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Abstract 
 
   A Neural Network Internal Model Control (NN- IMC) strategy is investigated, by establishing inverse and forward model 
based neural network (NN). Further for developing the model has been selected suitable adaptive filter. Two types of NN-based 
inverse model (i.e. with and without disturbance input) were accurately simulated. The results indicated that the neural 
networks are capable to establish forward and inverse model rapidly from the couple of input-output open loop data of single 
distillation column binary system with a good root mean square error (RMSE). The simulation results revealed that NN-IMC 
with appropriate learning rate - momentum is capable to pursue the set-point changes and to reject the disturbance changes 
without steady state error or oscillations. NN-IMC with inverse model which contains disturbance input (modified NN-IMC) 
offer better performance than without it (conventional NN-IMC). 
 
Keywords: Neural network, modeling, control, modified internal model control (IMC), distillation column  
 
1. Introduction 
 
   Predictive control is currently one of the most widely used advanced control methods in industry, especially in the control of 
processes that are protected, multivariable and uncertain. A great number of implementation algorithms, including industrial 
predictive control applications (Qin et al., 2003) have frequently in the literature. Distillation is one of the most essential 
processing units in chemical engineering and petroleum refining, and it required to be controlled near to the optimum operating 
conditions as a consequence of economic incentives. The purpose of a distillation column is to separate a mixture of components 
into two or more products of different compositions. The physical approach of separation in distillation is the difference in the 
volatility of the components. The separation occurs in a vertical column where heat is added to a reboiler at the bottom and 
removed from condenser at the top. A stream of vapor produced in the reboiler rises through the distillation column and is forced 
into contact with a liquid stream from the condenser flowing downwards in the column. The volatile (light) components are 
enhanced in the vapor phase and the less volatile (heavy) components are enriched in the liquid phase. A product stream taken 
from the top of the column therefore mainly contains light components, whereas a stream taken from the bottom contains heavy 
components (Kanthasamy, 2009). The majority of the industrial distillation columns are currently controlled by multiloop 
controllers based on linear models which are penalized by several shortcomings. Nonlinear model based control system is one of 
the unique options to be explored for proper control of distillation columns. Furthermore, distillation column is used in industry as 
multivariable, nonlinear and complex processes. Extractive distillation is a separation process used to separate the binary mixture 
methanol-water by differences of volatility. Control structure of liquid flow rate at reflux and vapor boilup flow rate at reboiler 
(LV) are the best control pairing in binary distillation column system. Mole fraction of distillate and bottom product maintained 
respectively by regulate reflux flow rate & steam flow rate (Skogestad et al, 1990).  
   Most promising application areas of the neural network control are robotics, process control, vehicle guidance and teleoperation. 
A good introduction to the subject is given in the books .Neural Networks for Control. (ed. Miller, Sutton and Werbos, 1990) and 
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.Handbook of Intelligent Control. (ed. White and Sofge, 1992). Artificial neural networks can be used in several fields of control 
engineering: as process models, as controllers, for optimization and failure detection. Previous work (Garcia et al, 1986) refers to 
Model Predictive Control (MPC) as type of controllers in which there is a direct use of explicit and separate identifiable model. 
The same process model is implicitly used to compute the control action in such a way that the control design specifications are 
satisfied. Control design methods based on MPC concept have found wide acceptance in industrial applications due to their high 
performance and robustness. There are several variants of model predictive control methods, like Dynamic Matrix Control (DMC), 
Model Algorithmic Control (MAC) and Internal Model Control (IMC). Also nonlinear versions of these are developed, for 
example the nonlinear IMC concept. (Chen et al, 1994)  A largely independently developed branch of MPC, called Generalized 
Predictive Control (GPC), is aimed more for adaptive control. For the current state-of-the-art of MPC (Clarke et al, 1989). For NN-
IMC, nevertheless, even though the NN model is available, it is complicated to design the NN inverse controller owing to the 
following reasons. First, the process required to be controlled, must be stable in open-loop, which certainly limits many of IMC 
applications (Saint-Donat et al., 1991; Willis et al., 1992). Second, the process to be controlled is required to have stable zero 
dynamics because of the use of the model inversion. For our understanding, little consequence has been reported about the NN-
IMC of nonlinear non affine discrete systems with unstable zero dynamics. Third, it may not be easy to have the model inversion 
for control law design due to the nonlinear internal model used. 
   For the third problem mentioned previously, some solutions are introduced under certain conditions. One of the solutions is to 
train an NN inverse controller with the help of the identified NN model (Rumelhart et al., 1986, Baguman et al., 1990) If a 
nonlinear-in-the parameters type model is applied for adaptive control in a way analogical to the linear self-tuning scheme, one 
must accept that start-up behavior comparable to the linear case is not typically obtained and that all operation points should be 
visited at least once before good control performance is achieved. A minor off-line identification is of course a solution to the 
problems encountered during the initial start-up phase. This reduces the effect of randomly selected initial weights. (Rivals et al, 
2000). The neural networks application in chemical engineering field offers potentially effective means of handling three difficult 
problems: Complexity, non linearity and uncertainties. The variety of available neural network architectures authorizes us to deal 
with a wide range of process control problems in comparison with other empirical models. Neural networks are relatively less 
sensitive to noise and incomplete information and deal with higher levels of uncertainty when applied in process control problems 
(Hunt et al., 1991).  
   There are several results of research concerning the Neural Network – Internal Model Control (NN-IMC), 
which are implemented on different process (Rivals et al., 2000, Changjie et al., 2005, Varshney et al., 2009). These papers show 
that the advantages of Internal Model control systems are their robustness with respect to a model mismatch and to disturbances. In 
another paper, the NN-IMC was compared with conventional control (PID). It is shown that the NN-IMC has better performance 
than PID controller (Alarçïn, 2007). The objective of this paper is to obtain faster response performance in controlling binary 
distillation column using modified NN-IMC. The proper structure of NN model inverse and forward model, proper filter, and on-
line training is needed. Multilayer feed forward neural networks with back propagation algorithm have been utilized for modeling 
in MATLAB and distillation column is modeled in HYSYS. Comparison of ANN based control schemes are illustrated using error 
analysis. 
 
2.  Distillation Column NN-IMC Control System  
 
2.1 Distillation Column 
 
   The column contains a total of NT theoretical trays. The liquid hold up on each tray including the down comer MN. The liquid on 
each tray is assumed to be perfectly mixed with composition XN, showing in Figure1, the mathematical formula expressing the 
process in the distillation column using rigorous modeling described as follows (Luyben, 1990): 
Nth tray  
Mass balance: 

NNNN
N VVLL

dt
dM

−+−= −+ 11            (1) 

Component mass balance: 
 

NNNNNNNN
NN YVYVXLXL

dt
)XM(d

−+−= −−++ 1111          (2) 

Energy balance: 
 

NNNNNNNN
NN HVHVhLhL

dt
)hM(d

−+−= −−++ 1111     (3) 
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Figure 1: Binary Distillation Column  

 
2.2 Condenser and reflux drum 
 
   The overhead vapor totally condensed in a condenser and flows into the reflux drum, whose holdup of liquid is MD (moles). The 
content of the drum is at its bubble point. Reflux is pumped back to the top tray (NT) of column at a rate L. Overhead distillate 
product is removed at a rate D 
Mass balance:  

DLV
dt

dM
NTNT

D −−= +1                (4) 

Component mass balance : 

DNTNTNT
DD X)DL(YV

dt
)XM(d

+−= +1               (5) 

Energy balance: 

QcDhhLHV
dt

)hM(d
DNTNTNTNT

DD −−−= ++ 11           (6) 

    
2.3 Reboiler and base column 
 
   At the base of the column, liquid bottoms product is removed at a rate B and with composition XB. Vapor boil up is generated in 
thermosiphon reboiler at rate VB. Liquid circulates from the bottom of the column through the tubes in the vertical tube-in shell 
reboiler because of the smaller density of the vapor liquid mixture in the reboiler tubes. We will assume that the liquids in the 
reboiler and in the base of the column are perfectly mixed together and have the same composition XB and total holdup MB 
(moles). The composition of the vapor leaving the base of the column and entering tray 1st is yB. It is in equilibrium with the 
liquid with composition XB. 
Mass balance: 

BVL
dt

dM
B

N −−= 1                    (7) 

 

F ,  X f 
D , X D 

V 

R = L / D 

 

Qr 

B , Xb 

Reflux drum 

reboiler

Condensor 

Lb , Xb 

Vb ,Yb 

L 

VNT , YNT 

V N-1,Y N-1
LN , XN 

rectifying 

stripping 

VN ,YN L N-1 , X N- 1 

AC
xd

AC
xb

V1

Qc 



Biyanto et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 177-188 

 

180

 

Component mass balance: 

BBB
BB BXYVXL

dt
)XM(d

−−= 11                    (8) 

Energy balance: 

RBBB
BB QBhHVhL

dt
)hM(d

+−−= 11                 (9) 

 
Feed tray (N = NF) 
A single feed stream is feed as saturated liquid onto the feed tray NF. Feed flow rate is F (mole/hour) and composition XF (mole 
fraction more volatile component). 
Mass balance: 

NFNFNFNF
NF VVFLL

dt
dM

−++−= −+ 11            (10) 

Component mass balance: 

FzNFNFNFNFNFNFNFNF
NFNF XFYVYVXLXL

dt
)XM(d

+−+−= −−++ 1111         (11) 

Energy balance: 

FNFNFNFNFNFNFNFNF
NFNF FhHVHVhLhL

dt
)hM(d

+−+−= −−++ 1111        (12) 

 
2.4 NN-IMC (Neural Network-Internal Model Control) 
 
   The internal model control (IMC) scheme has been widely applied in the field of process control. This is due to its simple and 
straight forward controller design procedure as well as its good disturbance rejection capabilities and robustness properties. An 
Internal Model Control System (IMC) is presented in Figure 2. It consists of a collection of interconnected blocks: model, 
comparator, corrector, and controller. The model consist of controller model (Gc), plant model (Gp), forward model (Gm) and 
disturbance model (Gu). Basically in this structure, a feedback signal, result of a comparison between the actual process output Y 
and the model output of the process Ym to be controlled, is used to correct the reference signal (R). The feedback signal is active 
when a disturbance (U) acts on the process or the process and model behaviors are different. 
 
The IMC scheme has two interesting characteristics: 

• While modeling is accurately achieved, nominal tracking dynamic of the comprehensive system in absence of disturbance 
is reduced to that of the compensated process. The global system function is open loop. 
• Significant functioning is obtained even using a poor model. Generally, if the static gain of the compensated model is 
unity; full rejection of disturbance is achieved in steady state condition. 

 

 
Figure 2 : Neural Network IMC Structure  

 
   The first characteristic implies that the process to be controlled must be stable. Accurate modeling of the process is not necessary 
thanks to the fairly significant robustness of the IMC scheme and approximate models of the process can often be satisfactory. 
Therefore a reduced amount of information about the process, such as the rise-time and the static gain, can be sufficient. 
Traditionally, internal models were implemented using mathematical equations. The structure of the model that was chosen could 

Gc Gp
U1 CR +

++
  -

Gm
+-

Gu

U

Y

Ym



Biyanto et al. / International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 177-188 

 

181

 

use some previous knowledge of the plant, and the parameters obtained by an identification procedure. In some cases real time 
identification was used and the parameters of the model modified during the functioning of the system. The idea, here, is to use 
Internal Models implemented using NN in view of representing the knowledge of the control of the considered process. This is 
made possible because the internal model approach does not rely on an explicit mathematical model of the plant. 
   Neural networks are information processing systems. Neural networks can be thought of as “black box” devices that accept input 
and produce output. Each neural network has at least two physical components: connections and processing element (neuron). The 
combination of these two components creates neural networks. In a broad sense, an artificial neural network diagram is consisting 
of three principal elements: 

• Topology – how a neural network is organized into layers and how those layers are connected. 
• Learning – how information is stored in the network. 
• Recall – how the stored information is retrieved from the network. 

 
   In system identification view point, the advantages of neural networks to develop the model are nonlinear system, learning and 
adaptation, multivariable systems. 
   Some of the most common neural networks are functional mapping nets like multilayer perceptron (MLP) and cerebellar model 
articulation computer (CMAC) (Albus,1975), adaptive resonance nets (ART) that form input categories from input data, input 
feature categorization nets of Kohonen (Kohonen,1984), bilinear associative memories and feedback network of analog neurons 
(Hopfield et al, 1985). An interpolation technique called Radial Basis Functions (RBF) (Moody, et al, 1989, Poggio et al 1990), is 
normally viewed as a neural network. Fuzzy models are also an efficient function approximation scheme. 
   Multilayer perceptron (MLP) is one of the most commonly used neural network architecture today. It constructs an 
approximation of a multi-input multi-output function in a similar manner as fitting of a low order polynomial through a set of data 
points. A rich collection of different learning paradigms has been developed. Figure 3 illustrates the example of MLP networks, 
which consist of input, hidden and output layer.  

 
Figure 3 :  Structure of multilayer perceptron 

 
   An important and useful feature of MLP networks is that the gradient and various other Jacobians of the model can be computed 
efficiently in a hierarchical and parallel manner using the chain rule differentiation. This gradient computation method is called the 
generalized delta rule or error back propagation. (Hopfield et al., 1985) This is commonly considered as a minimization method, 
i.e. it includes also the steepest descent parameter update. The terms forward pass and backward pass are used in this study to 
denote the computation of the predictions (forward) and the gradients (backward) only. Common nonlinear least squares methods 
are Levenberg-Marquardt (LM) and Gauss-Newton (GN)  
   The MLP network is selected for the basic building block to be used in this study although localized representations have some 
useful properties over the MLP network. The learning algorithm using LM. 
The mathematical formula expressing what is going on in the MLP networks takes the form (Figure 3): 
 

⎥
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   All continuous function can be approximated to any desired accuracy with neural networks of one hidden layer of hyperbolic 
tangent hidden neuron and a layer of linear output neuron. (Clarke et al., 1989) 
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3. Design 
 
   The first step of design: build the Amplitude Pseudo Random Binary Signal (APRBS), build the structure forward model of 
neural network for and inverse model of neural network from dynamic data of single distillation column binary system, choose low 
pass filter and tune gain controller to improve the performance of system. The second step: on-line training and choose an 
appropriate learning rate and an appropriate momentum in order to NN-IMC produce manipulated variable which make the control 
variable follow the set-point changes 
 
3.1  Open loop data for training 
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Figure 4 : Open loop data set for training  

 
   The distillation column operated in open loop condition (inventory control only) in order to obtain its dynamic properties (Xd and 
Xb). Reflux (L) and steam reboiler (Qr) regulated according to signal APRBS (Amplitude Pseudo Random Binary Signal). Figure 4 
shows the open loop - data which collected and they plotted against time. 
 
3.2   Training of the forward model 
 
   Forward model of distillation column is built using NN Multi layer Percepton (MLP), with input structure Neural Network 
AutoRegresive (NNARX), which trained by a couple of L and Qr as input-data and a couple Xd and Xb as output data and by using 
Levenberg Marquard as learning algorithm. (Figure 4.) 
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Input layer Hidden layer    Output layer  

 
Figure 5 : NN forward model architecture 

 
   Based on RMSE during training and validation phase, NN- forward model with 6 history lengths (HL) and 13 hidden nodes 
(HN) is chosen as the best NN structure (Figure 5). As shown in Figure 6 and 7, The RMSE are 5,9908 x 10-5 and 1,2686 x 10-4 for 
mole fraction of distillate (Xd) and mole fraction of bottom (Xb), respectively.  
 

 
Figure  6 : Xd form process and NN model. 
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Figure 7 : Xb form process and NN model 

 
3.3   Training the inverse model 
 
   Similar procedure is applied to train the neural network - inverse model, as well as to train the forward model. The difference is 
on the inputs-model and on the outputs -model. Inputs of inverse model are Xd and Xb and its outputs are L and Qr, which obtained 
from training previously. Distillation column data which fed to the model are the past-data and the present-data. 
 

 
Figure 8 : NN inverse model structure without disturbance input 

 

 
 

Figure 9 : NN inverse model structure with disturbance input 
 
   Figure 8 is inverse model structure without disturbance input (conventional inverse model) and Figure 9 is inverse model 
structure with disturbance input (modified inverse model). Both of inverse model of distillation column built-up from NN with 
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Multi layer Preceptor (MLP), Neural Network Auto Regressive, external input structure (NNARX), which trained by L and Qr as 
output data and Xd and Xb as input data (F and Xf constant and will update at online training) and by using Levenberg Marquard 
learning algorithm.  
 

 
Figure 10 : Inverse model validation 

 
   NN inverse model has 6 history lengths and 13 hidden nodes and trained for 200 times computer iteration is the best ANN 
structure to produce good RMSE. Two type NN inverse model have Root Mean Square Error (RMSE) about 0.0483 for L and 
RMSE about 0.0829 for the Qr. (Figure 10) 
 
3.4   On Line Training 
 
   The IMC control strategy required the inverse model as well as the forward model. IMC uses the forward model to compare with 
the process output and the deviation is used as one of the input to the inverse model (controller) to produce the better control 
action. IMC make use of both the inverse and forward model to predict the required control action input to the process. The IMC 
control strategy incorporates compensation to the inverse model because the output from the system is constantly being comparing 
with the output of the forward model. Figure 11 shows the control strategy for the Internal Model Control (IMC). 
 

 
Figure 11 : Online training 
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   The fact the inverse model is a recursive network is ignored during training in the sense that regresor’s dependency on the 
weights in the network is ignored. The simple training algorithm, which appears in accordance with this approximation, in some 
sense follows the spirit of so-called recursive pseudo-linier regression methods (PLR). 
 
3.5   Filter 
   The schematic diagram of NN-IMC for controlling binary distillation column is shown in Figure 12. Low pas filter had been 
used in this research is chosen by trial and error to filtered high frequency signal and adjusting the controller sensitivity.  The filter 
transfer functions are: 

2972290
11

,s
Fiter

+
=        

2972290
32

.s
Filter

+
=    

 
4.   Results and discussions 
 
   Both of the proposed NN-IMC structure (conventional and modified) are stable and no error steady state. Proposed NN-IMC 
with inverse model input content of disturbance signal (modified NN-IMC) has better performance compare to NN-IMC without 
inverse model input content of disturbance signal. Proposed NN-IMC with disturbance input could get information about 
disturbance changing direct form measurement, so could produce manipulated variable signal early. The result has shown that 
process variable performance such as Integral Absolute Error (IAE) and settling time getting better. 
 

 
Figure 12 :  NN-IMC for controlling binary distillation column 

 
   Figure 13 shown that Xd response to the set point of Xd changes has rise time 187 minute and IAE 2.586 for NN-IMC structure 
with disturbance input and rise time 403 minute and IAE 4.4519 for NN-IMC structure without disturbance input. Figure 14 shown 
result of disturbance F change (increase from 45000 to 45450 gram mole/minute) that trajectory of Xd response return to the 
original set point at 266 minute and IAE 1.8133 for NN-IMC structure with disturbance input. Trajectory of Xd response return to 
the original set point at 500 minute and IAE 3.1608 for NN-IMC structure without disturbance input. 
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Figure 13 :  Response Xd proposed NN-IMC when set point Xd changes. 
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Figure 14 : Response Xd propose NN-IMC when disturbance F increase 

 
Table 1 : IAE for set point changes 

No Set Point IAE NN-IMC 
With dist. input 

IAE NN-IMC 
Without dist. Input 

(t=500 minute) Xd Xb Xd Xb 
1 Xd +0.001 2.5860  4.4519  
2 Xd -0.001 3.0235  5.0419  
3 Xb +0.001  2.1026  2.3046 
4 Xb -0.001  2.1151  2.3575 

 
Table 1 shown IAE performance for set point changes and Table 2 shown IAE performance for disturbance changes. From the 
tables NN-IMC with disturbance input has better performance (IAE) than NN-IMC without disturbance input.    

 
Table 2 : IAE for disturbance changes 

 
5.  Conclusions 
    
   A forward model and two types of inverse models of binary distillation column have been built using NNARX. The models 
showed satisfactory performances as evidenced by the lower RMSE values of 5,9908 x 10-5and 1,2686 x 10-4 for mole fraction of 
distillate (Xd) and mole fraction of bottom (Xb), respectively. The RMSE of two types of inverse models have RMSE of about 
0.0483 and 0.0829 for L and Qr, respectively. The models are therefore, ready to use in conventional and modified NN-IMC. 
Appropriate filters were selected and placed before and after the inverse model. Online training is also required for NN-IMC to 
obtain a better response in the system for controlling the binary distillation column. The simulation results, both conventional and 
modified NN-IMC have been found satisfactory. The proposed conventional and modified NN-IMC structures were found to be 
stable and no error steady state. This is mainly due to the selection of proper open loop data, optimized structure, proper filter, and 
adaptive inverse model. The inverse model with disturbance signal as input (modified NN-IMC) showed better performances in 
terms of lower IAE value and faster response as compared with the conventional NN-IMC. Future work will focus on the 
application of the proposed controller in many plants with difference complexities and characteristics. 
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No 
Disturbance IAE NN-IMC 

With dist. input 
IAE NN-IMC 

Without dist. input 
(t=500 minute) Xd Xb Xd Xb 

1 F+1% 1.8133 11.0866 3.1608 12.8595 
2 F-1% 1.8144 13.0649 3.1555 16.2314 
3 Xf+1% 1.3694 12.9935 5.6888 23.4960 
4 Xf-1% 1.4605 17.3190 5.5988 35.0071 
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