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Abstract

In principle, control methods for multi-phase machines are the same as for three-phase machines. Variable speed induction
motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace
the speed sensor, information of the rotor speed is extracted from measured stator currents and voltages at motor terminals.
Vector-controlled drives require estimating the magnitude and spatial orientation of the fundamental magnetic flux in the stator
or in the rotor. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy,
robustness, and sensitivity against model parameter variations. This paper analyses operation of a modified Euler integration-
based sensorless control of vector controlled five-phase induction machine with current control in the stationary reference frame.
A linear neural network has been then designed and trained online by means of back propagation network (BPN) algorithm,
differently from that in the literature which employs a nonlinear back propagation network (BPN) algorithm. The Artificial
Neural Network (ANN)-Model Reference Adaptive System (MRAS) based sensorless operation of a three-phase induction
machine is well established and the same principle is extended in this paper for a five-phase induction machine. Performance,
obtainable with hysteresis current control, is illustrated for a number of operating conditions on the basis of simulation results.
Full decoupling of rotor flux control and torque control is realised. Dynamics, achievable with a five-phase vector controlled
induction machine, are shown to be essentially identical to those obtainable with a three-phase induction machine.
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1. Introduction

Variable speed electric drives predominately utilise the three-phase machines. However, since the variable speed ac drives
require a power electronic converter for their supply (in vast majority of cases an inverter with a dc link), the number of machine
phases is essentially unlimited. This has led to an increase in the interest in multiphase ac drive applications, since multiphase
machines offer some inherent advantages over their three-phase counterparts. a number of interesting research results has been
published over the years and detailed reviews are available in (Singh, 2002, Jones et al., 2002, Toliyat et al., 2000, Xu et al., 2002,
Parsa, 2005).

Major advantages of using a multi-phase machine instead of a three-phase machine are detailed in (Singh, 2002, Jones et al.,
2002, Toliyat et al., 2000, Xu et al., 2002, Parsa, 2005) and are higher torque density, greater efficiency, reduced torque
pulsations, greater fault tolerance, and reduction in the required rating per inverter leg (and therefore simpler and more reliable
power conditioning equipment). Additionally, noise characteristics of the drive improve as well.

Sensorless vector control of three-phase induction machine has attracted wide attention in resent years (Parsa et al, 2004, Terrien
et al., 2004, Holtz, 2006, 2002). Several attempts have been made in the past to extract the speed signal of the induction machine
from measured stator currents and voltages. Initially, the sensorless techniques were restricted to techniques which are only valid
in the steady-state and can only be used in low cost drive applications, not requiring high dynamic performance. Different, more
sophisticated techniques are required for high performance applications in vector controlled drives (Holtz, 2002). In a sensorless
drive, speed information and control should be provided with an accuracy of 0.5% or better, from zero to the highest speed, for all
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operating conditions and independent of saturation levels and parameter variations. In order to achieve good performance of
sensorless vector control, different speed estimation schemes have been proposed and a variety of speed estimators exist
nowadays.

Sensorless operation of a vector controlled three-phase induction machine drive is extensively discussed in the literature (Vas,
1998, Rajashekara et al, 1996), but the same is not true for multi-phase induction machine. Only few application specific
sensorless operation of multi-phase machine is elaborated in the literature. The problem of using the position sensor in ‘more-
electric’ aircraft fuel pump fault tolerant drive is highlighted in (Green et al, 2000). The drive utilises a 16 kW, 13000 rpm six-
phase permanent magnet motor with six independent single-phase inverters supplying each of the six-phases. The authors
proposed an alternative sensorless drive scheme. The proposed technique makes use of flux linkage-current-angle model to
estimate the rotor position.

Although several schemes are available for sensorless operation of a vector controlled drive, but the most popular is the MRAS
because of ease of their implementation (Elbulk et al, 2002, Kim et al, 1995). An attempt is made in this paper to extend the
MRAS-based technique of a three-phase machine to an indirect field oriented five-phase induction motor drive.

It has been shown in (White, 1959) that multi-phase machine models can be transformed into a system of decoupled equations in
orthogonal reference frames. The d-q axis reference frame currents contribute towards torque and flux production, whereas the
remaining X-y components plus the zero sequence components do not. This allows a simple extension of the rotor flux oriented
control(RFOC) principle in that the rotor flux linkage is maintained entirely in the d-axis, resulting in the g-axis component of
rotor flux being maintained at zero. This reduces the electromagnetic torque equation to the same form as that of a dc machine or a
rotor flux oriented three-phase machine. Thus the electromagnetic torque and the rotor flux can be controlled independently, by
controlling the d and q components of stator current independently. The decoupled control of torque and flux using rotor flux
oriented control for a five-phase induction machine is illustrated in (Xu et al, 2002).

Ben et al. (1993) and Elloumi et al. (1998) present an MRAS speed observer which is an evolution of Shauder (1992) and
minimizes the error between rotor fluxes estimated respectively with a reference and an adaptive flux model, and then they apply it
to an field oriented control(FOC). Like in Shauder (1992), it employs, as a reference model, the voltage model of the induction
machine and the open-loop integration is performed by an LP filter. However, it uses the adaptive model, by rearranging the rotor
equations of the machine so that a multilayer perceptron can be employed. On this basis, these articles exploit the classical back
propagation network (BPN) algorithm for the online training of the neural network to estimate the rotor speed. In Ben et al. (1999)
the observer is verified also experimentally, even if neither the lowest speed limit of the observer nor the zero-speed operations, at
no load and at load, are presented. This paper proposes an improvement of the MRAS artificial-neural-network (ANN)-based
speed observer presented in (Ben et al, 1999), for basically two reasons. First it does not use the BPN neural network but an
Adaptive Linear neural Network (ADALINE), since the problem to be solved is linear: it is in fact questionable to use a nonlinear
method like the BPN algorithm which causes local minima, paralysis of the neural network, need of two heuristically chosen
parameters, initialization problems, and convergence problems. In (Ben et al, 1999) this linearity problem has been recognized, but
the minimization has been performed with a gradient-descent dependent also from the momentum, which is not necessary. Second,
the adaptive model in (Ben et al, 1999) is used in simulation mode, which means that its outputs are feed back recursively. In this
paper, in contrast to this, a modified adaptive model is used as a predictor, without feedbacks, no need of filtering the estimated
signal, and resulting in higher accuracy both in transient and steady-state operation. Moreover, differently from (Ben et al, 1999), a
stable behavior in field weakening is achieved. In this paper the improvements achieved with the MRAS-OLS observer are
emphasized.

The analysis is here restricted to ANN-MRAS-based sensorless control of a five-phase induction machine, with current control
in the stationary reference frame. The ordinary least square (OLS) algorithm for the online training of the neural network is used to
estimate the rotor speed. Phase currents are controlled using hysteresis current control method. A simulation study is performed for
speed mode of operation, for a number of transients, and the results are reported in the paper.

A detailed modelling of a five-phase induction machine and it vector control principle is reported in (Jones et al, 2002, Xu et al,
2002).

The developed model of a five-phase induction motor indicates that an ANN-MRAS technique used for three-phase machines
can be easily extended to multi-phase machines. For multi-phase machines ANN-MRAS-based speed estimator requires only d
and g components of stator voltages and currents. The model of a five-phase induction machine (Jones et al, 2002, Xu et al, 2002),
it has been shown that the stator and rotor d and q axis flux linkages are function of magnetising inductance Lm and stator and
rotor d and q axis currents, where as the X and y axis flux linkages are function of only their respective currents. Therefore in speed
estimation for multi-phase machine the X and y components of voltages and currents are not required. The speed can be estimated
using only d and g components of stator voltages and currents.

The proposed ANN-MRAS-based five-phase vector controlled induction motor drive structure with current control in the
stationary reference frame is shown in Figure 1.
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Figure 1. ANN MRAS BPN based five-phase induction motor drive structure.

3. BPN Algorithm based Speed Estimator

(A) Using Simple Euler Integration Method

A linear neural network has been designed and trained online by means of BPN algorithm. It is clear from “Figure 2(a),” that the
adaptive model is characterized by the feedback of delayed estimated rotor flux components to the input of the neural network,
which means that the adaptive model employed is in simulation mode. Moreover, the adaptive model is tuned online (training) by
means of a BPN algorithm, which is, however, nonlinear in its nature with the consequent drawbacks (local minima, heuristics in
the choice of the network parameters, paralysis, convergence problems, and so on).

In Figure 2(b), the adaptive model employs an ADLINE and the values of the rotor flux-linkage components at the input of the
ANN come from the reference model, and not from the adaptive one; this means that the ANN is employed in prediction mode.
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Figure 2. Schematic block diagram of Recurrent Neural Network speed estimator using BPN algorithm in
(a) Simulation mode and (b) Prediction mode.
Figure 2(a) and Figure 2(b) show the block diagrams of MRAS-based speed estimation schemes, which contain an ANN. This
network has four inputs and two outputs. It follows from these figures that the inputs to the reference model are the monitored
stator voltages and currents of the induction machine. The outputs of the reference model are the rotor flux-linkage components in

the stationary reference frame (¥ 4, ¥ ). These are obtained by considering the following equations (Vas, 1998):

L . .

Var = Lr U(Vds - Rslds)dt - Ls'lds] )]
L . .

Var = L_r[[(\/qs — R, )dt - LS'Iqs] )

These two equations do not contain the rotor speed and describe the reference model. However, when the rotor voltage equations
of the induction machine are expressed in the stationary reference frame, they contain the rotor flux linkages and the rotor speed as
well. These are the equations of the adaptive model and are given as:

R 1 . N n
Var = T_“(Lmlds “Ya — a)rTqur )dt] 3)
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R 1 . R N
qu = T_[_[(Lmlqs _qu + a)rTrV/dr )dt] C))

In these equations 4 and 1/7 gr are the rotor flux linkages estimated by the adaptive model. Equations (3) and (4) contain the

rotor speed, which in general is changing, and it is our purpose to estimate this speed by using an ANN. For this purpose,
Equations (3) and (4) can be implemented by a two-layer ANN which contains variable weights, and the variable weights are
proportional to the rotor speed

For given stator voltages and currents and induction machine parameters, the actual rotor speed @, must be the same as the
speed estimated by the ANN ((Z)r ), when the outputs of the reference model and the adaptive model are equal. In this case the
errors £y =YWy, —l/?dr and &, =V —l/}qr are zero.

When there is any mismatch between the rotor speed estimated by the ANN and the actual rotor speed, then these errors are not
zero, and they are used to adjust the weights of the ANN (or in other words the estimated speed). The weight adjustment is
performed in such a way that the error should converge fast to zero.

To obtain the required weight adjustments in the ANN, the sampled data forms of equations (3) and (4) are considered. Using the
backward difference method, e.g. considering the rate of change of an estimated rotor flux linkage

d!/}dr — !/}dr (k) _V}qr (k -1

5
dt T, ©
Where T, is the sampling time, the sampled data forms of the equations for the rotor flux linkages can be written as:
Vo (K) =4 (K—1 o (kK=1) oy, (k-1) L .
l//dr( ) Wdr( ):_Wdr( )_ Wq( )+_m|ds(k_1) (6)
TS TI’ TS TI’
()= (k=1 g (k-1 7. (k=1 L, .
Wq( ) V/q( ):_Wq( )+wrWdr( )+_m|qs(k_1) (7)
TS TI’ TS TI'

Thus the rotor flux linkages at the k™ sampling instant can be obtained from the previous
(k -1)™ values as

. T.. . LT, .

Wdr(k) = (I_T_)Wdr (k _1)_WrTs qu(k _1)+ T s (k _1) (®)

. T.. . LT, .

qu (k) = (1 - T_)qu (k - 1) + WrTs Var (k - 1) + T Iqs (k - 1) 9
By introducing ¢ = T, / T, and assuming that the rotor time constant (Tr ) is constant, the following weights are introduced:

T
w,=1-c,w,=awT,, W;=CcL_ and c:T—S (10)
L, . .

Where T, =R Eqg =Wo — Wy and &, =W — W (11)

r
It can be seen that @, and @, are constant weights, but @, is a variable weight, and is proportional to the speed. Thus equations
(8) and (9) take the following forms:

lﬁdr (k) =W, !/;dr (k - 1) -W, lﬁqr (k - 1) + W, ids (k - 1) (12)

lpqr (k) =W, l/;qr (k - 1) —W, lpdr (k - 1) W, iqs (k - 1) (13)
These equations can be visualized by the very simple two-layer ANN shown in “Figure 1,”. This contains four input nodes. The
input signals to these input nodes are the past values of the estimated rotor flux-linkage components expressed in the stationary

reference frame [l,{?dr (k - 1),lﬁqlr (k —1)1, and also the past values of the stator current components expressed in the stationary

reference frame [1ds(K —1),1qs (K —1) ]. There are two output nodes which output the present values of the estimated rotor flux-
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linkage components [l/? dar (l(),l/?qr (K) 1. Thus all the nodes are well defined. The connections between the nodes are represented

by weights (synapses), and a weight shows the strength of the connection considered. In general a weight can be positive or
negative, corresponding to excitatory and inhibitory weights.

l/}dr (k - 1)

O— ¥4 (K)

l/}qr(k _1) —0

ids (k - 1)
I (K=1)

Figure 3. ANN representation of estimated rotor flux linkages.
In the ANN shown in Figure 3, the adaptive w, weights are shown with thick solid lines and, as noted above, these are

Ve (K)

proportional to the speed (W, = @, T, )where the proportionality factor is the sampling time. The adaptive weights are adjusted so
that E = (1/2)&” (K) should be a minimum, where,

N T A A A T
S(k) = Wr (k) - l//r ’ W r (k) = [l//dr (k)al//qr (k)] and Wr (k) = [l//dr (k)> l//qr (k)]
Thus the weight adjustments to give minimum squared error have to be proportional to the negative of the gradient of the error

with respect to the weight, — OE / OW, since in this way it is possible to move progressively towards the optimum solution, where

the squared error is minimal. The proportionality factor is the so-called learning rate, . which is a positive constant and larger
learning rates yield larger changes in the weights. In practice as large a value is chosen for the learning rate as possible, since this
gives the fastest learning, but a large learning rate can yield oscillations in the output of the ANN.

It follows from the above that the mathematical expression for the weight adjustment has to be

AW, (K) = —10E / ow, (14)
This after simplification gives the following expression:
Aw, (k) =n[-e4(K)y o (K =1) + &, (K)y o (k = 1)] (15)

Where g4 (K) = w4, (K) =174, (K), and &, (K) =, (K) =7, (K) . Equation (15) is a well known type of expression in neural

networks using the method of steepest & gradient for weight adjustment and it can be seen that the appropriate errors are
multiplied by the appropriate inputs of the neural network shown in Figure 3.
Thus in Figure 3, the weight adjustments can be obtained from

w, (K) = w, (k =1) + Aw, (k) (16)
It has been discussed above that for rapid learning, the learning rate (1) has to be selected to be large, but this can lead to

oscillations in the outputs of the ANN. However, to overcome this difficulty, a so-called momentum term is added to Equation
(16). Which takes into account the past [(k-1)"] weight changes on the present [k™] weight This ensures accelerated convergence of

the algorithm. Thus the current weight adjustment AW, (K) described by Equation (16) is supplemented by a fraction of the most
recent weight adjustment, AW, (K —1):
w, (K) =w, (k =1) + Aw, (k) + aAw, (k - 1) (17)
Where « is a positive constant called the momentum constant. The term .AW, (k —1) is called the momentum term,

and is a scaled value of the most recent weight adjustment. Usually, a is in the range between 0.1 and 0.8. The inclusion of the
momentum term into the weight adjustment mechanism can significantly increase the convergence, which is extremely useful
when the ANN shown in Figure 3, is used to estimate in real-time the speed of the induction machine. Since it follows from

equation W, = @, T, that the weight @, is proportional to the speed, finally the estimated rotor speed can be obtained from

o =—2 (18)
4, Simulation Results and Discussion

The adaptation algorithm described above can be implemented in two ways (i) ANN MRAS BPN Model (adaptive model
in Simulation mode), and (ii) ANN MRAS BPN Model (adaptive model in Prediction mode). It is clear from the Figure 1,
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that the adaptive model is characterized by the feedback of delayed estimated rotor flux components to the input of the
neural network, which means that the adaptive model employed is in simulation mode. Moreover, the adaptive model is
tuned online (training) by means of a BPN algorithm, which is nonlinear in nature. In the second mode Figure 2, the values
of the rotor flux-linkage components at the input of the ANN come from the reference model, and not from the adaptive
one; this means that the ANN is employed in prediction and not in simulation mode.
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Figure 5. Speed response with vector controller of the ANN-MRAS-BPN scheme (a) adaptive model in Simulation mode
(b) adaptive model in prediction mode.

It is observed from the simulation results (Figures 4 and Figure 5) that much better response is obtained if it is
implemented in the prediction mode the starting ripples which are the problem of ANN speed estimator can be eliminated
& the tracking capability further improves in the prediction mode. The neural adaptive model employed in prediction mode,
has the advantages that it gives quicker convergence of the speed estimation, higher bandwidth of the speed loop, lower estimation
errors both in transient and steady-state operation, better behaviour in zero-speed operation at no load, and stable behaviour in field
weakening.
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Figure 7. The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:
excitation and acceleration transient for (a) simulation mode and (b) prediction mode.

The drive is operated in speed mode with speed feedback is taken from the BPN-MRAS speed estimator. Figure 6 displays
results for reference and actual rotor flux in simulation mode and prediction mode. After the initial transient rotor flux settles to the
reference value and there is a change of flux of 0.15Wb in simulation mode and 0.13Wb in prediction mode. It is due to loss of
decoupled control or parameter variation effect or lack of proper tuning. Figure 7 displays results for reference and actual torque,
speed, stator phase ‘a’ reference and actual current and stator phase ‘a’ phase-to-neutral voltage for both modes. It can be seen
from Figure 7 that the flux and torque control are fully decoupled. Acceleration takes place with the maximum allowed value of
the motor torque. Actual motor phase current tracks the reference very well. Consequently, torque response closely follows torque
reference and a small deviation appears only at the end of the transient. No viable conclusion can be drawn because of PWM
nature of voltages. In simulation mode, the ripples in the torque are of 4 N-m and spikes in speed are of 80 rpm. These torque and
speed ripples are very small in prediction mode.

Disturbance rejection properties of the drive are investigated next. Previous steady state is the one of Figure 7 (no-load operation
at 1200 rpm) and a load torque equal to the motor rated torque is applied in a step-wise manner at t = 1 s. Responses are shown in
Figure 8, for simulation mode and prediction mode. Application of the load torque causes an inevitable dip in speed, of the order
of 20 rpm in this period. Motor torque quickly follows the torque reference and enables rapid compensation of the speed dip (in
less than 100 ms). The motor torque settles at the value equal to the load torque after around 100 ms and the motor current
becomes rated at the end of the transient. The maximum ripples in the torque and speed during this period in simulation mode are 6
N-m and 13 rpm and in prediction mode are 0.4 N-m and 2 rpm. Due to presence of high ripples in torque and speed, the machine
produces more noise; more losses, more heating and therefore derating of machine will take place.
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Figure 8. The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:
disturbance rejection behaviour for (a)simulation mode and(b) prediction mode.

Finally, reversing transient is examined as well. Previous steady state is the one of Figure 8, (rated load torque operation at 1200
rpm) and the command for speed reversal is given at t = 1.2 s. Responses, obtained for this transient, are shown in Figure 9, for
simulation mode and prediction mode. Once more, actual torque closely follows the reference, leading to the speed reversal, with
torque in the limit, in the shortest possible time interval (approximately 350 ms). During this period, in simulation mode, the ripple
in the torque is 4 N-m and a spike in the speed is 200 rpm. The torque and speed ripples are very small in prediction mode.

The speed feedback signal is the estimated one obtained from BPN-MRAS-based speed estimator first from simulation mode
and then from prediction mode. The attainable performances are examined by simulation in both modes and compared. It is
concluded and shown that the performance achieved with prediction mode are better than simulation mode.

(B) Using Modified Euler Integration Method

This is the improvement of the artificial-neural-network (ANN)-based speed estimator MRAS ANN BPN presented in
previous section. In this modified scheme the number of inputs to the adaptive model is increased with a consequent quicker
convergence of the speed estimation. This modified ANN MRAS BPN speed estimator uses the current model as an adaptive
model discretized with the modified Euler integration method. A neural network has been then designed and trained online by
means of a nonlinear back propagation network (BPN) algorithm. Moreover, the neural adaptive model is employed here both in
simulation and prediction mode. The quick convergence of the speed estimation & lower estimation errors both in transient and
steady-state operation is obtained in the prediction mode.
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Figure 9. The torque, speed and phase ‘a’ current of a vector controlled five-phase induction machine:
reversing transient for (a) simulation mode and (b) prediction mode.

A more efficient integration method is used by the so-called modified Euler integration, which also takes into consideration the

values of the variables in two previous time steps.

R 1 . A N
Var :T_[[(Lmlds Vi — a)rTrl//qr )dt]

Py = Ti[[(Lmiqs T )it
From equationrs (19) & (20) discrete-time equations (21) can be obtained, as given below:

Vo (K+1) =0y, (K)— oy, (K) + i (K) + o0, (K= + oy, (K-1) - g, (k-1)

Ve (K4 1) = 0374, (K) + 0,07, (K) + 0y (K) + 0,37 5 (K= 1) = 0374, (K 1) — i (k1)
where @, ®,, 0, ,®,, O, ®, are the weights of the neural networks defined as:

w =1-3T/2T.,  ®,=30T/2,

o, =3L,T/2T,, w,=T/2T,,

o, =0T1/2, o,=L,T/2T,.

And the rest of the equations are same as used in the previous ANN MRAS BPN scheme i.e.

E¢ =Wa ~Var g =Vaq _l/;qr

(19)

(20)

21

(22)
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sz(k) = 77|:_ &y (k)‘/}qr (k _1)+gq (k)l/}dr (k _l)jl (23)
W, (K) = w, (k —1)+ Aw, (K) + cAw, (k — 1) (24)
w
And the speed is obtained as @, = 2 (25)
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Figure 10. Schematic block diagram of Recurrent Neural Network speed estimator using modified Euler BPN algorithm in
(a) Simulation mode and (b) Prediction mode
Figure 10 shows the block diagram of the corresponding MRAS speed observer for simulation and prediction mode. The
modified Euler has eight inputs and two outputs with a consequent quicker convergence of the speed estimation.
The simple Euler causes an error at starting of transient. This problem can be avoided either by using a simple Euler
integration in prediction mode or by using a modified Euler integration either in simulation or in prediction mode. In this last case,
however, the use of the prediction mode results in better accuracy in rotor speed estimation and a better performance at zero speed

as shown in the Figure 11, and Figure 12.
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