ,                                       (3.20) 
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where we introduced the numerical factor ( )90533+=N  and for the arguments of the inverse hyperbolic tangent functions we 

set ⎥
⎦

⎤
⎢
⎣

⎡ ξ
+=

2
tanh21M . 

Proceeding further in order to derive the original function )(ξ= uu we have to integrate twice the above given function which is 
closely related to problems of symbolic integrations, e.g. (Bronstein, 2004).  
Tangent- and trigonometric functions can be integrated by transforming them to complex logarithms and exponentials where the 
result contains non-elementary functions (Bronstein, 2004).  
The highly complicate solution is a complex-valued function independently from the choice of the independent variable ξ , that is 

Cu ∈ξ)( R∈ξ∀ C∈ξ∧ . We refer to the fact that the integration is possible leading to a great number of trigonometric, 
hyperbolic and logarithm functions. 
The result of the integration also contains some complex-valued dilogarithm functions of the second kind proportional to 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

ξ
2

2
2exp~ 2 arctghi

i
iL ,  where 12 −=i  and (.)2L means the Euler dilogarithm function. 

We do not find it worth to write down in detail this complicate function so we decided to discuss further the solution function 
)(ξh , eq.(3.20). This function can be simplified by standard relations to transform the inverse hyperbolic tangent leading to 
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⎧
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⎡
⎥
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⎣

⎡ ξ
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2
coth21

2
cos20

2
cothln2cosh2

6
1)(

2ech

Nh .                                  (3.21) 

 
To exclude the singularities we have to require that the function is defined in some domain 

{ }22)(:~))(,(:1 arctghhDhD −≠ξ∈ξ=  for the last additional hyperbolic term and further { }2/)(:~))(,(:2 π≠ξ∈ξ= ihDhD   

for the logarithmic part. In addition we usually require ξ \{ }0 . 
In Figure 5 we show the function eq.(3.21) in some domain and we see that the function represents a typical peakon behaviour 
taking an infinite value as 0=ξ . The limiting behaviour shows that we have −∞→ξ)(h  as 0→ξ .  
The first and the second derivatives exist but takes infinite as 0=ξ . 

                                                                

Fig.5  The new peakon solution (3.21) of the nPDE (3.17). A marked peak is observed and this solution means a new contribution 
           to the solution-manifold of the eq.(3.17). Both for the cases ±∞→ξ  the function takes finite. 
 
4. Summary and conclusion notes 
 
   In this paper new classes of solutions of some (1+1) nonlinear evolution equations of higher order by using a new algebraic 
approach could obtained (the case (n+m) deals analogues). 
   The crucial step is the assumption that the unknown solution function of any nPDE under consideration is also a solution of some 
ODEs which can be solved explicitly. Here in our new approach we use new formulated ODEs of the first order allowing the 
solution manifold explicitly expressed. 
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   It is known that solutions of nonlinear evolution equations can be expressed as finite series in terms of special functions, e.g. 
hyperbolic functions, Weierstrassian and Jacobian functions. 
All these different algebraic approaches are useful if one assume the possibility to balance the nonlinear term and the highest linear 
term leading to a suitable number (a positive integer) in the series expression (2.3). This number may not be equal to zero since it 
represents the number of terms in the series expansion (obviously some equations allow 0=n ). 
   Let us now mentioned a few words to different ‘ansätze’ used by ‘exact reduction processes’ generating nODE’s from nPDE (at 
this stage we refer to the Painlevé conjecture). 
Commonly used ‘ansätze’ are )(),( txUtxu λ−=  and 3/1)3/(),( txUtxu =  respectively, especially for ‘diffusion-like’ parabolic 
equations. These ‘ansätze’ resulting from Lie group analysis (LGA) are appropriate to reduce nPDEs to nODEs in the sense of a 
similarity reduction.  
   Not only classes of travelling wave solutions occur; moreover, classes of general solutions result. However, difficulties appear in 
solving the relating nODE derived from the similarity reduction (for some nODEs only a numerical procedure is appropriate). 
On the contrary this also represents another advantage of the given algebraic procedure since it allows generating classes of 
solutions in the same manner but without solving complicate nODEs explicitly. 
   Travelling wave solutions occur as well as complex-valued class of solutions without physical significance; but of mathematical 
point of view they are included in the solution-manifold and therefore indispensable. 
Comparing the power of algebraic approaches with LGA methods with those from algebraic type one can say that they work as an 
excellent alternative tool without using any numerical methods. Apart from trivial solutions of the homogeneous nonlinear 
algebraic system in some cases it may happen that such systems can be solve only numerically.  
Otherwise one can make use of the freedom of the appearing constants introducing as a new aspect in the assumed differential 
equations (2.4), (2.4a) and (2.4b). 
   In fact, it is clear that by increasing the number of constants (the systems might be over-determined eventually) the solubility 
process of the nonlinear algebraic system can therefore be influence by the user.  
   As a last remark one should point out the possibility in translating the approach in any computer languages.  
Broadly speaking such algebraic methods are suitable to safe both the calculation time and period of vocational adjustment in any 
scientific as well as technical problems. 
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