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Abstract 
 
   The present paper describes a bioeconomic modelling of a stage-structure prey-predator system with differential algebraic 
equations. The criterion for coexistence of the equilibrium points and their stability nature are investigated. Singularity induced 
bifurcation are studied for zero economic profit and in this perspective, feedback control is designed to preserve the persistence 
property of the system. In contrast to zero profit, an interior equilibrium point remains stable for positive economic profit. The 
reasons behind the different nature of the interior equilibriums for zero and positive profit are discussed in conclusion section. 
Some numerical simulations are given to verify the analytical results. How the maximum profit hampers the system is provided 
through saddle-node bifurcation in the last subsection of numerical simulation.   
 
Keywords: Prey-predator, stage-structure, singularity induced bifurcation, feedback control.  

 
1. Introduction and model description 
 
   A major current focus related to the interacting prey-predator bioeconomic systems in presence of harvesting effort is to 
investigate the dynamical behaviour of the ecosystem towards the positive economic interest. Biological resource of prey-predator 
system is recently harvested unscientifically and exported with the aim of positive economic profit which gradually shortages the 
resources and the ecosystem is collapsed eventually. Nowadays, few research articles have proposed some harvesting strategies 
and management policies for long run biological resources. Idels and Wang (2008) have investigated the consequences of various 
harvesting strategies in single species fish population. Kar and Pahari (2007), Xiao et al. (2006) and Kumar et al. (2002) have 
studied the prey-predator model with harvesting and observed various complexity of the system namely, Bogdanov-Takens 
bifurcation, Hopf bifurcation, limit cycle, heteroclinic bifurcation and so on. Mazoudi et al. (2008) have considered age-structure 
fishery model and a Liapunav function is adapted to study the stability and stabilization of the system around the non-trivial steady 
states. 
   We shall now discuss some research articles which studied the dynamical behaviour of the bioeconomic model systems governed 
by some first order ordinary differential equations together with few algebraic equations; such systems are called differential 
algebraic equations (DAEs) systems. Zhang et al. (2009) have taken a differential algebraic prey-predator system with time delay 
where predator population is harvested continuously. They analyzed the transcritical bifurcation at a boundary point, singularity 
induced bifurcation at the unique singular point with respect to economic profit and well known Hopf bifurcation regarding the 
time delay parameter. Kar and Chakraborty (2010) have discussed with the same bioeconomic model harvesting the prey 
populations and removed completely the singularity induced bifurcation as well as the instability behaviour towards the positive 
economic profit by means of feedback control theory (Dai L. R., 1989). Zhang and Zhang (2009) modeled a differential algebraic 
equation system with a single harvesting population equation and a single algebraic equation, and the optimal control strategy is 
applied to eliminate the singularity induced bifurcation and minimize the cost energy on zero economic profit case. Liu et al. 
(2008, 2009) have constructed a harvested differential algebraic prey predator system and they demonstrated that the system is 
unstable for any positive economic interest (profit not very closed to zero) due to singularity induced bifurcation theory. But our 
recent model does not agree with the same. In such situations, the singularity induced bifurcation theory is not well fitted to 
describe the stabilization of the equilibrium points of the system. 
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   Here, we have considered a stage structure prey-predator model with stage structure for predator which is organized as follows: 
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where 1r  is the intrinsic growth rate of prey population  ,N  K  is the environmental carrying capacity for the prey, α  is the 
predation rate of  the mature predator 2N  over the prey ,N  β  is the transition rate from mature predator population 2N  to 
immature predator population 1N , 2r  and 3r  are the natural death rates of the immature and mature predator population 
respectively, m  measures how many portion of biomass is added to the mature predator population after predation, γ  is the 
conversion rate from immature to mature predator, δ  is the coefficient of intraspecific competition of the mature predator and τ  
is the current time. All the biological meaningful parameters are positive. 
   We take the transformation for the state and time variable as follows: ,/ 12 rxKrN=  ),/(1 αβ myN =  )/(22 αmzrN =  and ,/ 2rt=τ  
then the system (1) is converted to  
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where )/(,/,/,/,/1,/ 2

2123121 αδγβα msrerKmdrrcmbrra ======  and zyx &&& ,,  represent the derivatives of  zyx ,,  with respect to t  
respectively. 
   Using the phase catch-per-unit-effort (CPUE) hypothesis (Clark, 1990) to describe an assumption that catch  per unit effort is 
proportional to stock level we take the harvested term on mature predator as ,qEzH =  where E  is the harvesting effort and q  is 
the catchability co-efficient of the mature predator. Simultaneously an algebraic equation is also developed by considering the 
economic interest of harvesting according to Gordon’s economic theory of a common property resource (Gordon, 1954). He 
established the economic interest of the yield of harvest effort as: 
 
                                                       Net Economic Revenue ( NER ) = Total Revenue (TR ) – Total Cost (TC ).                              (3) 
 
   In our present problem we suppose pqEzTR =  and ,cETC =  where p and c  respectively stand for the constant price per unit 
harvested biomass and constant harvesting cost per unit effort. Let us assume that v  is the ,NER  then the algebraic equation looks 
like  

                                                 
                                                         .)( vEcpqz =−                                                                                                                            (4)      
 
Finally, the differential algebraic model system with harvesting predator takes the form  
 

                                                                              

( ) .0
,

,
,

2
1

2

vEcpqz
qEzszeydxzzcz

yzy
bxzxaxx

−−=
−−++−=

−=
−−=

&

&

&

                                                          (5) 

 

We now set ,
),,,(
),,,(
),,,(

:
2

1

2

3

2

1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−++−

−
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

qEzszeydxzzc

yz
bxzxax

zyxf
zyxf
zyxf

f
μ
μ
μ

  

 



Kar and Ghosh / International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 131-141 

 

133

 

vEcpqzzyxg −−= )(),,,( μ  and [ ]zyxX ,,=  is a three dimensional column vector. 

   The matrix representation of equation (5) is ultimately expressed as ,
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A  is a singular matrix.                                                                                                                                  (6) 

 
2. Equilibria and their stability analysis in zero economic profit 
 
   When economic profit is zero then the model system (5) reduces to 
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   The above system always possesses two equilibrium points )0,0,0,0(0P  and ).0,0,0,(1 aP  The boundary equilibrium point 

),,,( 22222 EzyxP  and the interior equilibrium point ),,,( ***** EzyxP  exist under some considerations, where 

),/())(( 12 sbdecbasx +−+=    ),/()( 12 sbdceady +−+= ),/()( 12 sbdceadz +−+=  ;02 =E  and ,/)(* pqbcapqx −=   ,/* pqcy =  

,/* pqcz =  ./))()(( 2
1* pqsbdcceadpqE +−−+=  If bcapq >  and ( ) ( ),1 sbdcceadpq +>−+  then *P  exists. The existence of 

*P  ensures the existence of 2P together with the condition ( ) .1 bebcas >+  But, if 2P  does not exit yet ( ) ,1 bebcas >+  then *P  
never exists. Thus both the equilibrium exist when ( ) ,1 bebcas >+  bcapq >  and ( ) ( ).1 sbdcceadpq +>−+  Out of these *P  is 
the only interior singular equilibrium (definition would be lunched shortly) point. The interior nature of *P  prevents 2P  not to be 
singular which follows from 0* >E  i.e. .*2 xx >  To describe the stability of different equilibrium points we evaluate the Jacobian 
matrix 3J  of the system (7) at an arbitrary point is defined in a special form as   
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   First of all we shall discuss the stability analysis of the three equilibrium points viz., ,0P  1P  and 2P  by calculating the eigen 
values of the Jacobian matrix 3J  at the corresponding points. 
   At ,0P  one eigen value of the community matrix is .a  Consequently 0P  is an unstable node or unstable focus. Also a−  is an 
eigen value at 1P  of the linearised system (7), hence the stability nature can be completely determined by the solutions of the 
equation 

 
.0)()1( 11

2 =−−+−++ eadcadc λλ  
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Theorem 2.1  The equilibrium point 2P  is stable for all biological parameters. 
 
Proof.  The characteristic equation of the jacobian matrix at 2P  is  

,032
2

1
3 =+++ www τττ  where 

 
,1/ 222211 +++= xszzyew       exzbdxszzeyxw −++++= 22222222 )/)(1(     and             ].)/[( 222223 ebdzszzeyxw −++=  

    
It is easy to follow that ,11 >w  03 >w  and .)1( 2232 szxeww ++=−  Therefore, 0321 >−www  for any sets of biological 
parameters. Hence by Routh-Hurwitz criterion, 2P  is a stable equilibrium point.■ 
 
Theorem 2.2  When the economic profit is negative and closed to zero, the system (7) is stable at *P  for any set of meaningful 
biological parameters. 
 
Proof.  Let us assume that ,, 2211 mm  and 33m  are the principal diagonal minors of the community matrix at *P  for arbitrary small 

.0<v  Then 0,0 *22*11 >=<−= xmxm  and  
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   So we can demonstrate that all the eigen values corresponding to the system (7) lie in −C  (left half complex plane). Hence *P  is 
stable for very small negative economic profit.■  
     
2.1 Singular induced bifurcation in a differential algebraic equations (DAEs) system    
 
   The DAEs system can be put in the form  
 
                                                                         ,:),,,( nrmnfyxfx ℜ→ℜ= ++μ&                                                                            (9a) 
 
                                                                         ,:),,,(0 mrmngyxg ℜ→ℜ= ++μ                                                                           (9b) 
 
where rmn yx ℜ⊂Λ∈ℜ⊂Ω∈ℜ⊂Θ∈ μ,,  with mn,  and r  are all positive integers. In this particular section, x  is the 
dynamic state vector whose time evaluation is directly connected by the equation (9a) and y  is the instantaneous state vector 
which satisfies the constraint equation (9b) and the parameter set μ  defines a specific system configuration and operating 
condition. 
   We define the set of all equilibria of the DAEs system (9a)-(9b) to be EQ  and the set of all stable equilibria OP  as  
 
                                                              ( ) ( ){ }0,,,0),,(:,, ==Λ×Ω×Θ∈= μμμ yxgyxfyxEQ  and 
 

( ) ( ) ( )( ){ },0Re,0:,, <≠∈= ny JgDDetEQyxOP λμ  
 
where ( )nJλ  is the set of all eigen values corresponding to the Jacobian matrix gDgDfDDJ xyyxn

1)( −−=  of the system (9a)-
(9b). We also define the singular surface  
 

             ( ) ( ) ( ) ( ){ }0:,,,0,,:,, ==Δ=Λ×Ω×Θ∈= gDDetyxyxgyxS yμμμ  
 
and corresponding point on S  is known as singular point which plays an important role in differential algebraic system. In a DAEs 
system the singularity induced bifurcation (SIB) occurs if equilibrium crosses the singular surface S  at bifurcation point. 
Trajectories cross the singularity in a finite time with an infinite speed and the system changes its stability due to an eigen value 
diverging to infinity. This type of bifurcation can be analyzed with the help of the following theorem. 
 
Theorem 2.3 (Singularity induced bifurcation theorem) 
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   Suppose the system (9a)-(9b) satisfies the following conditions at the singular equilibrium point ( ):,, 000 μyx  

SIB1:   gDy  has a simple zero eigen value and ( )gDgDfDTrace xyy
1)( −  is nonzero. 
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   Then according to Venkatasubramanian (1992) & Venkatasubramanian et al. (1995), there exist a smooth curve of the 
equilibrium in rmn ++ℜ  which passes through ( )000 ,, μyx  and is transversal to  the singular surface at ( ).,, 000 μyx  When μ  

increases through 0μ  one eigen value of the Jacobian matrix nJ  moves from −C  to +C  if 0/ >NM  (respectively from +C  to  
−C  if 0/ <NM ) along the real axis by diverging through infinity. The rest )1( −n  eigen values remain bounded and stay away 

from the origin. The constants M and N can be computed by evaluating  
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2.2 Singularity induced bifurcation at *P  
 
Theorem 2.4  Considering the positive meaningful biological parameters when the economic parameter v  increases through 0, the 
system (7) undergoes singularity induced bifurcation at the equilibrium *P  and the stability of the equilibrium point *P  changes 
from stable to unstable. 
 
Proof.  SIB1:        At ,*P  cpqzgDE −==Δ : has a simple zero eigen value and 
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   According to the theorem 2.3, the system (7) undergoes SIB at the equilibrium *P  when the bifurcation parameter .0: ==vμ  

When v  increases through 0, one eigen value of the system Jacobian 3J  at *P  moves from −C  to +C  along the real axis and 

ultimately diverges to infinity as v  is highly closed to 0. This eigen value approximately is equal to )/( **
2

*
2 szevzEpq −−  at the 

neighbourhood of *P  (or equivalently at the neighbourhood of 0=v ). It brings an impulse in the said population system and the 

ecosystem collapsed very rapidly. The other two eigen values remain bounded and stay in ,−C  away from the origin. 
Consequently the stability of model system (7) changes from stable to unstable at the equilibrium point *P  when the economic 
profit increases through zero. Hence the proof is complete.■                                                                              
 
3. Design of the feedback control 
 
   In the case of zero economic profit the system (7) is unstable around the equilibrium point .*P  To eliminate the singularity 
induced bifurcation and stabilize the system (7), a state feedback control is designed under certain condition when economic profit 

.0=v  In the next subsection, we also fit the same to stabilize an unstable equilibrium point  ),,,( ***** EzyxP  regarding to a 

suitable positive economic profit .*vv=  
   The Jacobian matrix of (7) at an interior point can also be put in the form as follows: 
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Now rank 4),,,(
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44 =PJAJAAJJ , where A  is described earlier. According to the Theorem 2-2.1 in Dai (1989), the model 

system (7) is locally controllable at .*P  In the status of the Theorem 3-1.2 in Dai (1989), a state feedback controller )( *EEku −=  

can be applied to stabilized the differential algebraic system, where 2
1* /))()(( pqsbdcceadpqE +−−+=  is the E  component of 

*P  and k   is called the feedback gain. Hence the system (7) reduces to  
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Remark 3.1 At ,*P 3J  and 4J  both are the Jacobian matrices of the same model system (7), but of different orders and elements. 
Also ).()( 43 JDetJDet ≠  The characteristic polynomial of  3J  follows the expansion of ),( 33 JIDet −λ  but in the case of  4J  it is 
of ),( 4JADet −λ  which is expected as the system (7) consists of three differential equations of first order and first degree. These 
two characteristic polynomials are different with respect to the coefficients of ,λ  but of same degree. The first one is a monic 
polynomial of third degree, where as the second one is not monic. Both the polynomials agree at their zeros. We use these 
according to our necessity. 
 
Theorem 3.1  If the feedback gain k satisfies either   
 
                       )}/(),1/({ *
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where *k  is the largest positive root of the equation  
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Proof.  The Jacobian matrix of the system (11) at *P  is 
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Its characteristic equation is ,032

2
1

3 =+++ σλσλσλ  where ,/1 **
2

**1 kzEpqszex −+++=σ   

exzbdxkzEpqszex −++−++= *****
2

**2 )/)(1(σ  and )./( **
2

***3 kzEpqbdzszx −+=σ  

Now )1/(0 ****
2

1 szexzEpqk +++>⇒>σ  and .)/(0 *
2

3 sbdEpqk +>⇒>σ  Also .// **
2

*321 CkBkA ++=−σσσ  For any 

set of biological parameters 0* >A  always holds. Now, if ,04 **
2

* <− CAB  then the expression 321 σσσ −  is always positive for 
any real value of .k  Hence by Routh-Hurwitz criteria (Kot, 2001), the DAEs system (11) at *P  is stable and the corresponding 
feedback gain k  satisfies  
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   Otherwise, if 04 **
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than zero for any .*kk >  Consequently, the system is stable for  
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Hence the proof.■ 
    
   From a bioeconomic system, a society or the government of a country always expects some positive profit. In a real fishery 
management, the fishery agencies are interested towards the positive economic rent from the fishery. But, we can not expect a high 
economic profit in real life situation, as it hampers the persistent property of the ecosystem. Thus the economic profit runs over a 
suitable interval ).,0( ev  Suppose *v  is our targeted positive profit over ),,0( ev  then it ensures at least one interior positive 

equilibrium point ),,,( ***** EzyxP  of the model system and for evv ≥*  the system has no positive equilibrium point at all. Liu 
et al. in (2008, 2009) have demonstrated that any positive equilibrium point corresponding to a positive profit in their bioecononic 
DAEs system is always unstable according to the singularity induced bifurcation theorem. But, no singular point exists for positive 
economic profit as 0/)( >= EvgDDet E  and singularity induced bifurcation theory can not be permitted to apply for analyzing the 
stability nature of the equilibrium points. So, there may exist positive equilibrium point associated with a positive profit for which 
the model system (5) is stable in its own rights. Assume ),,,( ***** EzyxP  is an unstable equilibrium point related to *vv=  of 

the system (5), where ,** bzax −=  ,** zy =  )/( *** cpqzvE −=  and *z  is a typical solution of the equation 
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Then we can, once again, design a feedback controller ),()( *EEktu −=  applying the same assumptions discussed in the front of 

this section. Adding the feedback controller into the model system (5) regarding to ,*vv =  the reduced final model is  
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and the associated Jacobian matrix is 
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We now calculate k  by means of numerical approach. 
 
4. Numerical simulation  
 
   For verification of our previously discussed analytical results, we, here, would like to present some numerical simulations with 
the help of MATHEMATICA 5.2 and MATLAB 7.0 software packages. 
 
   (I) In this subsection, numerical support is provided for the singularity induced bifurcation with the hypothetical data as ,5=a  

,5.0=b  ,151 =c  ,2=d  ,10=e   ,05.0=s  ,20=p   ,2.0=q  15=c  and v  is the bifurcation parameter. For zero economic profit 
of the model system (7), there exists unique singular equilibrium point ).3125.5,75.3,75.3,125.3(*P  Now the arbitrary variation 
of v  (very closed to zero) changes the local stability of  .*P  The variation of v  and the corresponding eigen values are shown in 
the following Table 1 and together with the Figure 1 & Figure 2 below.  

 
Table 1. The variation of v  and the corresponding eigen values 

 
Eigen valuesa  
 
↓v  

 
Real( 1λ ) 

 
Real( 2λ ) 

 
Real( 3λ ) 

-0.001 -0.99999 -3.1252 -84684.97 

-0.0001 -0.99999 -3.1250 -846696.68 

 0.001 -1.00012 -3.1248  84650.97 

 0.0001 -1.00001  -3.1249  846662.69 
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                               Figure 1.  Variation of the third eigen value           Figure 2. Variation of the third eigen value   
                                                 for positive v (very closed to zero).                        for negative v (very closed to zero).  
                                                                       
                           
   (II)  To eliminate the singularity induced bifurcation at ),3125.5,75.3,75.3,125.3(*P  we take the feedback gain 20=k , which 
is greater than }.048.4,114.1{Max  Using this condition the system (11) possesses the eigen values as -8.556, -4.716 and -0.243, 
consequently the system is stable at .*P  
 
   (III)  Numerically we can calculate that the maximum positive bioeconomic profit ≈ev  5.37574. If we want to investigate the 

positive profit ,3* =v  then there exists a typical equilibrium point ),8904.0,5923.4,5923.4,7038.2(P̂  which is stable without any 
feedback control and no singularity induced bifurcation occurs for positive profit (positive profit not very closed to zero). In 
contrast to the above fact, if we take ,5.2* =v  then a typical equilibrium )5990.4,8859.3,8859.3,0570.3(*P  exists which is 
unstable in nature. Applying feedback control, we have }8538.3,4044.0{Maxk >  and the eigen values of the system (14) are -
7.5757, -6.3977 and -0.1869 corresponding to .15=k  
 
   (IV)  In previous section, we have demonstrated that there exists no equilibrium point in the system when economic profit 
exceeds its maximum value. For example, if we consider the same set of biological parameters as in (I), then the maximum profit 

≈ev  5.37574. In particular, there exist a stable equilibrium )9540.1,3897.4,3897.4,8051.2(sP  and unstable equilibrium 

)3585.3,1222.4,1222.4,9389.2(uP  corresponding to .5=v  These two equilibrium  approach to each other as v  increases and 
disappear when v  crosses .ev  Thus the maximum profit is a bifurcation parameter which compel the populations  to be extinct 
forever. This phenomenon can be proved numerically through saddle-node bifurcation as follows:     
   When profit is positive all the equilibrium are nonsingular points. Therefore, applying the literature proposed by 

Venkatasubramanian et al. (1995), the differential algebraic system can be reduced to ordinary differential system as 

),( μXfX R=&  locally near any equilibrium point by a suitable (unique) function .Rf  Now the new constructed system satisfies 

the following conditions near )6562.2,2559.4,2559.4,8720.2(),,,( =eeeee EzyxP  corresponding to .ev   

SND-1:     ( )( )
ePXEEX gDgDfDfD 1−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
=

7441.5105119.8
110
4360.108720.2

  

has a simple zero eigen value with right vector  
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⎟
⎟
⎟

⎠

⎞

⎜
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⎜

⎝

⎛

−
−=

⎟
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⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Φ
Φ
Φ

=Φ
6667.0
6667.0

0.3333

3

2

1r
 

and left eigen vector ( ) ( ),0954.09544.02827.0321 =ΨΨΨ=Ψ
r

 

SND-2:        ( )( )
ee PEEPR gDgDfDfDfD )()( 1

μμμ
−−Ψ=Ψ

rr
004.03 ≠−=

−
Ψ

−=
cpqz

qz

e

e  and 

SND-3:       ( )
e

e
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iXXiPRX fDDefD ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ′′ΦΨ=ΦΦΨ ∑

=

3

1

2 )))((()),((
rrvrrr

 

                                                    { } ,0705.0
)(

2 132

2

333111 ≠−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Φ−Φ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+ΨΦ+Φ+ΦΨΦ−= d

cpqz
cEpqsb

e

e  

where Φ′
r

 stands for transpose of Φ
r

 and so on. 

   According to the literature (Guckenheimer & Holems, 1983), the system undergoes saddle node bifurcation at .eP   

5. Conclusions 
 
   The present paper deals with a stage structure prey-predator model with harvesting and it is proposed by means of a system of 
differential algebraic equations. Dynamical behaviour of the model is investigated due to the variation of the economic interest of 
harvesting. Singularity induced bifurcation and feedback control technique are studied. To stabilize the system at an interior point, 
the positive profit and the harvesting effort must satisfy the relation 22 /)(/ pqsbdvE +<  (from Theorem 2.2). For zero profit 

case the condition does not hold at all. In the last section of numerical simulation, sP  satisfies the above relation, but uP  does 
not. When v  increases, the E component of sP  increases and for the case of ,uP  it decreases continuously. At a certain value of 

,v  the relation reduces to 22 /)(/ pqsbdvE +≈  and community matrix possesses a simple zero eigen value which causes the 
saddle-node bifurcation in the system. Therefore, in fishery management, fishery agency always should take care of it.   
   The model and its dynamical behaviour are studied mainly on the deterministic framework. It will be more realistic to consider 
the model in a stochastic environment due to either ecological or economic fluctuations. This may be considered in future work.      
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